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Abstract

We present a model for the equilibrium movement of capital between asset markets that are

distinguished only by the levels of capital invested in each. Investment in that market with the

greatest amount of capital earns the lowest risk premium. Intermediaries optimally trade off

the costs of intermediation against fees that depend on the gain they can offer to investors for

moving their capital to the market with the higher mean return. Those fees also depend on the

bargaining power of the investor, in light of potential alternative intermediaries. In equilibrium,

the speeds of adjustment of mean returns and of capital between the two markets are increasing

in the degree to which capital is imbalanced between the two markets.
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1 Introduction

We present a model for the equilibrium movement of capital between markets. Equi-

librium conditional mean rates of return vary across markets according to the levels of

capital invested in the respective markets. As a matter of supply and demand within each

market, that market with the greater amount of capital earns lower conditional mean re-

turns. Given a sufficient disparity in the capital levels in the markets, intermediaries find

it optimal to search for investors in the market with “surplus” capital and offer them the

opportunity to move their capital to the other market. An intermediary charges suppliers

of capital a fee that is based on their gain from the move, and based on the degree of

competition in the market for intermediation.

This paper is motivated by extensive empirical evidence, some of which is reviewed

in the last section, that supply or demand shocks in asset markets, in addition to caus-

ing an immediate price response, also lead to adjustments over time in the distribution

of capital across markets and adjustments over time in relative conditional mean asset

returns, in a way that reflects delays in the adjustments of investors’ portfolios. We are

particularly interested in how those adjustments are affected by the endogenous behavior

of intermediaries.

In our equilibrium model, the greater the relative difference in capital levels across the

markets, the more intensive are intermediaries’ efforts to re-balance the distribution of

capital across the markers, and the greater the rate of convergence of the two mean rates

of return toward a common level.

An example is the limited mobility of capital into reinsurance markets, documented

by Froot and O’Connell (1997), who write: “Our results suggest that capital market

imperfections are more important than shifts in actuarial valuation for understanding

catastrophe reinsurance pricing. Supply, rather than demand, shifts seem to explain

most features of the market in the aftermath of a loss.” In subsequent work, Froot

(2000) continues: “We . . . find the most compelling (evidence) to be supply restrictions

associated with capital market imperfections and market power exerted by traditional

reinsurers.”

We are particularly interested in the impact of competition among intermediaries on

the equilibrium degree of capital mobility. The impact of competition among intermedi-

aries is through two channels. First, intermediaries do not internalize the entire impact
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of their search activity on the market because each gets only a fraction of the aggregate

intermediation fees. This prompts intermediaries to search more as the number of inter-

mediaries increases. Competition has a second and potentially offsetting effect on capital

mobility through the impact of fee bargaining on lower incentives to intermediate. In the

simplest setting that we analyze, the second effect dominates: Increasing the number of

intermediaries reduces capital mobility.

With trading frictions that delay portfolio adjustments, there can be periods of time

over which assets with identical risks have different mean returns. More generally, there

can be substantial differences in mean returns across assets that are due not only to cross-

sectional differences in “fundamental” cash-flow risks, but are also due to the degree to

which the distribution of asset holdings across investors is inefficient (relative to a market

without intermediation frictions). Empirical “factor” models of asset returns do not often

account for factors related to the distribution of ownership of assets, or related to likely

changes in the distribution of ownership. Exceptions include the recent work of Coval

and Stafford (2007) and Lou (2009), who note that the conditional mean returns of an

equity tend to be lower due to price pressure when mutual funds owning that equity

are experiencing liquidation-motivated outflows, and that the conditional mean returns

recover as price pressure abates.

A significant body of theory examines the implications of search frictions for asset

pricing. For example, differences in search frictions across different asset markets are

treated by Weill (2008) and Vayanos and Wang (2007). Duffie, Gârleanu, and Pedersen

(2005) study the implications of search frictions in a single asset market with marketmak-

ing. In the context of a single asset market, Duffie, Gârleanu, and Pedersen (2007) and

Lagos, Rocheteau, and Weil (2008) model recoveries in mean returns, after a shock to

the preferences of investors, corresponding to a gradual re-allocation of the asset to more

suitable investors, rather than by cross-market capital dynamics as here. Earlier search-

based models of intermediation include Rubinstein and Wolinsky (1987), Bhattacharya

and Hagerty (1987), Moresi (1991), Gehrig (1993), and Yavaş (1996).

Related work on the implications of capital market frictions for asset pricing dynamics

includes Basak and Croitoru (2000) and He and Krishnamurthy (2007). In terms of

some objectives and model features, the study by Gromb and Vayanos (2007) is closely

related to ours. Our respective approaches were developed independently. Common
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to our models, local hedgers are immobile, while arbitrageurs can work across markets,

driving returns toward fundamental levels, subject to frictions that prevent them from

perfectly equating returns in the two markets. Our respective approaches, however, are

quite different. Our model focuses on capital dynamics and their impact on risk premia.

2 The Market Setting

This section presents a stylized model for the endogenous adjustment of capital and risk

premia across markets. There are three types of agents: (i) local hedgers; (ii) investors,

who provide risk-bearing to hedgers in each of two local markets; and (iii) intermediaries

(or asset managers) who provide the fee-based service to investors of moving capital

from one market to the other. In equilibrium, investors move their capital, subject to

intermediation frictions, into that market with the higher premium for the same risk.

We fix a probability space (Ω,ℱ , P ) and a common information filtration {ℱt : t ≥ 0}

satisfying the usual conditions.1

In each of two financial markets, labeled a and b, a continuum (a non-atomic measure

space) of local risk-averse agents own short-lived risky assets that they are willing to

sell at or above their respective reservation prices. Equivalently, they are willing to buy

insurance contracts against the risks to which they are exposed. These “hedgers” are not

mobile across markets. They can be viewed in this respect as relatively unsophisticated

in the use of cross-capital-market transactions, or as having high transactions costs for

trading outside of their local markets. A continuum of investors that supply capital have

access to cross-market trading, subject to intermediation frictions to be described. These

suppliers of capital are risk-neutral, offering to bear the risk that hedgers desire to shed

in return for any strictly positive risk premium. In an insurance context, one might think

of these suppliers of capital as stylized versions of the “Names” that supply risk bearing

capacity to the insurance market known as “Lloyd’s of London.”

The total levels of capital available in the two markets at time t are Xat and Xbt,

respectively. Capital can be reinvested continually at the discretion of each provider of

capital, that is, “rolled over” in the short-lived assets that are continually made available

1See, for example, Protter (2004) for the usual conditions and for other standard properties of stochastic processes

to which we refer.
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for sale by hedgers. Each unit of capital that is currently invested in market i at time t

is paid cash dividends at the going market “reset rate” �(Xit), where �( ⋅ ) is a strictly

decreasing continuous function. The payout rate �(Xit) is continually reset in double

auctions at which the supply and demand for the asset in market i are matched at each

point in time. As the amount of capital available to invest in the asset is increased, the

market-clearing reset rate declines. In Appendix A, we provide an example in which �(x)

is the equilibrium insurance premium in a market with x units of insurance capital.

In return for the payout rate �(Xit), the provider of each unit of capital in market

i agrees to absorb the risky increments of a payoff process �i that is Lévy, that is, has

independently and identically distributed increments over non-overlapping time periods

of the same length. (Examples include Brownian motions, Poisson processes, compound

Poisson processes, and linear combinations of these.) The idea is that the short-lived

risky asset promises 1+ d�it+ �(Xit) dt at time t+ dt per unit of capital invested at time

t, in the instantaneous sense. More precisely, each unit of capital invested in market i at

any time s, and rolled over continually in that market until some time � > t accumulates

to W� units of capital, according to the stochastic differential equation dWt = Wt− d�it,

and in the meantime generates cash flows at the rate Wt− �(Xit). (The notation “Wt−”

means the left limit of the path of W at time t, that is, the level just before any jump at

time t.)

In the illustrative case of an insurance market, we can take �i to be a compound

Poisson process that jumps down at the arrival times of loss events, and is otherwise

constant. In this case, one unit of capital invested at time t pays the supplier of capital

1 + �(Xit) dt at time t + dt (in the above instantaneous sense) if there is no loss event,

and if there is a loss event, has a recovery value of 1 +Δ�it, where Δ�it is the jump size.

The jumps of �i are bounded below by −1, preserving limited liability. If the loss events

have mean arrival rate � and a loss-size distribution � with mean �, then the mean loss

rate is � �. In this case, as the amount x of capital gets large, the market clearing payout

rate �(x) cannot go below ��+ r, where r > 0 is the time preference rate of the investors.

Investors optimally supply all of their local capital inelastically, so long as the mean rate

of return �(x)− �� is strictly larger than their time preference rate r.

As with typical asset-management contracts used by hedge funds and private-equity

partnerships, cash payouts are not re-invested into the capital pool. For us, this is merely
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a modeling convenience.

We assume that �a = �a + �c and �b = �b + �c, where the market-specific processes �a

and �b as well as the common component �c are independent Lévy processes. We assume

that �a and �b have the same distribution, so that the two markets have identically and

symmetrically distributed risks. This symmetry simplifies the calculation of an equilib-

rium and has the further illustrative advantage that any differences in the conditional

expected returns in the two markets are due solely to differences in the capital levels of

the markets.

If there were no capital-market frictions, investors would move capital between the

markets so as to obtain the higher reset rate, and in doing so would equate the payout

rates �(Xat) and �(Xbt), and thereby equate Xat and Xbt at all times. Indeed, given the

symmetrically distributed returns of the two markets, investors would do so even if they

were risk-averse, provided that they have no other hedging motives.

Frictions in the movement of capital may, however, lead to unequal levels of capital

in the two markets. If, for example, Xat < Xbt, then the conditional excess mean rate of

return of the risky asset in market a exceeds that in market b by �(Xat)−�(Xbt), despite

the identical idiosyncratic and systematic risks of the two assets. Whichever market has

“too much capital” receives the lower risk premium.

An investor chooses how to deploy re-invested capital between the two markets, subject

to the available trading technology. Letting Ct denote the net cumulative amount of

capital moved by a particular investor from market a into market b through time t, the

investor’s capital, WC
at in market a and WC

bt in market b, jointly satisfy

dWC
at = WC

at− d�at − dCt

and

dWC
bt =WC

bt− d�bt + dCt.

Capital can be moved only through the services of an intermediary, and at the times

of contact with an intermediary, as will be explained. A model for a proportional

transactions-fee process K will be determined in equilibrium, once we have introduced a

model for intermediation of capital movements. A investor is infinitely-lived, and has a

utility of

E

(
∫ ∞

0

e−rt
(

[WC
at�(Xat) +WC

bt �(Xbt)] dt−Kt− d∣C∣t
)

)

,
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where ∣C∣t denotes the total variation of C up to time t. A minor alteration of the model

that allows for randomly timed exit and entrance of investors would be equally tractable.2

For simplicity, we have assumed that transactions costs are paid directly by investors, and

not deducted from the capital moved from market to market.

Each investor takes as given the total capital processes Xa and Xb of the respective

markets as well as the proportional transactions-cost process K. Among other equilib-

rium consistency conditions, investors form correct conjectures regarding the dynamics of

(Xa, Xb, K).

Intermediaries contact investors in order to profit from fees for moving their capital

from one market to another. In equilibrium, at any time, only investors in that market

with greater capital agree to have any of their capital moved to the other market. Be-

cause a investor has linear preferences and takes (Xa, Xb, K) as given, it is optimal when

contacted to move either no capital or to move all capital to the other market.3

We letWij(t) denote the level of capital in market i of investor j at time t. Conditional

on the intermediation contact intensity process �, investors are contacted, pairwise inde-

pendently at the conditional mean rate �t. In a manner similar to that of Weill (2007),

the law of large numbers allows us to calculate the aggregate rate of movement of capital.

Letting m( ⋅ ) denote the non-atomic measure over the space of investors, the total rate

at which capital is moved from market a to market b is almost surely4

∫

�t1{Xat >Xbt}Waj(t) dm(j) = �t1{Xat >Xbt}

∫

Waj(t) dm(j)

= �t1{Xat >Xbt}Xat.

Likewise, the rate at which capital moves from market b to market a is �t1{Xbt >Xat}Xbt.

2For this, investors would exit at exponentially distributed times that are pairwise independent, and consume their

capital at exit. New investors would appear in proportion to the current levels of capital. Any difference between exit

and entrance rates would thus be subtracted from the proportional drifts of the capital accumulation processes Xa

and Xb.
3If he or she has any capital in the market with more total capital, then all of this investor’s capital will be moved,

provided the proportional transaction-costs process K is not too large, and this is the case in any equilibrium for our

model, as we shall see once the model is completely specified. Thus, although we allow that a given supplier of capital

may initially have non-zero capital in both markets, all of his or her invested capital will optimally be held in just one

of the two markets at any time after the first time of contact with an intermediary.
4One can apply the results of Sun (2006), relying on a particular style of product measure space for states of the

world and investors.
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Given the intermediation contact intensity process � and initial conditions for capital

in each market, we let X�
it denote the total capital in market i at time t. Given an

associated transaction-cost process K, the marginal value to a supplier of one additional

unit of capital in market i at time t is

��it = E

(
∫ ∞

t

e−r(s−t)
[

Ws�
(

X�
D(s),s

)

ds−Ws−Ks− dNs

]

∣

∣

∣

∣

ℱt

)

, (1)

where Ns is the cumulative number of switches back and forth between the two markets

through time s by the holder of this unit of capital, and the market indicator D(s) is a

or b, depending on whether, at time s, the accumulated capital Ws is currently located

in market a or b. This capital thus accumulates according to

dWs = Ws− d�D(s−)(s),

with initial condition Wt = 1. The market-indicator process D is a marked point process

with an initial condition at time t of D(t) = i, and with an intensity of jumping from

market i to market j at time s of �s1{X�
is >X�

js}
. In the equilibrium that we shall describe,

the value of switching from market i to market j is strictly positive if and only ifX�
it > X�

jt.

The marginal value of moving capital is thus

��
t = max(��at, �

�
bt)−min(��at, �

�
bt).

At each time t, intermediaries charge investors some fraction q ∈ [0, 1] of the gain

��
t from switching each unit of capital. That is, the proportional intermediation fee is

K�
t = q��

t . One can view q as the bargaining power of an intermediary. We later treat

the effect of intermediary competition on q.

To assume that an investor can move capital from one market to another only through

intermediation is tantamount to an assumption that the alternative technologies for mov-

ing capital are prohibitively expensive. For this, it would be enough, in equilibrium,

that for any alternative trading technology such as directly contacting and negotiating

with hedgers, the proportional cost of moving capital exceeds the marginal value ��
t of

switching. This is a strong assumption that simplifies the model and its solution. We will

calculate the marginal switching value in examples and show that it can be arbitrarily

small depending on the parameters of the intermediation technology. So, the assump-

tion that alternative capital movement technologies would not be used by investors is

reasonable in some circumstances.
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Our model can also be generalized by supposing that each investor has an alternative

technology by which opportunities to move capital to the other market arrive at random

times, independent across investors, with a constant mean arrival rate. This would cause

only minor modifications to the structure and solution of our model. We avoid it for

simplicity. Increasing the mean arrival rates of these alternative capital-shifting opportu-

nities reduces the average degree of imbalance of capital and the difference in risk premia

between the two markets, and thus reduces the profitability of intermediation.

An intermediary’s rate of cost for applying contact intensity �t is assumed to be c�t,

for some technological cost coefficient c ≥ 0. For example, doubling the expected rate at

which investors are contacted costs twice as much.5 We restrict � to be a progressively-

measurable process so that, at each time, the intermediary chooses a contact intensity

that depends only on information that is currently available. The maximum feasible

contact intensity of the market is some constant � > 0.

3 Equilibrium with Monopolistic Intermediation

We first take the monopolistic case, n = 1. In the next section, the solution of the

monopolistic case leads immediately to a solution for the oligopolistic case via a simple

equivalence result.

3.1 The Monopolist’s Problem

A monopolistic intermediary’s total rate of fee revenue is �tmax(Xat, Xbt)qΦt, where Φt =

��
t is the gain from switching capital under policy �. This assumes that the intermediary

and supplier of capital both correctly anticipate that the intermediary’s future contact

intensity is indeed given by the process �. We will impose this consistency property as

part of the definition of an equilibrium.

Given the initial conditions X�
a0 = xa and X�

b0 = xb, and given a gain-from-switching

process Φ, the intermediary’s utility for a contact intensity process � is

U(xa, xb,Φ, �) = E

(
∫ ∞

0

e−rt�t[qΦt max(X�
at, X

�
bt)− c] dt

)

.

5This can be viewed as a contact technology in which the intermediary adjusts a “broadcast” intensity, for example

adjusting the rate of purchase of advertisements or other forms of market-wide intermediation efforts. This differs

from a model in which, for example, contacting twice as many individuals at a given intensity costs twice as much.
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We assume that the parameters are such that this utility is finite, which is the case

in the equilibria that we analyze. We restrict attention to intermediation policies that

depend on the available information only through the current capital levels (Xat, Xbt).

The intermediary might otherwise prefer to commit once and for all time to a path-

dependent intensity policy that could, at some future time, be dominated by another

policy available at that time, given the current capital market conditions at that time.

The inability to commit to an intermediation strategy may in principle be overcome by

sophisticated punishment threats, as in Ausubel and Deneckere (1989) and Mailath and

Samuelson (2006). In such equilibria, if the intermediary deviates, investors would update

their beliefs about the intermediary’s strategy in a way that harms the intermediary. Such

equilibria are based on sophisticated off-equilibrium-path investor beliefs, which are not

in the spirit of our assumption that investors are less sophisticated than intermediaries.

Another possible justification for our focus on Markov equilibria is the fact that more

sophisticated equilibria unravel in finite-horizon models where (possibly state-dependent)

stage games have a unique Nash equilibrium.

Given the symmetry of the two markets, it suffices to characterize equilibrium behavior

in terms of

Xt = max(Xat, Xbt)

Yt = min(Xat, Xbt).

The payoff processes to investments in the “larger” and “smaller” markets are, respec-

tively,

d�Xt = 1{Xat>Xbt} d�at + 1{Xat≤Xbt} d�bt

d�Yt = 1{Xat≤Xbt} d�at + 1{Xat>Xbt} d�bt.

From the Lévy property, (�X , �Y ) has the same joint distribution as the primitive payoff

processes (�a, �b).

Because we restrict attention to an intermediation intensity process � that depends

only on current capital levels, and because of symmetry, we can suppose that �t =

Λ(Xt, Yt) for some measurable policy function Λ : ℝ2
+ → [0, �] with the property that

there is a solution to the associated stochastic differential equation

dXt = −Λ(Xt, Yt)Xt dt+Xt d�
X
t (2)
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dYt = Λ(Xt, Yt)Xt dt+ Yt d�
Y
t . (3)

Letting ℒ denote the space of intermediation intensity processes of this form, and

given an assumed gain-from-switching process Φ, the intermediary solves the problem

sup
�∈ℒ

U(x, y,Φ, �). (4)

An equilibrium is a pair (�,Φ) consisting of an intermediation intensity process � that

attains the supremum (4) given Φ, and such that Φ = ��
t . This definition includes consis-

tency with the optimality for investors to move their capital, in exchange for the marginal

fee determined by Φ, when contacted by the intermediary, and includes consistency be-

tween the conjectured and actual dynamics for capital movements and search intensity.

In the some of the cases that we analyze, we show that there exists a unique equilibrium.

3.2 Homogeneous Case

In order to obtain the simplification associated with homogeneity, we suppose that the

inverse demand function �( ⋅ ) is of the form a + kx− for positive constants a, k, and .

As explained in the insurance setting of Appendix A, this can be arranged by suitable

assumptions on the cross-sectional distribution of hedgers’ dis-utilities for insurance pre-

mia and losses. Because the constant a is common to the two markets, it has no effect

on benefits to switching capital, and can be taken to be zero without loss of generality.

Also without loss of generality, we can take k = 1 by re-scaling. That is, the equi-

librium behavior for (k, c) is the same as that for (1, c/k). Because the intermediary has

linear time-additive preferences and because of the homogeneity of �, and therefore of

��, the ratio Z = X/Y of total capital in the over-capitalized market to total capital

in the under-capitalized market determines the optimal intermediation intensity. Thus,

we can further assume the independence of �a and �b without loss of generality because

any common Lévy component would have no effect on the ratio of X to Y . (The sole

exception is a case of common jumps with a jump-size distribution that supports −1, in

which case there is a non-zero probability that Xt and Yt can be zero simultaneously. We

rule out this exception.)

Consistent with the insurance example, we suppose that �a and �b are of the form

�it = �t + �it, where � is a constant and �a and �b are independent compound Poisson
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processes with common jump intensity � and a given jump-size probability distribution

�. The proportional payoff processes processes �a and �b could also be given a common

Brownian component without affecting our analysis, for this also has no effect on the

relative proportions of capital in the two markets. Cases with market-specific Brownian

components are analyzed in Appendix L. Likewise, the constant drift rate � plays no

role in the analysis of optimal intermediation, and can be taken to be zero without loss

of generality for purposes of determining equilibrium intermediation policies. The effect

of non-zero � on actual capital levels can be reintroduced later with the scaling by e�t of

both Xt and Yt.

We begin our analysis with the simple case in which the jump-size distribution � places

all mass at −1, meaning complete loss of invested capital at an event. We later relax this

to random partial recovery, for which we offer an illustrative numerical example. For the

zero-recovery case, a loss event in the market with less capital would cause the capital

ratio Xt/Yt to jump to +∞. While we allow this formally, the analysis can be done

similarly in terms of the ratio Yt/Xt, which remains in [0, 1] almost surely, and our results

apply with only notational changes. Provided the initial conditions include a strictly

positive amount of capital in at least one market, the probability that Xt and Yt ever

reach zero at the same time is 0. The partial-recovery case that we later consider has

strictly positive capital levels in both markets at all times after time zero, given a strictly

positive level of capital in at least one of the markets at time zero.

Let G(Xt, Yt) and H(Xt, Yt) denote the present values to investors of the marginal

future cash flows per unit of capital held at time t in the over-capitalized and under-

capitalized markets, respectively, as defined by (1). Subject to the usual smoothness

and integrability conditions, Itô’s formula implies that these functions satisfy the coupled

equations

r G(x, y) = �(x)−Gx(x, y)xΛ(x, y) +Gy(x, y)xΛ(x, y)

+ (1− q)Λ(x, y)(H(x, y)−G(x, y))− �G(x, y) + �(G(x, 0)−G(x, y))

r H(x, y) = �(y)−Hx(x, y)xΛ(x, y) +Hy(x, y)xΛ(x, y)

+ �(G(y, 0)−H(x, y))− �H(x, y),

where subscripts denote partial derivatives. The first of these equations states that the

time-preference effect rG(x, y) is equal to the expected rate of gain per unit of capital
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to an investor currently in the “large market,” that with greater capital. This rate of

gain first includes dividend payout rate �(x). The next two terms capture the rate of

change of G(Xt, Yt) due to intermediated flows of capital out of the large market and into

the small market, respectively. The expected rate of gain in value to those in the large

market also includes the expected rate of gain (1 − q)Λ(x, y)(H(x, y)− G(x, y)), net of

intermediation fees, associated with switching to the higher-premium market. The final

two terms reflect the expected rate of impact of loss events. As there is no recovery value

to large-market investors of a loss event in the large market, the first of these expected

loss rates is �G(x, y). A loss event in the small market replaces the value G(x, y) with

G(x, 0), which explains the final term. The equation for small-market investors is similarly

explained.

The marginal gain from switching capital is then

��
t = FΛ(Xt, Yt) ≡ H(Xt, Yt)−G(Xt, Yt). (5)

3.3 The Bellman Equation

Given the marginal value F Γ(x, y) for moving capital that is associated with an assumed

policy function Γ, the intermediary’s value function is

V (x, y) = sup
Λ

E

(
∫ ∞

0

e−rtΛ(Xt, Yt)(XtqF
Γ(Xt, Yt)− c) dt

)

. (6)

We assume that V (x, y) is finite, which is the case in the equilibria that we analyze.

The associated Hamilton-Jacobi-Bellman (HJB) equation is

0 = sup
ℓ∈ [0, � ]

{−rV (x, y) + U(V, x, y, ℓ,Γ)}, (7)

where, by Itô’s formula,

U(V, x, y, ℓ,Γ) = −Vx(x, y)ℓx+Vy(x, y)ℓx+ �[V (y, 0)+V (x, 0)−2V (x, y)]+ℓ(xqF Γ(x, y)−c).

Proposition 1 Given an assumed intermediation policy Γ, suppose that V̂ is a bounded

differentiable function satisfying the HJB equation (7). Then V̂ is the value function V of

the optimization problem 6 and any policy (x, y) 7→ Λ(x, y) which, for each (x, y), attains

the supremum (7) is an optimal policy given the switching-gain function F Γ associated
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with the policy Γ. If, moreover, Λ = Γ, then (�∗,Φ) is an equilibrium where, for all t,

�∗t = Λ(Xt, Yt) and Φt = FΛ(Xt, Yt).

The proof is by a traditional martingale verification argument given in Appendix B.

We will show that the assumption that the candidate value function V̂ is bounded and

differentiable is satisfied by the candidate we calculate in our main parametric example

with  = 1. Thus, the proposition implies that the HJB equation characterizes optimality

in this setting.

The homogeneity of the payout-rate function � implies thatH and G are homogeneous

of degree −. As a result, G(z, 0) = g0z
− for some positive constant g0 to be determined.

Let f(z) = FΛ(z, 1) and L(z) = Λ(z, 1). Homogeneity of FΛ implies that f solves the

ordinary differential equation

0 = −rf(z) + (1− z−)− zL(z)f ′(z) + (−f(z)− zf ′(z))L(z)z (8)

−(1− q)f(z)L(z) + �[g0(1− z−)− 2f(z)].

The relevant boundary condition is f(1) = 0, corresponding to no gain from switching

when the two markets have the same capital levels. Using (8), Appendix C contains a

proof of the following result that the switching gain f(z) is strictly positive when capital

levels are unequal.

Proposition 2 Given any intermediation policy Λ, f(z) is strictly positive for z > 1.

That is, given Λ, investors in the over-capitalized market optimally accept the offer to

move all of their capital out of the over-capitalized market whenever given the opportunity.

3.4 Trigger Intermediation Solution

We now solve for the equilibrium intermediation policy for the special case in which

�(x) = a + k/x. As we have explained, we can take a = 0 and k = 1 without loss

of generality. In this case, for any admissible policy Λ, the switching gain function FΛ

is homogeneous of degree −1. Thus, taking FΛ as given, the optimal present value V

of intermediation profits is homogeneous of degree 0, that is, V (x, y) = V (x/y, 1) for

y > 0. In particular, given any reduced switching-gain function f , the policy Λ achieving

the supremum of the HJB equation (7) must also be homogeneous of degree 0; that is,

14
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Figure 1: Optimal search policy and solution homogeneity.

Λ(x, y) = L(x/y) for some L( ⋅ ). Because the switching-gain function f depends on the

policy function L, we have a fixed-point problem: Find a pair (f, L) such that: (i) given f ,

the policy L is optimal, and (ii) given L, the marginal gain function f is that determined

by L through (8).

In Appendix F (Proposition 9), we show that any equilibrium must be of the “bang-

bang” form Λ(x, y) = 0 for x < Ty and Λ(x, y) = � for x ≥ Ty, for some trigger ratio

T ≥ 1 of the capital level in the over-capitalized market to the capital level in the under-

capitalized market. This is intuitive. Because the HJB equation is linear, we anticipate

the optimality of switching from minimal to maximal intensity whenever there is sufficient

marginal gain from moving capital from one market to the other. This occurs when the

levels of capital in the two markets are sufficiently different. Such a trigger policy is

illustrated in Figure 1. Our problem is reduced to finding the optimal trigger ratio T ,

which then completely determines equilibrium behavior.

In order to identify the constant g0, we use a conservation equation: the sum of the

value functions of all investors and of the intermediary must be equal to the present

value of all cash dividend payments of the hedgers net of the search costs incurred by the

15



intermediary. After calculations shown in Appendix D, this yields

g0 =
2

r
−
c�̄

r

(

1− e−(2�+r)a(T )
)

− V (1, 0), (9)

where a(T ) = log(1 + 1/T )/�̄.

The differential equation (8) for f thus reduces to

(r + 2� + �[(1− q) + z])f(z) + �(1 + z)zf ′(z) = (1 + �g0)

(

1−
1

z

)

, z ≥ T, (10)

and

(r + 2�)f(z) = (1 + �g0)

(

1−
1

z

)

, z ∈ [1, T ]. (11)

For z ∈ [1, T ], the solution is trivial:

f(z) =
1 + �g0
r + 2�

(

1−
1

z

)

. (12)

In particular, we verify that f(1) = 0, consistent with the observation that the net present

value of moving capital from one market to the other is 0 when the levels of capital in

the two markets are the same.

We can re-write (10) as

(a+ z)f(z) + z(1 + z)f ′(z) =

(

1−
1

z

)

b, z ≥ T, (13)

where a = (r + 2� + (1− q)�)/� and b = (1 + �g0)/�.

Letting v(z) = V (z, 1), the HJB equation reduces to

0 = sup
ℓ∈ [0,�]

{−rv(z)− ℓzv′(z)− ℓz2v′(z) + 2�[v0 − v(z)] + (qzf(z)− c)ℓ}, (14)

where v0 = V (y, 0) = V (x, 0). Therefore,

v(z) = v1, z ∈ [1, T ], (15)

where

v1 =
2�

r + 2�
v0 < v0, (16)

and

�v(z) + v′(z)z(1 + z) = d+ qzf(z), z ≥ T, (17)

where � = (r + 2�)/� and d = (2�v0 − c�)/�.

Appendix E contains a proof of the following monotonicity and regularity of v( ⋅ ).

Monotonicity of the value v(z) in the capital heterogeneity measure z is not an obvious

result, in particular because the switching gain f(z) is not in general monotonic.
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Proposition 3 (Value Function Monotonicity) For any trigger capital ratio T ,

the solution v of (14)-(17) is bounded, increasing, and strictly increasing on [T,∞).

The smooth-pasting condition v′(T ) = 0 implies the trigger capital ratio

T = 1 +
c(r + 2�)

(1 + �g0)q
. (18)

A proof of the following result guaranteeing the existence and uniqueness of a trigger

strategy is found in Appendices G (existence) and H (uniqueness).

Proposition 4 (Existence and Uniqueness) There exists a unique trigger capital-

ization ratio T satisfying (9), (10), (11), and (18).

This analysis leads to the following characterization of equilibrium, which includes the

result that in the absence of search costs, the intermediary does not exploit his position

to restrict movement of capital, but rather provides maximal intermediation, nevertheless

generating fee income from his or her imperfect ability to instantaneously move capital

from one market to the other due to the upper bound � on contact intensity.

Proposition 5 Suppose that the payout-rate function � is of the form �(x) = a + k/x.

Then there exists a unique equilibrium. The equilibrium intermediation process is inactive

(�t = 0) whenever the ratio of capital levels in the two markets is between 1/T and T ,

for some capital-ratio trigger T , and is otherwise at full capacity (�t = �). The capital

ratio trigger T is given by (18), where the constant g0 is given by (9). If there is no

intermediation cost (c = 0), then the intermediary always works at full capacity (that is,

T = 1).

Relation (18) also provides an upper bound on the equilibrium capital-ratio trigger

level:

T ≤ 1 +
c(r + 2�)

q
.

This bound is useful for computing numerical solutions to the optimization problem. An

algorithm for computing the constant g0, and thus T , is given in Appendix I.

3.5 Partial Recovery

We now allow the fraction W recovered after a loss to be randomly distributed on (0, 1).

This will be the basis for our numerical illustration of the model.
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Subject to the usual smoothness and integrability conditions, Itô’s formula and the

definition (1) of the value of a unit of capital held in market i imply that the value G(x, y)

of a unit of capital in the over-capitalized market satisfies:

0 = −rG(x, y) + �(x) +Gx(x, y)− xΛ(x, y) +Gy(x, y)xΛ(x, y)

+ � P (Wx < y)[E(H(y, xW ) ∣Wx < y)−G(x, y)]

+ �P (Wx ≥ y)[E(G(Wx, y) ∣Wx ≥ y)−G(x, y)]

+ (1− q)�(H(x, y)−G(x, y)) + �[E(G(x,Wy)−G(x, y)].

A similar equation for H(x, y) is found in Appendix J. Unlike the zero-recovery case,

these equations cannot be reduced to a single equation for the gain F from switching.

Using the homogeneity of � as before, one can solve the HJB equation for the inter-

mediary’s value V (x, y) in the form v(x/y) = V (x, y), as a function of the capital ratio

z = x/y, in the form

0 = sup
ℓ∈ [ 0, �̄ ]

{

− rv(z)− ℓz(1 + z)v′(z) + �

(

E

[

v

(

max(zW, 1)

min(zW, 1)

)]

− v(z)

)

+ �
(

E
[

v
( z

W

)]

− v(z)
)

+ ℓ (qzf(z)− c)

}

.

In this setting, the intermediary’s value function cannot be computed by solving a

differential equation because v′(z) depends on v(z′) for all other z′. We have the same

issue to overcome in order to solve for G(x, y) and H(x, y). Exploiting the linear structure

of the problem, however, Appendix J provides a numerical algorithm for solving the

corresponding integro-differential equations. The associated smooth-fit condition is

qTf(T )− c = T (1 + T )v′(T ). (19)

3.6 Numerical Illustration

We provide an illustrative example of equilibrium for the case of partial recovery. We

take the parameters r = 0.04, � = 1.5, c = 0.04, � = 0.1, q = 1/30. We assume beta-

distributed recovery (one minus proportion lost) on (0, 1), with parameters (5, 1). The

equilibrium intermediation trigger ratio T of capital in the over-capitalized market to

capital in the under-capitalized market is found numerically to be 1.465.

Figure 2 shows simulated sample paths of the capitalization ratio Zt = Xt/Yt and the

immediate return f(Zt)/g(Zt) to a supplier of capital, before transactions fees, associated
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Figure 2: Simulated sample paths of the capitalization ratio, Zt = Xt/Yt, and the return from switching, f(Zt)/g(Zt).

with switching capital into the under-capitalized market. Figure 3 shows the present

values, with one unit of capital in the under-capitalized market, of future cash flows to a

provider of one unit capital in the over-capitalized market (net of fees), to a provider of

one unit of capital in the under-capitalized market (net of fees), and to the intermediary

(in the form of fees net of search costs). These are, respectively, g(z), ℎ(z), and v(z), and

depend on the ratio z = x/y of the level of capital x in the over-capitalized market to the

level y of capital in the under-capitalized market.

4 Intermediary Competition

We now provide solutions for equilibria with oligopolistic or perfectly competitive markets

for intermediation.

There are two channels through which the intermediary competition might affect the
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Figure 3: Value function v(z) of the intermediary and the marginal values g(z) and ℎ(z) of capital held in the

over-capitalized and undercapitalized markets, respectively.

equilibrium level of intermediation offered by the market. First, a large intermediary

internalizes the impact of intermediation intensity on the heterogeneity of capital levels

across the two markets, and thus the degree to which there are gains from trade to outside

investors. The more intensive is the intermediation policy, the lower are the potential

future gains from trade to be split with a investor moving capital. Second, when in

contact with a investor, an intermediary considers the ability of the investor to compare

the intermediation fee offered with the fees offered by other intermediaries. This plays a

role in determining the effective bargaining power of the intermediary, and through that

channel, the impact on the profitability of intermediation. We will examine the effects of

both channels, and start by taking bargaining power as fixed.

4.1 Intermediary Competition At Fixed Bargaining Power

For a given bargaining power q, equilibrium trigger policies for the oligopolistic case can be

translated directly from the case of monopolistic intermediation, by a change of variables.
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For the oligopolistic case, we take n identical intermediaries, each with an upper bound

�/n on intermediation intensity, and with the same proportional cost c of intermediation.

The monopolistic case (n = 1) is the special case considered in the previous section.

For the case of perfectly competitive intermediation, we treat “n = ∞” by considering

a non-atomic measure space of intermediaries of total mass 1. Each intermediary in this

continuum has maximal intermediation intensity �, again providing a market-wide total

intermediation capacity of �. Thus, all cases have the same feasible market dynamics and

costs.

We again consider only Markov equilibria. Equilibrium incorporates the degree to

which intermediaries internalize the impact of their intermediation intensity on the het-

erogeneity of capital levels across markets. We first analyze the case of zero recovery,

then briefly comment on the case of partial recovery.

For an oligopolistic equilibrium in trigger strategies, each of the n intermediaries has

a reduced value function v, with v(z) = V (z, 1), solving the reduced HJB equation

0 = sup
ℓ∈ [0, �/n]

{

− rv(z) +

(

−
(n− 1)

n
�1{z≥T} − ℓ

)

zv′(z)

−

(

(n− 1)

n
�z1{z≥T} + ℓz

)

zv′(z) + 2�[v0 − v(z)] + (qzf(z)− c)ℓ

}

, (20)

reflecting the presumption by the given intermediary that the n− 1 other intermediaries

have adopted a specific trigger capital ratio T . The equilibrium condition is that the same

trigger policy is optimal for the given intermediary. Verification of the HJB solution as

the value function is as for the monopolistic case.

Thus, an equilibrium for the n-intermediary problem is again given by bang-bang

control for all intermediaries, each exerting no effort when Zt < T and maximal inter-

mediation intensity �/n whenever Zt ≥ T , for a trigger capital ratio T . We will show

that optimality implies that there is no intermediation at or below the capital ratio T

satisfying the smooth pasting condition v′(T ) = 0. This, along with (20), implies that

qTf(T )− c = 0. (21)

From (21), we see that an intermediary’s optimization problem in a setting with n

intermediaries is equivalent to that of a monopolistic intermediary with the same max-

imum intermediation intensity �/n. Indeed, for a given threshold T , the monopolistic

21



and oligopolistic cases yield the same function f determining proportional intermedia-

tion fees, and hence the same smooth-pasting condition (21). In fact, this is actually

the unique equilibrium, even allowing for the possibility of non-trigger strategies! To see

this, consider any Markov equilibrium, not necessarily of the trigger-ratio form, and let

f denote the function determining the associated gain from switching. An intermediary’s

HJB equation is of the form (20), except that (i) the aggregate of other intermediaries’

contact intensities may be almost arbitrary, and (ii) the value functions may vary across

intermediaries. Owing, however, to the form of the HJB equation, the indifference con-

dition is nevertheless given by (21), and thus is the same for all intermediaries. This

shows that any Markov equilibrium must be symmetric and of the trigger form.6 In fact,

repeating arguments from the monopolistic case leads to the following proposition.

Proposition 6 Consider the case of zero recovery and n intermediaries. There exists

a unique Markov equilibrium. This equilibrium is symmetric and determined by a trigger

capital ratio equal to that of a monopolistic intermediary with the oligopolistic maximal

contact intensity �/n.

We now informally discuss the case of partial recovery. Recall from (19) the smooth-

pasting condition for the monopolistic case:

qTf(T )− c = T (1 + T )v′(T ). (22)

One can see that the trigger capital ratio T is determined not only by the function f

determining the marginal gain from moving capital, but also by the derivative v′(T ) of

the intermediary’s value function. In order to understand the impact of oligopolistic

intermediation, suppose that intermediaries were to use, instead of the optimal trigger

ratio T , the equilibrium trigger ratio of a monopolist with the same aggregate capacity

for intermediation. In that case, f would be unchanged. Each intermediary, however,

would receive only a fraction 1/n of the total intermediation fees. The righthand side

of (22) is thus lowered, implying that intermediaries prefers to continue intermediating

after the capital ratio exceeds the monopolistic trigger. This is the first channel through

which oligopolistic competition matters: Because an oligopolistic intermediary does not

6The trigger form comes from showing, as in the monopoly case (Lemma 2), that the function z 7→ zf(z) is

increasing.
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internalize the full impact of his search on intermediation fees, he has a greater incentive

to intermediate. More precisely, an intermediary does not work for opportunities to move

capital when the immediate net marginal benefit of doing so, qzf(z) − c, is below the

marginal value z(1 + z)v′(z) associated with future capital heterogeneity. For a given

trigger ratio T , an intermediary’s value function v declines in direct proportion to the

number n of intermediaries, and, hence, so does the derivative v′. This implies that the

term z(1 + z)v′(z) diminishes with n, while the immediate marginal benefit qzf(z)− c is

unchanged, keeping T constant. Thus, as n increases, the incentive to intermediate at the

given trigger ratio T becomes strictly positive, prompting intermediaries to search more.7

As n goes to infinity, an intermediary’s value function goes to zero (because the size of

the pie to be shared among intermediaries is uniformly bounded above by 2/r), and the

derivative v′(T ) also goes to 0. The limit as n diverges is the competitive equilibrium, in

which the trigger capital ratio T is determined by

qTf(T )− c = 0.

With perfect competition, an intermediary has no impact on aggregate search activity,

and thus cares only about the immediate net benefit from switching.

Competition for intermediation, does, however, play a role through the sharing of

gains from trade when in contact with an investor. So far, we have taken the fraction q of

gains that are allocated to intermediaries to be fixed. We next consider the implications

of market structure for the determination of q.

4.2 Endogenous Bargaining Power

With n > 1 intermediaries, we suppose that some fraction  n of investors are “well con-

nected,” meaning that as they prepare to switch capital from one market to another, they

are in simultaneous contact with more than one intermediary. The number of intermedi-

aries with whom a given investor is in contact could also be random, exploiting the law of

large numbers, in which case  n can be taken to be the probability that a investor, when

contacted, is in contact with more than one intermediary. Intuitively, a well-connected

7When there is zero recovery from a loss event, the after-event heterogeneity (which is infinite) does not depend

of the pre-event heterogeneity. In that case, intermediaries already ignore the impact of their search activity on

heterogeneity and the monopolistic solution coincides with the competitive one.
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investor has more bargaining power than a “captive” investor, one who is in contact with

only one intermediary.

When modeling this intuition with a bargaining game, an issue is whether the con-

tacted intermediary is assumed to know whether the investor is in contact with other

intermediaries. We will take this case.8 Another modeling approach is a multilateral

bargaining game with complete information, as in Stole and Zwiebel (1996). The Shap-

ley value from such a bargaining game is identical to that of the solution below.9 We

consider a bargaining procedure à la Rubinstein (1982), in which the investor and a par-

ticular intermediary alternate offers. In our continuous-time setting, the times between

offer rounds can be treated as arbitrarily small, so the inter-round discount factor can

be taken to be 1. In that case, the investor and intermediary agree immediately to split

the surplus according to the Nash bargaining solution. The investor’s share depends on

his outside option. If the investor is captive, his outside option is simply g(z), the value

of remaining in the over-capitalized market. Thus, the Nash product associated with a

proportional fee of s is

[v(z) + s− v(z)][ℎ(z) − s− g(z)],

which is maximal at s = f(z)/2, corresponding to q = 1/2, meaning an equal splitting of

the gains with the intermediary.

For a well-connected investor, the Nash product is

[v(z) + s− v(z)][ℎ(z)− s− g(z)− (1− q0)f(z)],

where q0 is the conjectured proportion of the gain from trade that the investor would

pay to another intermediary if this first round of bargaining were to break down. The

Nash product is maximized at s = 0, for a proportional intermediary share of q = 0,

corresponding to the extraction of all surplus by the well-connected investor.

If the number of intermediaries in contact with the investor is known only by the

8It would be possible to allow for one-sided information. The fees derived could be obtained as equilibrium outcomes

of a bargaining process, although there may be additional equilibria. See, for example, Sutton (1986). For an

alternative approach to treating uncertainty about the degree to which an intermediary’s customer is in contact with

other intermediaries, see Green (2007).
9In that case, the payoff of an intermediary is zero whenever at least two intermediaries take part in the bargaining,

since the surplus that can be achieved from any coalition is independent of the number of intermediaries, provided

that number is nonzero.
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investor, then q is similarly obtained, and depends on the probability that the investor is

captive.

The average of an intermediary’s share of gains across the population of investors is

q(n) = 0×  n +
1

2
(1−  n) =

1−  n

2
.

In particular, q(n) is decreasing in n if  n is increasing in n. Obviously,  2 ≥  1.

Going beyond the case of n = 2, it is somewhat intuitive that an investor is more likely to

be well connected as the number of intermediaries increases. Appendix M briefly outlines

a model with this natural feature.

Lowering q reduces an intermediary’s incentive to search, all else equal, because,

for given capital dynamics, lowering q reduces intermediation profits, and therefore the

marginal benefit of raising intermediation intensity. We will next illustrate the second

channel through which oligopolistic intermediation affects capital mobility: By reducing

each intermediary’s bargaining power, the incentive to intermediate is lowered.

Endogenous bargaining leads to complex dynamics, in which the number of interme-

diaries actively searching for capital varies over time. In order to see this, consider a

candidate equilibrium in which n intermediaries search at full capacity whenever z > T ,

and no intermediary searches when z ≤ T . If a single intermediary deviates by searching

for capital when z is in a left neighborhood of T , then his fee per unit of capital switched is

that of a monopolist, not that of the n-intermediary case. This increases the value of this

deviation. Despite this added complexity, we now show that oligopolistic intermediation

may reduce capital mobility. We focus on the case of zero recovery.

4.3 Reduced Capital Mobility With More Intermediaries

A Markov strategy profile for n intermediaries consists of functions L1, L2, . . . , Ln on

[1,∞) into [0, �̄/n]. Here, Li(z) denotes the search intensity of intermediary i when the

heterogeneity of capital across the two markets is z = x/y. The aggregate capital mobility

is

L(z) =

n
∑

i=1

Li(z).

Let fL denote the marginal gain to a investor from switching to the market with less

capital, given aggregate intensity policy L. In order to exploit the fee share q(n) derived
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above, we focus on simple strategies, for which Li(z) is either 0 or �̄/n. With this restric-

tion,10 we can associate with any strategy profile an increasing sequence T0, T1, . . . , TK

of capital-ratio thresholds with the property that, whenever the capital ratio Zt is in

[Tk, Tk+1), a particular set Nk of intermediaries is active. We let nk = ∣Nk∣ denote the

number of intermediaries in Nk.

Using our previous analysis of the oligopolistic case with fixed bargaining power, we

say that a profile of simple strategies is aMarkov equilibrium if, for all k and z ∈ [Tk, Tk+1),

q(nk)zf
L(z)− c ≥ 0, i ∈ Nk, (23)

and

q(nk + 1)zfL(z)− c ≤ 0, i /∈ Nk. (24)

The first inequality means that any intermediary searching at level z does so optimally,

given equilibrium fee share q(nk). The second equation states that any intermediary not

searching at level z does so optimally, given the equilibrium fee share q(nk + 1) that he

would get if he searched. We let Tn = inf{z̄ : L(z) = �̄, z ≥ z̄}, the smallest level of

capital heterogeneity above which intermediaries search at full capacity. Thus, T1 denotes

the monopolistic threshold. For the result to follow, recall that � is the mean arrival rate

of loss events and that Tn depends, through L, on the particular Markov equilibrium

under consideration. The following result applies for all equilibria.

Proposition 7 For any n ≥ 2, there exists some �̄ > 0 such that for any � ∈ (0, �̄) and

any Markov equilibrium with n players associated with mean shock intensity �, we have

T1 < Tn.

In words, the reduced bargaining power caused by oligopolistic competition reduces

the domain of maximal capital mobility relative to that of the monopolistic case. A proof

of this proposition may be found in Appendix N. Proposition 7 shows that oligopolistic

competition results in less intermediation than achieved by a monopolist, for some range

of market heterogeneity. This does not, however, rule out intermediation by oligopolists at

capital ratios below the monopolistic trigger level. The next result shows that, provided

that loss events are sufficiently rare, oligopolistic and monopolistic settings lead to a

cessation of intermediation at approximately the same levels of market heterogeneity.

10Extending the analysis to general Markov strategies would be possible if one computes, for any possible strategy,

the expected fee for each intermediary as a function of his search intensity and of the aggregate search intensity.
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For any n-intermediary Markov equilibrium with aggregate strategy L, let

Sn = inf{z : L(z) > 0},

the smallest heterogeneity level above which capital mobility is nonzero. A proof of the

next proposition may be found in Appendix N.

Proposition 8 For any " > 0, there exists a strictly positive �̄ such that for any � ∈

(0, �̄) and any Markov equilibrium with n players and mean loss-event arrival rate �, we

have Sn ≥ T1 − ".

Propositions 7 and 8 together show that capital mobility is lower, at any levels of

capital, with oligopolistic intermediation than with monopolistic intermediation, provided

that loss events are sufficiently rare.

5 Concluding Remarks

We have examined a simple setting in which, absent trading frictions, investors would

adjust their portfolios so as to achieve the highest possible mean return for a given risk,

thereby equating mean returns across assets. Because of trading frictions, however, in-

vestors cannot instantaneously adjust their portfolios. Over time, investors make portfolio

adjustments that cause mean returns across markets to revert toward each other. In our

analysis, capital is mobilized through optimal intermediation. Although other market

microstructures may lead to similar patterns of adjustment of capital and mean returns,

we are particularly focused on the endogenous role of intermediaries.

For example, in corporate bond markets, which are not traded on a central exchange,

one observes large price drops and delayed price recovery in connection with major down-

grades or defaults, as described by Hradsky and Long (1989) and Chen, Lookman, and

Schürhoff (2008), when certain classes of investors have an incentive or a contractual re-

quirement to sell their holdings. Mitchell, Pedersen, and Pulvino (2007) document the

effect on convertible bond hedge funds of large capital redemptions in 2005. Convertible

bond prices dropped and rebounded over several months. A similar drop-and-rebound

pattern was observed in connection was the LTCM collapse in 1998. Newman and Rierson

(2003) show that large issuances of credit-risky bonds temporarily raise credit spreads
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throughout the issuer’s sector, because providers of liquidity such as underwriters and

hedge funds bear extra risk as they search for long-term investors. They provide empir-

ical evidence of temporary bulges in credit spreads across the European Telecom debt

market during 1999-2002 in response to large issues by individual firms in this sector.

Examples of slow price adjustments to supply shocks in equity markets include those

of Holthausen and Mayers (1990), Scholes (1972), Coval and Stafford (2007), Andrade,

Chang, and Seasholes (2008), Kulak (2008), and, with respect to index recomposition

events, Shleifer (1986), Harris and Gurel (1986), Kaul, Mehrotra, and Morck (2000),

Chen, Noronha, and Singhal (2004), and Greenwood (2005).

Our introduction uses the example of the market for catastrophe risk reinsurance.

Sudden price surges, then multi-year price declines, follow sudden large aggregate claims

against providers of insurance at times of major natural disasters, as explained by Froot

and O’Connell (1999). Periods of high re-insurance rates are typically accompanied by

new entrants to the market, including hedge funds and other new re-insurers, whose

capital has been mobilized by the price discrepancy, but not immediately. It takes time

to set up and capitalize a viable new provider of catastrophe risk insurance.

In these examples, the time pattern of returns or prices after a supply or demand shock

reveals that the friction at work is not merely a transaction cost for trade. If that were the

nature of the friction, then all investors would immediately adjust their portfolios, or not,

optimally. The new market price and expected return would be immediately established,

and remain constant until the next change in fundamentals. In all of the above examples,

however, after the immediate price response, whose magnitude reflects the size of the

shock and the degree of short-term price elasticity, there is a relatively lengthy period

of time over which the price reverts in mean toward its new fundamental level. In the

meantime, of course, additional shocks can occur, with overlapping consequences. The

typical pattern suggests that the initial price response is larger than would occur with

perfect capital mobility, and reflects the demand curve of the limited pool of investors that

are quickly available to absorb the shock. The speed of adjustment after the initial price

response is a reflection of the time that it takes more investors to realign their portfolios

in light of the new market conditions, or for the initially responding investors to gather

more capital.

In our model, delays in portfolio adjustments are due to the time that it takes for
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intermediaries to locate suitable investors. This is only an abstraction, which can also

proxy for other forms of delay, including time to educate investors about assets with which

they have limited familiarity (awareness), time for contracting, and time for investors to

dispose of their current positions, which could involve similar delays and price shocks,

as suggested by Chaiserote (2008). Some of the delays in practice could be due to time

for information about investment opportunities to percolate through the population of

suitable investors. Incorporating informational differences in our model would, however,

involve substantial complications.

We have assumed that the markets segmented by intermediation frictions are sym-

metric in all respects other than the level of capital in each. Thus, differences in mean

returns, and the value of moving capital from one market to another, are entirely due

to the nature of intermediation and differences in capital levels. We could, however, ex-

tend the model so as to treat asymmetric markets. Provided that the dividend functions

satisfy similar homogeneity assumptions, intermediation would be characterized by two

distinct thresholds of capital ratios, one for movement of capital from market a to market

b, and another for the reverse movement. For example, if returns in market a are riskier

than those in market b, then, all else equal, capital will be less mobile toward market a

than toward market b. Asymmetry, for example, would allow a consideration of capital

mobility from a low-risk “money market” into a high-risk market such as that for catas-

trophe risk or private equity. Many of the qualitative features of our symmetric model,

such as the dynamics of capital mobility and the impact of intermediation competition,

are anticipated to carry over to asymmetric settings, at least under regularity conditions.

Another natural extension concerns the case of three or more markets. Consider, for

example, three symmetric markets differing only in their capital levels, and satisfying our

homogeneity conditions. We conjecture that capital will flow exclusively to the highest

premium market, with more mobility from the the lowest-premium market than from the

mid-premium market one. Moreover, when these two flows are strictly positive, the gains

from switching will be equalized across the two flows, with the lower mobility from the

mid-premium market just offsetting its lower immediate premium differential, illustrating

the idea that future capital mobility affects today’s gain from switching.
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Appendices

A An Insurance Example

We illustrate the model with an example motivated by catastrophe insurance contracts.

In a particular market, at each of the event times of a Poisson process J with a constant

intensity �, a catastrophe occurs that causes losses throughout a population of consumers

who are potential buyers of protection. Each of a continuum of consumers in the given

insurance market has a property that experiences a loss at each catastrophe event. The

losses of the consumers at a given event are identically and symmetrically distributed.

The distribution of consumer losses at each catastrophe has the property that if a quantity

x of the consumers have bought insurance at the time of the i-th catastrophe, then total

claims of x�i are paid by sellers of protection, where �1, �2, . . . is a sequence of independent

random variables, identically distributed on [0, 1], and independent of J . For this, it need

not be the case that the damage of a particular consumer at the i-th event is equal to the

average damage rate �i, but we will assume so for notational simplicity only.

Each consumer chooses to be insured, or not, at each point in time, based on infor-

mation available up to that time, but of course not including the information about loss

events at precisely that time.11 Whenever insured, the consumer pays premiums at the

current rate pt in his or her market, and is covered against damages in the event of a loss.

Consumer � in a particular market has an insurance purchase policy process �, valued in

{0, 1}, providing total expected dis-utility of

E

[

∫ ∞

0

e−�tu1�(�tpt) dt+
∞
∑

i=1

e−��iu2�((1− �t)�i)

]

,

where �i is the time of the i-th catastrophe, � is a discount rate, and u1�( ⋅ ) and u2�( ⋅ )

are strictly decreasing dis-utility functions.

Given the additive nature of this utility, the insurance purchase policy � minimizes

total lifetime dis-utility if and only if, almost everywhere, �t solves, time by time, the

insurance purchase decision

min
�∈{0,1}

u1�(�pt) + E[u2�((1− �)�i)].

11The appropriate measurability restriction is “predictability.”

30



This problem is solved by 0 or 1 depending on whether pt is greater or less than some

reservation price p�. We can therefore calculate, for each premium level p, the total

demand �(p) =M ({� : p� ≤ p}) for insurance, where M( ⋅ ) is the measure on the space

A of consumers in the market.12 Associated with the strictly decreasing demand function

�, assuming continuity, is a strictly decreasing and continuous inverse demand function

�( ⋅ ). The expected loss rate is �E(�i), so the risk premium is �(x)− �E(�i). Alternative

approaches, for example partial coverage, could be used to model the inverse demand

function. In the end, to achieve a tractable solution of the intermediary’s problem, we

will make parametric assumptions for �( ⋅ ) that can be justified by suitable construction

of u1�, u2�, and the measure M .

The cumulative insurance claims process L for a quantity of one unit of insurance sold

at all times is the compound Poisson is defined by Lt =
∑J(t)

i=1 �i. In order to offer one

unit of insurance in a particular market, a seller of protection is required to commit one

unit of capital. This is natural if one requires (say, as a regulatory matter) that insurance

is default free, under the assumption that the essential supremum of the fractional event

loss �i is 1, which is the case in our illustrative numerical examples. (In any case, this

supremum loss can be taken to be 1 without loss of generality by normalization of the

definition of one unit of capital and of the associated construction of returns per unit of

capital.) Thus, in a given market with x units of available insurance capital, the demand

for insurance is �(�(x) + �E(�i)) = x, because the risk premium �(x) is positive and

providers of insurance capital have no better use for their capital at that moment in time.

Markets a and b are assumed to have identically distributed preferences among their

respective pools of buyers of protection, and thus have the same inverse-demand func-

tion �( ⋅ ). Their cumulative proportional claims processes La and Lb are identically

distributed, but need not be independent. For example, some of the loss events could

strike both markets.

While capital is deployed in insurance market i, it is subject to the cumulative propor-

tional loss process Li and is re-invested over time in a financial asset with Lévy cumulative

return process Ri. Investment in this additional local asset is allowed merely for generality.

The total cumulative proportional accumulation process for capital in market i, before

12In order for the premium rate �(x) to be strictly decreasing in the capital level x, for simplicity we can take the

total measure M(A) of buyers of protection to be infinite.
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considering the movement of capital between the markets, is thus �i = −Li + Ri, where

�a and �b have the joint distribution described earlier for the general model. Given the

characteristics (q, c, �) of the intermediation of capital between the two markets, the

primitives (�, �a, �b, r, q, c, �) of our basic model are fixed.

B Verification of Optimality of HJB Solution

This appendix provides a proof that the HJB equation (14) characterizes optimality. For

this, given an arbitrary intensity process �, let

St = e−rtV̂ (X�
t , Y

�
t ) +

∫ t

0

e−rs�s[X
�
s qF

Γ(X�
s , Y

�
s )− c] ds.

By Itô’s Formula, a local martingale is defined by

V̂ (X�
t , Y

�
t )−

∫ t

0

(

−V̂x(X
�
s , Y

�
s )�sX

�
s + V̂y(X

�
s , Y

�
s )�sX

�
s + �[V̂ (X�

s , 0) + V̂ (X�
s , 0)− 2V̂ (X�

s , Y
�
s )]

)

ds.

Because � and V̂ are bounded, this local martingale is in fact a martingale. From this

and the implication of the HJB equation that

−rV̂ (X�
t , Y

�
t )− U(V̂ , X�

t , Y
�
t , �t,Γ) ≤ 0,

another application of Itô’s formula implies that S is the sum of a decreasing process

and a martingale. Thus, S is a supermartingale. Because V̂ is bounded, we have the

“transversality” condition that for any intermediation intensity process �,

lim
t→∞

E[e−rtV̂ (X�
t , Y

�
t )] = 0. (25)

Thus, for any intermediation intensity process �,

V̂ (x, y) ≥ V(x, y, �,Γ) ≡ E

(
∫ ∞

0

e−rt�t[X
�
t qF

Γ(X�
t , Y

�
t )− c] dt

)

. (26)

Let Λ be a policy such that, for each (x, y), Λ(x, y) attains the supremum (7). For each

t, let �∗t = Λ(Xt, Yt). Then, the fact that

−rV̂ (Xt, Yt)− U(V̂ , Xt, Yt, �
∗
t ,Γ) = 0

implies that S is a martingale. Thus

V̂ (x, y) = V(x, y, �∗,Γ). (27)
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Thus, for any intermediation intensity process �,

V(x, y, �∗,Γ) ≥ V(x, y, �,Γ),

proving the result.

C Nonnegativity of the Gain From Switching f

In order to prove Proposition 2, we rewrite (8) as

(r + 2� + L(z)(z + (1− q))) f(z) + z(1 + z)L(z)f ′(z) = (1 + �g0)(1− z−). (28)

Because the righthand side is strictly positive, f or f ′ must be strictly positive. This

implies that f cannot cross 0 from above. Hence, f must be strictly positive on some

interval of the form (z,∞), and is non-positive on [1, z] for some level z. It remains to

show that z = 1. Because f(1) = 0, the intermediary does not search when the markets

have equal levels of capital, given that c > 0. That is, L(z) vanishes on a neighborhood

of 1. From (28), this implies that f is positive on that neighborhood, which concludes

the proof.

D Valuation of Search Costs

The conservation equation is

V (x, y) + xG(x, y) + yH(x, y) = R(x, y)− PT (x, y),

where R(x, y) is the present value of the total future cash flows at rate Xt�(Xt)+Yt�(Yt),

to be divided among the intermediaries and the investors, and PT (x, y) is the the in-

termediary’s expected discounted search costs over the infinite horizon, given a trigger

T .

Because � is homogeneous of degree −1, we have R(x, y) = 2/r. The search-cost

present value PT (1, 0) solves

PT (1, 0) = p+ E[e−r�PT (1, 0)],
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where p is present value of search costs from time zero to the exponentially distributed

time � of the next loss event. We now show that, for the case of no recovery at loss event,

PT (1, 0) =
c�̄

r

(

1− e−(2�+r)a(T )
)

, (29)

where a(T ) = log(1 + 1/T )/�̄.

Homogeneity implies that this present value returns to the same level at each loss

event, so

PT (1, 0) = p+ E[e−r�PT (1, 0)], (30)

where � is the time until the first to arrive of the loss events in the two markets, which is

exponentially distributed with parameter 2�. Starting with X0 = 1 and Y0 = 0, we have

dXt = −�̄Xt1{Zt>T} dt

and

dYt = �̄Xt1{Zt>T} dt.

This yields Xt = e−�̄t and Yt = 1− e−�̄t, for t < � . The intermediary will stop searching

at that time a(T ) at which Za(T ) = T , so

e−�̄a(T )

1− e−�̄a(T )
= T.

This yields

a(T ) =
1

�̄
log

(

1 + T

T

)

.

The present value of search costs until the next loss event is

p = E

[

∫ min(a(T ),�)

0

e−rt�̄c dt

]

=
�̄c

r

(

1− E[e−rmin(a(T ),�)]
)

.

Because � is exponentially distributed with parameter 2�,

E(e−r� ) =
2�

2� + r

and

E[e−rmin(a(T ),�)] =
2�

2� + r
[1− e−r(2�+r)a(T )].

Substitution of these into (30) yields the result (29).
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E Proof of Proposition 3

That v is bounded follows from the fact that it is dominated by 2/r. The monotonicity

result is based on two intermediate lemmas.

First, given the function f determining intermediation fees, let

�(z) =
(

1− z−
)

(

1 + �g0
r + 2�

)

− f(z).

The first term of �(z) is the present value of switching capital to the under-capitalized

market if the intermediary arrests intermediation efforts from the point at which the

capital ratio Zt is at z until the next loss event occurs, given g0. Suppose in particular, a

given reduced policy L(z) = Λ(z, 1), and a particular z at which L(z) = 0. Then �(z) = 0.

As a special case, �(1) = 0 (which can also be checked directly from the definition of �

and the fact that f(1) = 0). We note that, since the first term defining � is strictly

increasing in z, �′(z) must be positive whenever f ′(z) is negative. Given a policy L, we

will show that � is nonnegative. In order to see this, we observe that for z ≥ 1, (28) can

be re-written as

L(z) [((1− q) + z)f + z(1 + z)f ′] = (r + 2�)�(z). (31)

We already know that �(1) = 0. Since f is positive from Proposition 2, this implies that

f ′(z) is negative whenever �(z) ≤ 0, and hence that �′ > 0 whenever � ≤ 0. Therefore,

� cannot cross 0 from above, which proves our first lemma.

Lemma 1 For any policy, � is everywhere nonnegative.

This result is intuitive: other things equal, the expected gain from moving one’s capital

is larger if the intermediary immediately stops switching capital after that last movement,

since the difference between capital levels, and hence between premia, is larger in that

case. Lemma 1 has a crucial consequence for the case  = 1: the rate at which fees are paid

to the intermediary when he searches is strictly increasing in z. The more heterogeneous

the markets, the higher is the intermediary’s immediate profit from switching. Since this

rate of fee payment, net of search costs, is qzf(z)− c, we must show that zf(z) is strictly

increasing in z. We can re-write (31) when  = 1 as

L(z)(1 + z)(f(z) + zf ′(z)) = (r + 2�)�(z) + qL(z)f(z).
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Since f is positive and � is nonnegative, this implies that f(z)+zf ′(z) is positive whenever

L(z) > 0, hence that zf(z) is strictly increasing in z. On any interval on which L(z) = 0,

we have f(z) = (1 + �g0)/(r + 2�)(1− 1/z), so f is strictly increasing, and, a fortiori, so

is zf(z).

Lemma 2 For  = 1 and any policy, the revenue rate zf(z) is strictly increasing in z.

We can now show monotonicity of v for any trigger policy. From (16), v is constant

for z ≤ S. Starting with some capital ratio Z0 = z > S,

v(z) = E

[
∫ �

0

e−rt[qf(Zt)Zt − c]1{Zt>S} dt+ e−r�v0

]

,

where � is the time of the next loss event. The function z 7→ [qf(z)z − c]1z>S is nonde-

creasing in z from Lemma 2, and strictly increasing for z > S. For S < z < z′, this implies

that v(z) < v(z′) (because the event time � has a distribution that does not depend on z

or z′). This proves Proposition 3.

F Optimality of a Trigger Policy

This appendix shows that for any equilibrium pair (f, L), the reduced policy function L

must be a trigger policy. In fact, we will show that for any switching-gain function f that

can arise as the result of an admissible intermediation policy, equilibrium or otherwise,

the optimal policy must be of the trigger form.

From Appendix B, we know that, for a given f , any bounded solution of the HJB

equation yields an optimal policy. We also know that f is continuous (and, in fact,

differentiable) from (13). From Lemma 2, we also know that for any admissible policy,

zf(z) must be increasing. Finally f must be such that the value function v is bounded

by 2/r. These conditions define what we call “admissibility” of f . In particular, these

conditions must be satisfied in any equilibrium.

We first show that there exists a solution to the HJB equation that is achieved by a

trigger policy. Then we verify that any policy that achieves the value function that solves

the HJB equation must be of the trigger form.

For any equilibrium, the function f is bounded, because

f(z) = ∣ℎ(z)− g(z)∣ ≤ ℎ(z) + g(z) ≤ ℎ(z) + zg(z) ≤
2

r
.

36



Therefore, given any candidates for the capital trigger ratio T and the constant v1, one

can integrate the HJB equation (17) on [T,∞). The smooth-pasting condition is satis-

fied if v′(T ) = 0, and this is equivalent to the condition that qTf(T ) = c. (For this,

see (14).) Given f , this uniquely determines T , because Tf(T ) is strictly increasing in T

by Lemma 2. The only difficulty is to show the consistency condition v1 = (2�/2� + r)v0

(see (16)), where v0 = limz→∞ v(z), noting that v0 enters as a coefficient of ODE 17 (in

the constant d). In order to show this, we exploit the linearity of the ODE (17). Making

the change of variables u(z) = v(z) − v1, we have u(T ) = 0. The dynamics of u do not

depend on v0, in that

u(z) + �z(1 + z)u′(z) = �(z), (32)

where �(z) = �̄(qzf(z) − c)/(r + 2�) and � = �̄/(r + 2�) > 0 is positive on (T,∞).

Moreover, the limit u∞ is by construction equal to v0−v1. This allows us to re-express the

consistency condition as u∞ = (r/2� + r)v0. Therefore, having integrated u over [T,∞),

one may simply read off the values v0 and v1. The resulting function v(t) = u(t)+v1 solves

the initial HJB equation with a v0-dependent coefficient, and also satisfies the smooth

pasting condition.

Thus, for any admissible f , there is an optimal policy of the trigger form. To conclude,

we will show that there are no policies solving the HJB equation that are not of the trigger

form. This follows from the linearity in ℓ of the HJB equation, implying a bang-bang

solution, which is strict because indifference is characterized by the equation qzf(z) = c,

which has a unique solution by Lemma 2. This analysis is summarized as follows.

Proposition 9 Suppose that the payout-rate function � is of the form �(x) = a + k/x.

Then any equilibrium intermediation policy Λ corresponds to a trigger capital ratio T .

That is Λ(x, y) = �̄1{x/y >T}.

G Existence of Equilibrium

So far, we have shown that any equilibrium must be of the trigger form. In this appendix

we show that there exists such an equilibrium. Appendix H shows uniqueness of such

equilibria.

For any candidate trigger capital ratio T , let f(z ∣ T ) be the net expected gain from

switching capital across markets under the policy with trigger T , given current market
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heterogeneity z. We need to show that there exists some T such that qTf(T ∣ T ) = c, that

is, such that the intermediary ceases intermediation, given the switching gain function

f( ⋅ ) = f( ⋅ ∣ T ), exactly when z = T . It suffices to show that Tf(T ∣ T ) takes all values

between 0 and ∞ as T varies from 1 to ∞.

Because zf(z) is increasing, equation (12) implies that

f(z ∣ T ) ≥
(T − 1)

T (r + 2�)
, z ≥ T.

This implies that Tf(T ∣ T ) ≥ (T − 1)/(r + 2�). We note that the lower bound grows

linearly with T . Because Tf(T ∣ T ) = 0 for T = 1, we know that T 7→ Tf(T ∣ T ) goes

from 0 to ∞ as T goes from 0 to ∞. This function is continuous, so there exists some T ∗

such that T ∗f(T ∗ ∣ T ∗) = c/q.

Proposition 10 Suppose that the payout-rate function � is of the form �(x) = a+k/x.

Then, there exists an equilibrium with a trigger policy.

H Proof of Uniqueness of Trigger

Proof of Proposition 4. Suppose that trigger levels S and T , S < T , both satisfy

the equations of the proposition. Let �(z) = fT (z)− fS(z) denote the difference between

the gains from switching capital under policies S and T , as a function of z. (Throughout,

we use superscripts to denote dependence on S or T .) From (18), S < T implies that

gS0 > gT0 . Optimality of S (respectively T ) with respect to fS (respectively, fT ) implies

that, for any z in (S, T ],

qzfS(z)− c− z(1 + z)(vS)′(z) > 0

and

qzfT (z)− c− z(1 + z)(vT )′(z) ≤ 0.

Because (vT )′(z) = 0 for z in this interval (S < T ], while (vS)′(z) ≥ 0 by Proposition 3,

we know that �(T ) < 0. Subtracting the version of equation (10) for T from the version

of the same equation for S yields

(a + z)�+ z(1 + z)�′ = �

(

1−
1

z

)

, z > T, (33)
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where

a =
r + 2�

�̄
+ (1− q) > 0

and

� =
�(gT0 − gS0 )

�̄
< 0.

Because �(T ) < 0, this13 implies that � < 0 for z > T , so that � is everywhere negative.

By definition, g0 is the marginal value of capital held by investors in the overcapitalized

market, when x = 1 and y = 0 (that is, when no investor is initially present in the small

market). Therefore,

g0 =
2

r
− Φ0, (34)

where Φ0 is the expected discounted value of all future fees that investors will pay to the

intermediary. (Recall that 2/r is the expected discounted stream of dividends paid on

both market; see the “conservation equation” (9).) We have seen that � < 0, that is,

fS(z) > fT (z) for all z > T . This means that investors pay, for any z, more fees with S

than with T for z > T . Moreover, for z ∈ [S, T ], investors pay fees (which are positive,

from Proposition 2) for trigger S, whereas they pay nothing for trigger T . Therefore,

ΦS
0 > ΦT

0 , which implies from (34) that gS0 < gT0 , a contradiction. ■

I Algorithm for Trigger Calculation

In general, (18) provides the following fixed-point algorithm for computing the equilibrium

trigger capital ratio T .

Combining (17), the equation obtained by differentiating (17), as well as the equa-

tion (13) for f , yields the second-order linear ordinary differential equation for v:

�v(z) + (� + 2z)z(1 + z)v′(z) + z2(1 + z)2v′′(z) = ! + �z, z ≥ T, (35)

where � = (a−1)�, � = (a+�), ! = d(a−1)−qb, and � = qb.We bear in mind that some

of the coefficients of this equation depend on a constant to be determined, v0 = V (1, 0).

1. Start with some candidate value for v0, which we call v0. From (9) and (18) we can

then determine values for g0 and T (it is easy to show that such values always exist).

Call T 0 the corresponding trigger level. Furthermore, (16) provides a corresponding

value for v(T 0).

13Indeed, �(z) = 0 implies that �′(z) < 0, so � cannot cross zero from below.
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2. Starting with the initial conditions v(T 0) and v′(T 0) = 0, evaluate a candidate for

v(∞) = limz→∞ v(z) by integration of the differential equation (35) on [T 0,∞).

3. The limit v(∞) corresponds to a new value for v0 (since v(∞) = V (1, 0) = v0), which

we call v1.

4. These steps are iterated until a fixed point is reached.

We have considered methods for speeding up the computation.14

J HJB Analysis with Partial Recovery

In this appendix, we analyze the Hamilton-Jacobi-Bellman equation for the case of general

proportional losses. The equation for G is given in Section 3.5. The equation for H is

0 = −rH(x, y) + �(y)−Hx(x, y)xΛ(x, y) +Hy(x, y)xΛ(x, y)

+ �P (Wx < y)[E(G(y,Wx) ∣Wx < y)−H(x, y)]

+ �P (Wx ≥ y)[E(H(Wx, y) ∣Wx ≥ y)−H(x, y)]

+ �E[(H(x,Wy)−H(x, y)].

We let Φ( ⋅ ) denote the cumulative recovery-rate distribution function associated with

the fractional event loss measure �. That is, Φ(u) = 1 − �([0, u]). We let g(z) = G(z, 1)

and ℎ(z) = H(z, 1), obtaining the coupled equations

(r + 2� + Λ(z, 1)z)g(z) + Λ(z, 1)(1 + z)zg′(z) =
1

z
+ Λ(z, 1)(1− q)(ℎ(z)− g(z))

+ �

[

∫ 1

1/z

ug(uz) dΦu +

∫ 1/z

0

1

z
ℎ

(

1

uz

)

dΦu +

∫ 1

0

1

u
g
(z

u

)

dΦu

]

(36)

14One can prove that v′ ∼ log(z)/z2 as z goes to ∞. Unfortunately, this convergence rate is not particularly

fast. A possible improvement is to integrate v numerically up to some value ẑ above which non-dominant terms

in (35) are neglected. Above ẑ, the simplified equation becomes 2z2v′(z) + z3v′′(z) = �, which implies that v′(z) =

v′(ẑ) + log(z)/z2 − log(ẑ)/(ẑ)2, which can be integrated to yield v(z)− v(ẑ) in closed form (up to the simplification of

the equation).
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and

(r + 2� + Λ(z, 1)z)ℎ(z) + Λ(z, 1)(1 + z)zℎ′(z)

= 1 + �

[

∫ 1

1/z

ℎ(uz) dΦu +

∫ 1/z

0

1

uz
g

(

1

uz

)

dΦu +

∫ 1

0

ℎ
(z

u

)

dΦu

]

. (37)

As opposed to the case of total loss, these equations cannot be combined to yield a single

equation for f = ℎ− g, because of differing integrands.

Letting v(z) = V (z, 1), the 0-homogeneity of V implies that the value after a loss

event is v(uz) if ux ≥ y, v(1/uz) if ux ≤ y, and v(z/u) if the loss occurs on the smaller

market. The HJB equation is thus

0 = sup
ℓ∈[0,�]

{

− rv(z)− ℓzv′(z)− ℓz2v′(z) + ℓ(qzf(z)− c)

+ �

[

∫ 1

1/z

v(uz) dΦu +

∫ 1/z

0

v

(

1

uz

)

dΦu +

∫ 1

0

v
(z

u

)

dΦu − 2v(z)

]

}

. (38)

The equation reduces to

(r + 2�)v(z) = �

[

∫ 1

1/z

v(uz) dΦu +

∫ 1/z

0

v

(

1

uz

)

dΦu +

∫ 1

0

v
(z

u

)

dΦu

]

, z ∈ [1, T ],

and

(r + 2�)v(z) + �(1 + z)zv(z)′ = [qzf(z) − c]�

+ �

[

∫ 1

1/z

v(uz) dΦu +

∫ 1/z

0

v

(

1

uz

)

dΦu +

∫ 1

0

v
(z

u

)

dΦu

]

, z ≥ T. (39)

The smooth-pasting condition is

(1 + T )Tv′(T ) = qTf(T )− c. (40)

K Algorithm for Partial Recovery Model

This appendix includes an algorithm for solving the partial-recovery equations of the pre-

vious appendix. The algorithm exploits the linearity of the integro-differential equations

for g, ℎ, and v, which arise thanks to the special structure of our problem.
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K.1 Primitives

The parameters are r, �, �, q, c, and the recover rate distribution function Φ : [0, 1] →

[0, 1], a beta distribution with given parameters. The algorithm will determine the trigger

level T for intermediation and the value functions g, ℎ, and v.

K.2 Strategy

We use the following fixed-point algorithm. Start with a value of T , then iterate the

following steps:

1. Numerically evaluate g and ℎ (which are independent of the rest of the system, given

T ).

2. Numerically evaluate v (which depends on T , g and ℎ).

3. Use (40) to obtain a new value of T .

4. Stop if the last iteration is such that the new value of T is close enough to the value

of T at the beginning of the loop. Otherwise, return to the first step.

Separate analysis shows that the solution T lies in 1 ≤ T ≤ 1 + c(r + 2�)/q which

bounds the starting value.

The remaining subsections provide guidelines for the realization of each step. Except

for the last subsection, the value of T is fixed.

K.3 A system of equations for g and ℎ

We first discretize the equations for g and ℎ to obtain a linear system of equations of the

form

Ax = b.

The variable z ∈ [1,∞) is discretized: we use a grid G with n+1 points such that zi = �i,

i ∈ {0, . . . , n}, where � > 1 is fixed. Such a grid is finer near 1, where T is more likely to

be found. Considering other grids does not affect the equations below.

To each zi corresponds two rows of the matrix A, which is (2n + 2)× (2n + 2). The

vector x = [g, ℎ] corresponds to the discretized values of the unknown functions g and

ℎ. In what follows, g = (g0, . . . , gn) and ℎ = (ℎ0, . . . , ℎn) are vectors approximating the

functions, and x is the concatenation of these vectors.
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For any condition C let 1C denote the function equal to 1 if C is true and 0 otherwise.

For z and T in G, we let �(z, T ) = �1z>T . Thus, � = � if z > T and 0 otherwise.

K.4 Discretization conventions

For any 0 ≤ u < u′ ≤ 1, we let K(u, u′) = Φ(u′) − Φ(u) denote the probability that the

recovery rate is between u and u′, according to the stipulated beta distribution. For each

i, let �i = �(zi, T )

In the computations to follow, we let z−1 = 1, zn+1 = zn, g−1 = g0, gn+1 = gn,

ℎ−1 = ℎ0, and ℎn+1 = ℎn.

K.5 Discretized Equations

The discretized equation for g yields, for i ∈ {0, . . . , n},

gi[r + 2� + �i(zi + (1− q))] + gi+1
�izi(1 + zi)

zi+1 − zi−1

+ gi−1
−�izi(1 + zi)

zi+1 − zi−1

+ ℎi(q − 1)�i

− �

i
∑

j=0

gj
zj
zi
K

(

zj−1 + zj
2zi

,
zj +min{zj+1, zi}

2zi

)

− �

n
∑

j=0

ℎj
zizj

K

(

1j<n

(

1

2zizj
+

1

2zizj+1

)

,
1

2zizj
+

1

2zizj−1

)

− �

n
∑

j=i

gj
zj
zi
K

(

1j<n

(

zi
2zj

+
zi

2zj+1

)

,
zi
2zj

+
zi

2max{zj−1, zi}

)

=
1

zi
. (41)

The discretized equation for ℎ yields, for i ∈ {0, . . . , n},

ℎi[r + 2� + �izi] + ℎi+1
�izi(1 + zi)

zi+1 − zi−1
+ ℎi−1

−�izi(1 + zi)

zi+1 − zi−1

− �

i
∑

j=0

ℎjK

(

zj−1 + zj
2zi

,
zj +min{zj+1, zi}

2zi

)

− �
n

∑

j=0

gjzjK

(

1j<n

(

1

2zizj
+

1

2zizj+1

)

,
1

2zizj
+

1

2zizj−1

)

− �

n
∑

j=i

ℎjK

(

1j<n

(

zi
2zj

+
zi

2zj+1

)

,
zi
2zj

+
zi

2max{zj−1, zi}

)

= 1. (42)
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K.6 Linear system

We index from 0 to 2n + 1 the rows and columns of A as well as the rows of b. Indices

from 0 to n correspond to equations or variables related to g, while indices from n+1 to

2n+1 correspond to equations or variables related to ℎ. The above discretized equations

determine the coefficients of A and b. First, bi = 1/zi for i ≤ n and bi = 1 for i > n, as is

clear from the above. We can decompose A into four (n+ 1)× (n+ 1) submatrices as

A =

⎡

⎣

B C

D E

⎤

⎦ .

The coefficients of these submatrices are determined by the previous discretized equations.

We have

Bii = r + 2� + �i(zi + (1− q))− �

[

K

(

zi−1 + zi
2zi

, 1

)

+K

(

1

2
+

zi
2zi+1

, 1

)]

.

For i < n,

Bi(i+1) =
�izi(1 + zi)

zi+1 − zi−1
− �

zi+1

zi
K

(

1i+1<n

(

zi
2zi+1

+
zi

2zi+2

)

,
zi

2zi+1
+

1

2

)

.

For i > 0,

Bi(i−1) =
−�izi(1 + zi)

zi+1 − zi−1

− �
zi−1

zi
K

(

zi−2 + zi−1

2zi
,
zi−1 + zi

2zi

)

.

For all i and j > i+ 1,

Bij = −�
zj
zi
K

(

1j<n

(

zi
2zj

+
zi

2zj+1

)

,
zi
2zj

+
zi

2max{zj−1, zi}

)

.

For all i and j < i− 1,

Bij = −�
zj
zi
K

(

zj−1 + zj
2zi

,
zj +min{zj+1, zi}

2zi

)

.

The coefficients of the matrices C,D, and E can be obtained similarly.

Once A is computed, we solve the system A[g; ℎ] = b. This yields the vector of

candidate values for g and ℎ that is needed in the next step of the algorithm.

For n = 100, the system can easily be solved by any reasonable computation package,

as long as A is invertible. Usual algorithms proceed by factorization of A and direct

computation of the solution by pivot methods, which are faster and more robust than

inversion of A.
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K.7 Computation of v

We discretize the equation for v similarly, using the candidate values of g and ℎ obtained

in the previous step. The goal of this subsection is to determine the coefficients of the

matrix F and a vector d defining the system Fv = d, where v ∈ ℝ
n+1
+ is the discretization

vector of the function v, F is a (n + 1) × (n + 1) square matrix, and d is an (n + 1)-

dimensional vector.

The discretized equation for v = (v0, . . . , vn) yields for i ∈ {0, . . . n}, keeping the same

notational scheme used before and, letting v−1 = v0 and vn+1 = vn,

vi[r + 2�] + vi+1
�izi(1 + zi)

zi+1 − zi−1
+ vi−1

−�izi(1 + zi)

zi+1 − zi−1

− �

i
∑

j=0

vjK

(

zj−1 + zj
2zi

,
zj +min{zj+1, zi}

2zi

)

− �
n

∑

j=0

vjK

(

1j<n

(

1

2zizj
+

1

2zizj+1

)

,
1

2zizj
+

1

2zizj−1

)

− �

n
∑

j=i

vjK

(

1j<n

(

zi
2zj

+
zi

2zj+1

)

,
zi
2zj

+
zi

2max{zj−1, zi}

)

= �i[qzi(ℎi − gi)− c]. (43)

Therefore, the right-hand side of the linear system is di = �i[qzi(ℎi − gi) − c]. The

coefficients F are determined as were those of A.

K.8 New Value of T

The last step of the loop of the fixed-point algorithm is the determination of a new

candidate trigger level of T . Discretizing (40) yields the condition, for T = zt

(1 + zt)zt
vt+1 − vt−1

zt+1 − zt−1

= qzt(ℎt − gt)− c.

The new candidate value of T is thus the element of the grid G whose corresponding index

t is the closest to satisfying the above equation.

L Diffusion Risk

In this appendix, we allow invested capital to be exposed to diffusive reinvestment risk.

Specifically, we suppose that the Lévy process �i driving proportional capital changes
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in market i is the sum of a Brownian motion �i and an independent compound Poisson

process. The value function retains the same degree of homogeneity found in the main

text.

With perfect correlation between the Brownian sources of risk in the two markets, �a

and �b, the analysis is identical to that shown in the main text.

More generally, suppose that the Brownian motions �a and �b have volatility param-

eter � and correlation parameter R. In the remainder of this appendix, we derive the

characterizing equations for G and H , then g and ℎ.

To clarify computations with diffusion terms, we temporarily consider investor wealth.

Let G̃(x, y, �) and H̃(x, y, �) denote the present value of having � units of capital initially

in the large and small markets, respectively. Of course, G̃(x, y, �) = �G(x, y), where

G(x, y) = G̃(x, y, 1). Similarly, H̃(x, y, �) = H(x, y), where H(x, y) = H̃(x, y, 1). We

first provide equations for G̃ and H̃ , and then use those to derive equations for G and H .

We assume, to begin, zero recovery. As before, we can take the drift rate � to be zero

without loss of generality. We have

− rG̃(x, y, �) + ��(x)− G̃x(x, y, �)xΛ(x, y) + G̃y(x, y, �)xΛ(x, y)

+ (1− q)�(H̃(x, y, �)− G̃(x, y, �))− �G̃(x, y, �) + �(G̃(x, 0, �)− G̃(x, y, �))

+
1

2
�2[G̃xx(x, y, �)x

2 + G̃yy(x, y, �)y
2 + G̃��(x, y, �)�

2]

+ �2[xyRG̃xy(x, y, �) + x�G̃x�(x, y, �) + y�RG̃y�(x, y, �)] = 0 (44)

and

− rH̃(x, y, �) + ��(y)− H̃x(x, y, �)xΛ(x, y) + H̃y(x, y, �)xΛ(x, y)

+ �(G̃(y, 0, �)− H̃(x, y, �))− �̃H(x, y, �)

+
1

2
�2[H̃xx(x, y, �)x

2 + H̃yy(x, y, �)y
2 + H̃��(x, y, �)�

2]

+ �2[xyRH̃xy(x, y, �) + x�RH̃x�(x, y, �) + y�H̃y�(x, y, �)] = 0, (45)

where we used the fact that, when the investor is in market x, the correlation between x

and � is 1, and the correlation between y and � is R. The symmetric correlations apply

when the investor is in market y.

Using the fact that G̃�(x, y, 1) = G(x, y), G̃��(x, y, 1) = 0, G̃x�(x, y, 1) = Gx(x, y),

and G̃y�(x, y, 1) = Gy(x, y), with identical relations between H̃ , H , and their derivatives,
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we get the following equations for G and H (letting � = 1 in the previous equations):

− rG(x, y) + �(x)−Gx(x, y)xΛ(x, y) +Gy(x, y)xΛ(x, y)

+ (1− q)�(H(x, y)−G(x, y))− �G(x, y) + �(G(x, 0)−G(x, y))

+
1

2
�2[Gxx(x, y)x

2 +Gyy(x, y)y
2] + �2[xyRGxy(x, y) + xGx(x, y) + yRGy(x, y)] = 0

(46)

and

− rH(x, y) + �(y)−Hx(x, y)xΛ(x, y) +Hy(x, y)xΛ(x, y)

+ �(G(y, 0)−H(x, y))− �H(x, y) +
1

2
�2[Hxx(x, y)x

2 +Hyy(x, y)y
2]

+ �2[xyRHxy(x, y) + xRHx(x, y) + yHy(x, y)] = 0. (47)

If � is homogeneous of degree −, then so is F . In this case, letting f(z) = F (z, 1),

we have Fxx(x, y) = y−−2f ′′
(

x
y

)

,

Fxy(x, y) = −( + 1)y−−2f ′

(

x

y

)

− xy−−3f ′′

(

x

y

)

,

and

Fyy(x, y) = ( + 1)y−−2f

(

x

y

)

+ 2( + 1)xy−−3f ′

(

x

y

)

+ x2y−−4f ′′

(

x

y

)

.

This implies that, at (x, y) = (z, 1),

1

2
�2[Fxx(x, y)x

2 + Fyy(x, y)y
2 + 2zFxy(x, y)]

= �2
[

2
( + 1)f(z) + ( + 1)(1−R)f ′(z) + (1− R)z2f ′′(z)

]

. (48)

With  = 1, this reduces at (x, y) = (z, 1) to

1

2
�2[Fxx(x, y)x

2 + Fyy(x, y)y
2 + 2xyFxy(x, y)]

= �2[f(z) + 2(1− R)zf ′(z) + (1− �)z2f ′′(z)]. (49)

M Connectedness

In this appendix, we outline a model with the natural feature that an investor is increas-

ingly likely to be in contact with multiple intermediaries at the point of bargaining as the

total number of intermediaries is increased.
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Suppose that there is an advertising medium handling intermediary ads. An inter-

mediary’s effort corresponds to the probability p that its advertisement will place the

intermediary in contact with an investor at the time at which the investor checks the

medium. We assume that p is bounded by some capacity constraint p̄ < 1. Each investor,

pairwise independently across investors, has some exogenous intensity � for the times of

monitoring his capital and observing the advertising medium.15 This is consistent with

the framework of our main model: The intensity of times at which an investor is contacted

by least one intermediary is ��n(p), where

�n(p) = 1− (1− p)n.

Then, � = ��n(p̄) is the intermediation capacity parameter of the basic model. Assuming

that a well-connected investor initiates bargaining with a randomly selected intermediary

from among those contacted, each intermediary has maximal contact intensity �/n. The

probability that, when in contact with an intermediary, an investor is in contact with at

least two intermediaries is

 n(p) = 1− (1− p)n − np(1− p)n−1.

For a fixed � ∈ [0, 1], let p̄n solve �n(p̄n) = �, so that �̄ is independent of n, as in our

basic model. One may easily check that p̄n is decreasing in n. Moreover, using that

 n(pn) = �̄− npn(1− pn)
n−1 = �̄−

(1− �̄)npn
1− pn

,

one can show that  n(pn) is increasing in n.16 Therefore, keeping constant the flow of

investors being contacted at any given time, the average number of intermediaries in

contact with any given investor is increasing in n. As the number of intermediaries goes

to infinity, the probability that investor is well connected is:

lim
n→∞

 n(pn) = �̄+ (1− �̄) log(1− �̄).

The second term is negative. This specification can be generalized to an arbitrary number

of media, with the same result that  n is increasing in n.

15At such times, the investor observes the medium and plays a bargaining game with advertised intermediaries. If

bargaining breaks down, the investor leaves his capital in the large market, until the next monitoring time.
16In order to verify this, one is to show that npn/(1−pn) is decreasing. Expressing pn in terms of � = (1− �̄)−1 > 1

and letting x = 1/n, this is equivalent to showing that (�x − 1)/x is increasing in x. This is easily done by checking

the positivity of the derivative, whose numerator is increasing in u = �x and vanishes for u = 1.

48



N Proofs of Section 4.3

Proof of Proposition 7. As before, we let gL0 = G(1, 0), under strategy L. For any

equilibrium with aggregate mobility z 7→ L(z) and fee z 7→ q(z), one can easily modify

the proof of Lemmas 1 and 2 to show that

�L(z) =

(

1 + �gL0
r + 2�

)(

1−
1

z

)

− fL(z)

is nonnegative and that zfL(z) is increasing in z. If Tn ≤ T1, we have

f 1(Tn) =

(

1 + �g10
r + 2�

)(

1−
1

Tn

)

,

where f 1 and g10 denote the corresponding quantities for the monopolistic case, since the

intermediary does not search at Tn. Further,

fL(Tn) ≤

(

1 + �gL0
r + 2�

)(

1−
1

Tn

)

,

from the nonnegativity of �L(Tn). Therefore,

Tn
(

f 1(Tn)− fL(Tn)
)

≥ �

(

g10 − gL0
r + 2�

)

(Tn − 1). (50)

Since gL0 ≤ 2/r for any policy, there exists some �̄ such that for all � < �̄, the righthand

side of (50) is bounded in norm by " whenever Tn ≤ T1, since we have an upper bound

on T1 from (18). Choosing " below (1/q(n)− 1/q(1))c and setting �̄ accordingly, we have

for any Tn ≤ T1,

q(1)Tnf
1(Tn) ≥

q(1)

q(n)

(

q(n)Tnf
L(Tn)− q(n)")

)

≥
q(1)

q(n)
(c− q(n)") > c, (51)

which shows that it is strictly optimal for the monopolist to search at Tn, contradicting

the assumption that Tn ≤ T1.

Proof of Proposition 8. At Sn, it cannot be strictly profitable for an intermediary to

deviate by continuing to search and receive the net payoff q(1)Snf
L(Sn) − c per unit of

effort, but it was profitable to some intermediaries to search at a capital heterogeneity

just above Sn. This implies that Sn must satisfy the equation

q(1)Snf
L(Sn) = c.

49



We recall that in the monopolistic case, T1 satisfies the equation

q(1)T1f
1(T1) = c.

Therefore, it suffices to show that the roots of these two equations are arbitrarily close if

� is arbitrarily small. We have

fL(Sn) =

(

1 + �gL0
r + 2�

)(

1−
1

Sn

)

and

f 1(T1) =

(

1 + �g10
r + 2�

)(

1−
1

T1

)

.

Therefore, Sn and T1 must satisfy

(

1 + �gL0
r + 2�

)

(Sn − 1)−

(

1 + �g10
r + 2�

)

(T1 − 1) = 0,

which may be rewritten as

(

1 + �gL0
r + 2�

)

(Sn − T1) = �

(

gL0 − g10
r + 2�

)

(1 + T1).

Since T1 is uniformly bounded from (18) and the g0’s are uniformly bounded by 2/r, the

righthand side is less than " if � is chosen small enough. The first factor of the lefthand

side is equivalent to 1/r when � is small enough. Combining these observations shows

that ∣Sn − T1∣ ≤ " for any arbitrary " > 0, provided that � is small enough.
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