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Abstract

This paper suggests forming portfolios by optimizing an objective function

instead of by sorting. This is more parsimonious and flexible, and makes better

use of the data. Empirically, our paper confirms the Davis, Fama, and French

(2000) conjecture that the Daniel and Titman (1997) result was unique to their

1973–1993 sample period. The latter’s evidence is obsolete: From 1973–2008, the

Fama-French model can price their sort-based incongruence portfolio (spreading

HML exposures vs. book-to-market characteristics) almost perfectly. However,

we show that it could never price optimized incongruence portfolios.

Moreover, one can also construct optimized benchmark factors in lieu of

the original Fama-French benchmark factors. These alternatives have higher

Sharpe ratios, and some models based on them can price their own incongruence

portfolios.



Tests of asset-pricing models often rely on multidimensional sorting techniques. For

example, the common “dependent sorts” technique sorts stocks by market capitalization

first into groups of k stocks each. Within each of these groups, stocks are then sorted by a

variable of interest, say x. A zero-investment test portfolio is then formed by going long in

the stock with the smallest x and short in the stock with the biggest x (i.e., within each

group). The next step is to regress (in time-series) the rates of return of the resulting test

portfolio on a benchmark factor model. The most prominent is the Fama and French (1993)

model, which is based on a book-to-market, a marketcap and a stock-market factor, often

augmented by a momentum factor (Jegadeesh and Titman (1993), Carhart (1997)). If the

intercept is not zero, the benchmark model is said to be unable to price the stock-return

related influence of x.

Sorting techniques have drawbacks. They require an ex-ante choice about the number

of groups. They usually do not take advantage of the fact that stocks have different values

of x within the same portfolio leg. They do not use information that some stocks have

higher residual variance than others. And they make it almost impossible to control for

more than a few dimensions. Even a dependent 4-dimensional sort on 6,000 stocks has

only 9 stocks per portfolio. Independent sorts struggle even more with finding stocks in

the extreme corner portfolios. Thus, it is by necessity that researchers often control their

test portfolios only for one variable, usually market capitalization.

Our paper suggests replacing sorts as the method for forming portfolios with opti-

mization of an objective function. For example, one can form a portfolio designed to

produce reliable inference—it could minimize the expected standard error of alpha, subject

to a number of constraints, such as balance with respect to market capitalization and

large exposure with respect to the book-to-market ratio. Under a set of assumptions, the

portfolio maximizing such an objective function can be the same as a portfolio implicit

in the coefficients of the (cross-sectional) Fama-Macbeth tests (Fama (1976)). However, we

use the rates of return on some of these portfolios as the dependent variable in a Fama

and French (1993) time-series regression with respect to a benchmark factor pricing model.

Our test is then whether the alpha of this portfolio is zero.

Empirically, our paper uses optimized portfolios to revive a disagreement about whether

the Fama-French model can price the empirical regularity that it was designed to explain—

the superior performance of value stocks. Daniel and Titman (1997), henceforth DT, identify

stocks that have incongruous characteristics and exposures: either growth firms (low book-

to-market characteristics) with high HML exposures, or value firms (high book-to-market

characteristics) with low HML exposures. This allows them to determine that stocks’ own

book-to-market ratios are responsible for their higher returns, and not their HML factor
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exposures. It suggests that the Fama-French model could not really price stocks with

differential book-to-market characteristics—which is what it was built to explain in the first

place. In effect, DT argue that book-to-market is a characteristic, not an exposure. The

Daniel-Titman paper won the Journal of Finance Brattle prize, and has since been reprinted

in a number of volumes.

In a direct response, Davis, Fama, and French (2000), henceforth DFF, reexamined

the evidence and showed that the Daniel-Titman sample period (1963–1992) was highly

unusual. From 1929 to 1962, and from 1993 to 1997, the sign of alpha reverses. When

these additional 39 years of data are included, the overall sample coefficient becomes

insignificant. Consequently, the view that the returns of the DT portfolios are due to HML

risk-exposures is again consistent with the data. That is, rates of returns of portfolios of

firms with book-to-market ratios that are low relative to their HML exposures (and vice-versa)

are in line with those predicted by the Fama-French model. Our paper can confirm the DFF

inference. Using the same techniques, the DT inference holds only in the DT sample period

and not in the DFF sample.

Daniel, Titman, and Wei (2001) argue that the DFF test is flawed, because there was not

enough cross-sectional variation to warrant the inclusion of pre-1973 data in tests. This

means that the post-1973 sample coefficient remains the relevant test.

However, our paper shows that this defense no longer applies. As of 2008, there is now

enough data to show that just including the post-1973 sample is enough to reject the DT

interpretation, using their own methods. In our replication, the abnormal performance

estimate of their incongruence portfolio is now +1 bp per month (with a T-statistic of +0.18)

in the 1973–2008 sample period, instead of –24 bp per month (with a T-statistic of −2.37)

in the 1973–1993 DFF sample period. Thus, based on the existing sort method, one should

agree with the DFF conclusion that the Fama-French model can comfortably explain the

performance of stocks with incongruous characteristics.

Based on their own testing methods, the DT paper can now be considered obsolete.

Its inference has been overturned by newer data since its publication.

Yet our enhanced portfolio formation methods produce much more powerful tests. We

can document that the Fama-French model was never able to price optimized portfolios

that maximize the spread between HML exposures and book-to-market characteristics. In a

fairly simple specification, our test portfolios underperform the benchmark Fama-French

model by –16 bp per month and the momentum-augmented Fama-French model by –29

bp per month (per dollar invested in each leg). This supports the characteristics view over

the exposures view. Mispricing that is so high is also economically meaningful. The result

is robust. Our inference holds in all sub periods—including even the 1927–1962 sample.
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It holds even when we form portfolios that are value-weighted, although the abnormal

performance roughly halves. (The test derives power from firms with incongruent book-

to-market characteristics and HML factor loadings, which is intrinsically more common in

smaller firms. Value-weighting is thus a much more stringent test than what DFF and DT

ever required.) It holds outside of Januaries.

Optimized portfolios can also offer alternatives to the sort-based factors in the Fama-

French model themselves (the book-to-market factor [aka HML], the size-factor [aka SMB])

and Carhart (the momentum-factor [aka UMD]). Optimized factor portfolio construction

is relatively more parsimonious and flexible. The replacement factors also have superior

Sharpe ratios. We show that some of these alternative benchmark models can explain their

equivalently constructed incongruence portfolios; others fail.

We now describe our data, replicate the earlier results and show that the Fama-French

model can price sort-based incongruence portfolios.

I Data

This section primarily explains methods pioneered by the earlier papers that we are copying.

We use the same data (CRSP, Compustat, and Ken French’s data posted on his website), and

follow most of the techniques pioneered by DT and DFF. The only input data construction

“novelty” is that we will also use exposures computed from daily stock returns and shrunk

via standard Bayesian techniques. Readers familiar with the preceding papers can skip this

section.

A Stock Returns

We predict all stock-months’ rates of return from July 1929 to December 2008. A stock-

month must have had sufficient data in Compustat to calculate a book value and sufficient

data in CRSP to obtain a market value, following standard methods outlined in DFF. There

are 2,659,242 observations that satisfied this criterion. Our data must further satisfy the

following ex-ante criteria:

1. A stock-month must have had at least 3 years of past CRSP stock return data for

computing exposures. This eliminates 356,956 observations—mostly (small) recent

IPO issuers. This is not only acceptable because this is an ex-ante choice, but also

desirable because it avoids the new issues phenomenon documented by Ritter (1991).
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2. The stock price must have been at least $1 at the end of the previous month. This

eliminates 92,712 observations.

3. A stock-month must have had a positive book value of equity. This eliminates 37,364

firm-months and is our only additional data constraint relative to DT and DFF. The

reason is that we want to hold log(B/M) constant in some of our tests. This constraint

is not uncommon in other papers in this literature. We have also confirmed that it is

not consequential to the inference.1

We are left with about 2.2 million stock-months. In the last month of our sample,

12/2008, there were 4,258 stocks before and 3,787 stocks after the screens are applied.

B Factor Exposures and Characteristics

Our paper explores the book-to-market ratio, the market capitalization (firm-size), the own

momentum (2 to 13 months lagged stock return performance), and the exposures to four

factors. The aggregate factor data was obtained from Ken French’s website. The market

factor, MFAC, is the rate of return on the value-weighted CRSP index minus the risk-free

rate. SMB and HML are the two original Fama-French factors; the UMD factor was added

later.

1. Construction of Fixed-Weight Factors: Both Daniel and Titman (1997) and Davis, Fama,

and French (2000) report that static factors are superior to dynamic factors (from

Ken French’s website) for the sake of computing exposures that will persist ex-post.

Therefore we also first construct these “fixed-weight” factor portfolios. When esti-

mating past exposures, in each December, we hold fixed the portfolio weights in the

Fama-French factor portfolio associated with the following July, and then project this

portfolio backwards for five years to avoid rebalancing. This fixed weight method

prevents other stocks from entering and exiting this portfolio, as would normally

occur on an annual basis for the dynamic weight factor portfolios.

2. Construction of Exposures to Fixed-Weight Factors: Each December, we compute for

each stock the historical factor exposures with respect to these “fixed-weight” port-

folios. (The exposures are later used to form portfolios beginning in July of the

following year for a period of 12 months.) We found that it makes no difference

1In addition, Compustat has since corrected errors, changed coverage slightly, and changed data format.
When we ran the tests on the 2005 Compustat data, the results were a few basis points closer to those
reported in DFF and DT. The data suggests that these alterations only strengthen the results of the earlier
papers.
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whether market-betas are recomputed every year, or whether they are recomputed

every month.

Specifically, we estimate each stock’s exposures to MFAC, SMB, and HML in one multi-

variate regression based on a minimum of three and a maximum of five years of

historical data. Each regression yields joint estimates of the three factor exposures (on

MFAC, SMB, and HML). Following our predecessors, we run the following multi-variate

time-series regression separately for each stock

Ri − Rf = ai + bi ·MFAC + si · SMB + hi ·HML + ei

once per year. The resulting “ex-ante” coefficients become input into the sorts and

optimizer. They are ex-ante estimates and will be denoted with a hat. We also retain

the estimated standard errors of âi for use in Section IV.F.

We treat UMD differently, because the momentum factor has been hypothesized to

matter only for the most recent year. Thus, each stock’s exposure to UMD is computed

from a regression that adds the UMD factor to the time-series regression just described,

but based on one year of data, only. (The other exposures are still taken from the

earlier 3–5 year regression, though, not from the 1-year regression with UMD included.)

The window is rolling throughout the year, and lagged by one month to avoid the

return reversal effect. We do not use the “fixed-weight factor” method for UMD.

In Table 1, we confirm the results in DFF and DT with monthly historical factors. In

later tables, we improve our sort and optimizer inputs (the factor exposure estimates)

relative to DT and DFF as follows: We use daily stock return data in the time-series

regression computing the exposures, and then shrink each of the daily exposure

estimates (bi, si and hi) via the Vasicek (1973) method, as recommended in Elton,

Gruber, Brown, and Goetzmann (2003, p.145):

b̂i = wi · b̂i,TS + (1−wi) · µXS

wi = 1− VarTS(b̂i)
VarTS(b̂i)+VarXS(b̂i)

where b̂i,TS is the familiar ordinary OLS time-series exposure for each firm with

associated VarTS(b̂i) (the variance of the estimated exposure); and µXS and VarXS(b̂i)
are respectively the mean and variance of all exposures in a given month across firms.

This shrinkage estimator places more weight on the historical time-series exposure

estimate if this estimated exposure has lower estimated variance and when there is a

lot of heterogeneity in the cross-section of betas.
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We also experimented with some other exposure correction techniques (such as

corrections for non-synchronous trading), but these were typically a little worse

in predicting future exposures. Thus, it would not have been useful to add their

complications to our paper.

Enhanced exposure estimations should generally favor the asset-pricing perspective

over the characteristics perspective. We will later show that the daily shrunk exposure

estimates indeed do better in predicting future monthly exposures after 1963 than

the historical (unshrunk or shrunk) monthly exposures. Nevertheless, our results are

typically similar regardless of whether factor exposures are computed from daily or

monthly returns.

After we have measured the exposures of each stock to these factors, we discard the

fixed-weight factors. (They are not used again, nor are they reported in our tables.)

3. Construction of Zero-Investment Portfolios: We then form zero-investment portfolios,

which can be based on the characteristics and ex-ante exposures (and in Section IV.D

on marketcap; and in Section 7 on estimated ex-ante volatility). In the first two tables,

we use common sort techniques to do so. In the remainder of the paper, we use our

own techniques, which are explained in detail when used.

After we have formed these portfolios, we discard the historical exposures to these

factors, as well as the characteristics data. (They are not used again.)

The above description applies only to the construction of the portfolio investment

weights. The reported test results of our paper are based on the time series of the one-

month-ahead rates of return of these zero-investment portfolios after they have been

formed. We focus on the (sometimes UMD-augmented) Fama-French-abnormal alpha, which

are the intercepts in Fama-French time-series factor regressions. The rate of return of the

portfolio [not net of the risk-free rate, because this is a zero-investment portfolio] is the

dependent variable. The three [or four] contemporaneous dynamic FF factors, as obtained

from Ken French’s website, are the independent variables.
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C Timing

We forecast portfolio rates of return beginning in July of a given year, lasting through June

of the year after. When we work with characteristics, we assume that the firm’s financial

statements (book values) are known without error six months after the annual statement to

which they pertain. (We do not use quarterly data.) We use the market value of equity from

the June immediately preceding this twelve month forecast period. These methods are

consistent with Fama and French (1992), as well as the more recent papers cited earlier. Own

momentum is known after a one month lag (that avoids the well-known return reversal), and

is computed on a rolling monthly basis. In some specifications in Section IV.E, we use two

own momentum measures, one from −2 to −6 months, the other from −7 to −12 months

as inputs into the optimizer. At no point do we use any information in the formation of

portfolios that an investor would not have had access to.

D Statistics Reported in Our Tables

Our benchmark model tests closely mirror the DT and DFF tests. We form portfolios

that seek to be incongruous in an exposure and its corresponding characteristics, while

holding other influences (primarily own marketcap) constant. We then check whether these

portfolios have stock returns that cannot be explained by the Fama-French model. Note that

the resulting portfolios do not have non-zero loadings on the known risk factors ex-post,

which is why we must regress the portfolio returns (raw, not net of the risk-free rate) on

all Fama-French risk factors (HML, SMB, MFAC, and possibly UMD). (Most of our tables do

report the average ex-ante ĥ of our portfolio for comparison with the ex-post h, which the

portfolio formation procedures often seek to maximize.) Our formal tests focus exclusively

on the alphas from these regressions. As in DFF, the standard errors are adjusted for

heteroskedasticity (White method). Heteroskedasticity is expected, if only because we have

different numbers of stocks available in different months. The first two data columns in

the tables show the average monthly return of the portfolios and their T -statistics, which is

useful background information.
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E Perspectives of Asset Pricing Tests

Asset pricing tests require a number of philosophical choices. Our paper follows the

standard conventions in this literature.

Conceptually, the easiest way to think about distinguishing between a characteristic

and an exposure would be a simple competitive regression, i.e., a Fama-Macbeth test. With

both included in the regressions, the regression would tell us how they compete against

one another for explaining future stock returns. Unfortunately, this is not a fair test in this

context, because exposures are measured with error while characteristics are known. The

results would be biased in favor of a characteristics-based interpretation.

Thus, we need to adopt the same time-series FF test approach used in DT and DFF. Its

biases are more subtle.

On the one hand, the FF factor model is favorably handicapped. It shall be considered

the NULL hypothesis, and it will be up to the alternatives to reject the Fama-French model

at the 95% level. Moreover, the FF model is allowed to adjust stock returns via its own

ex-post factor returns. That is, when we form a zero-investment portfolio, it must be based

only on ex-ante information, and this portfolio has to outperform a model that can adjust

returns via factor information that is known ex-post. Put differently, even if an investor

were unable to accurately compute the ex-post exposures on a portfolio so as to earn a

specific rate of return in accordance with the model, the Fama-French model could still

proclaim victory (in that it could price this portfolio).

On the other hand, the FF factor model is also unfavorably handicapped. Its rate of

return model has to explain the returns of any portfolios formed ex-ante. This gives the

experimenter a lot of freedom. If there are five reasonable ways to partition stocks to create

market-cap spreads, the FF model has to explain the rates of return on all five partition

portfolios. If only one of them rejects, the FF model fails.

We also agree with DFF that the Fama-French model is just that—a model. It is not

just statistical significance that matters, but economic significance. Every model fails in

data that is plentiful enough. One question is whether the model still offers a good overall

description of return patterns.

However, there is not only the more practical task of describing how rates of returns

matter, but also the conceptual question of whether stock prices are better seen as expo-

sures (adjusting in anticipation of future returns) or as characteristics (reflecting historical

aspects).
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II Replicating DT and DFF With Sort Portfolios

Before we move on to empirical results, it is appropriate to give a brief history of the

literature that brought us here. The current state of empirical asset pricing traces its

heritage back to Banz (1981) [firm-size], Basu (1977) [price-earnings], Keim (1983) and Roll

(1983) [Januaries], and Rosenberg, Reid, and Lanstein (1985) [book-to-market]. With a series

of papers by Fama and French—beginning with Fama and French (1992) which systematically

investigated these effects—this literature took an important leap. Fama and French (1993)

proposed a parsimonious model that suggests HML exposures, SMB exposures, and MFAC

exposures as a good model to explain stock returns. Jegadeesh and Titman (1993) added

momentum to the mix, which in turn gave rise to a common specification, as in Carhart

(1997). This is sometimes referred to as the UMD-augmented Fama-French model. In their

recent review, Fama and French (2008) add accruals (Sloan (1996), Teoh, Welch, and Wong

(1998)) and net stock issues (Ritter (1991)) to the mix, and largely dismiss asset growth and

profitability. There are also many other discovered regularities in the “anomalies zoo,” e.g.

liquidity [Acharya and Pedersen (2005)], individual volatility [Goyal and Santa-Clara (2003)],

and turnover [Chordia, Subrahmanyam, and Anshuman (2001)]. However, exposure to the

market factor, to the book-to-market HML factor, to the equity-cap SMB factor, and to the

up-minus-down UMD momentum remain the staple ingredients of empirical asset pricing

models.

It is an important conceptual question where these historical cross-sectional average

return differences come from. Davis, Fama, and French (2000), offer three possible reasons:

1. They are statistical spurious anomalies, and/or disappear as soon as investors discover

and exploit them.

2. They are common factors in the ICAPM or APT sense (argued not only in Fama and

French (1993), but also in Fama and French (1996) and Fama and French (1998)).

3. They are behavioral preferences exhibited by investors.

DFF argue that the first reason can explain many anomalies, including even the small-firm ef-

fect. They argue that spurious correlation is however unlikely to explain the book-to-market

ratio and momentum—these effects have continued long after they were first documented.

As already described in the introduction, the most prominent test to distinguish between

the second and third explanation was proposed by Daniel and Titman (1997).2 Thus, DT’s

prominence is no surprise. It is also a good reason to reexamine their evidence.

2The DFF description is not exhaustive. For example there could also be behavioral factors that are priced
in an APT sense, thus blurring the boundary between their second and third categories.
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Of course, it is almost impossible to “prove” that an empirical regularity (or behavioral

characteristic) is not due to an unknown factor exposure. There are far more stocks than

months, plus there is no theoretical reason why factor portfolio investment weights may

not vary from period to period. With so many degrees of freedom, one can always construct

factors ex-post, whose exposures can explain the alpha of almost any “anomalies.”

Consequently, the discipline in constructing factor benchmark models must either come

from a theory or from restricting consideration to reasonable ex-ante investment strategies.

The justification for studying the specific FF model is that it remains the benchmark model

today. Its HML factor was constructed specifically to explain the performance of value

stocks relative to growth stocks. This is also why it was so perplexing that even this

model failed to price value-vs-growth stocks in Daniel and Titman (1997). The next obvious

question would then be whether there are good alternative model candidates. Until one

can be found, viewing book-to-market as something that is “backward-looking” (such as a

behavioral characteristic) rather than “forward-looking” (such as a common factor exposure)

cannot be rejected. Absent such a successful factor model, one needs to have much more

faith in factor asset-pricing models (i.e., that there are factors not yet known but which will

ultimately explain these abnormal stock returns that the characteristics-based behavioral

view can so effortlessly explain).

A Monthly Raw Exposures

To replicate the results of our predecessors, we follow the same complex independent

sorting procedures. Quoting DFF

“At the end of June of each year t (1929 to 1996), we allocate the NYSE, AMEX,

and Nasdaq stocks in our sample to three size groups (small, medium, or big; S,

M, or B) based on their June market capitalization, ME. We allocate stocks in an

independent sort to three book-to-market equity (BE/ME) groups (low, medium,

or high; L, M, or H) based on BE/ME for December of the preceding year. The

break points are the 33rd and 67th ME and BE/ME percentiles for the NYSE firms

in the sample. We form nine portfolios (S/L, S/M, S/H, M/L, M/M, M/H, B/L, B/M,

and B/H) as the intersections of the three size and the three BE/ME groups. The

nine portfolios are each subdivided into three portfolios (Lh, Mh, or Hh) using

pre-formation HML slopes. The slopes are estimated with five years (three years

minimum) of monthly returns ending in December of year t – 1. Value-weight

returns on the portfolios are calculated for July of year t to June of t + 1. Hh–Lh

is ((S/L/Hh–S/L/Lh) + (M/L/Hh–M/L/Lh) + (B/L/Hh–B/L/ Lh) + (S/M/Hh–S/M/Lh) +
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(M/M/Hh–M/M/Lh) + (B/M/Hh–B/M/Lh) + (S/H/Hh–S/H/Lh) + (M/H/Hh–M/H/Lh)

+ (B/H/Hh–B/H/Lh))/9.”

(There are more issues related to how one handles the scarcity of firms in the corner

portfolios, especially early in the sample.) This method produces net portfolios that are

neither dominated primarily by small firms nor value-weighted. The portfolios are balanced

for marketcap and book-to-market characteristics, but have large exposures to HML. Their

HML exposure and book-to-market characteristics are thus incongruous. The economic

interpretation of a negative FF benchmark model alpha would be that the firms in (the

long legs of) these portfolios have low book-to-market characteristics, but are still viewed

by the Fama-French model as having high HML exposures. Thus, according to the model,

they should offer relatively high rates of return. If they fail to do so, their alphas would be

negative, these portfolios would underperform in the sense of the FF benchmark model,

and one would conclude that it is the value/growth characteristics that matter to future

stock returns, and not the exposures to the HML factor (in the context of the benchmark

model). The converse is the case for the short leg of the strategy, which are value firms

with low book-to-market exposures.

Table 1 replicates the main results in DFF’s Table IV. The “Overall” sample ranges from
[Table 1 here]

7/1929 to 12/2008 (954 months). The “DT” sample ranges from 7/1973 to 12/1993 (246

months) and was used in the original Daniel and Titman (1997) paper. The “DFF” sample is

from 7/1929 to 6/1997 (816 months) and was used in the Davis, Fama, and French (2000)

paper. 1963 is a common break, because it was the beginning of the standard Compustat

sample used in many papers. 7/1963 is also roughly the half-way point in our sample (408

months vs. 546 months) and encompasses the DT sample. The “1994–” sample begins in

1/1994 and contains 180 months. Thus, it is out-of-sample relative to Daniel and Titman

(1997).

Table 1 shows that the data yields results that are very similar to those reported by

Davis, Fama, and French (2000). The DT sample results are impressive. The unadjusted

rate of return of the incongruence portfolio (which has high net log HML exposures but

little spread in its investment-weighted net BE/ME characteristic) was a meager –3 bp. This

is why the FF model cannot price it—with such a high ex-post h exposure, the portfolio

should have performed better. Our alpha point estimate of –30 bp per month is even more

pronounced than the –22 bp reported in DFF. (Our three exposures to the Fama-French

factors are also similar to those reported in the DFF paper.)

The table also reports the performance of the UMD-augmented Fama-French-Carhart

model, which we sometimes abbreviate as “FFC.” This model offers similar qualitative

inference, but the magnitude of the mispricing is more modest. Another novel piece of
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information in the table is the average ex-ante ĥ exposure of the portfolio, which was

used to form the sort portfolios. Not unexpectedly, the realized ex-post h exposure of the

incongruency is much lower than the ex-ante ĥ exposure. Mismeasurement of h reduces

the power of the test, but does not bias the test against the benchmark model.

DFF pointed out the striking contrast that the 20 years of the DT sample (1973 to 1993)

were unusual. Again, our results in the DFF sample mimic their’s. They report an alpha

of –6 bp, similar to the –4 bp that we find in their sample period. Thus, the FF-abnormal

alpha of this incongruence portfolio is neither statistically nor economically significant.

DFF argue that one should use the longest sample for the most powerful test, and therefore

rejects the DT model.

Daniel, Titman, and Wei (2001) take exception to this view. They argue that there is not

enough cross-sectional data in years prior to 1973 to disentangle the hypotheses. However,

although this is plausible, the evidence no longer support the Daniel-Titman interpretation.

We have the additional benefit of another 15 years of “out-of-sample” data, which does not

suffer the “few firms” problem. The “DT–2008” row extends the DT sample from 1973 all the

way to 2008. Table 1 shows that, with this new data, the Daniel-Titman method would have

suggested that the FF model works almost perfectly. The incongruence portfolio has a –1 bp

per month abnormal performance, with a T-statistic of –0.09. The momentum-augmented

FFC model performs similarly, with an alpha of –7 bp (T-statistic of –0.77). Thus, it is not

just in the pre-1973 data that the DT hypothesis fails. It also fails now in the post-1973

data. The reason can be seen by looking at the 1/1994– sample. This is an out-of-sample

test relative to DT. Growth firms with high HML exposures have not underperformed but

outperformed since 1993. This further backs the DFF perspective. This effect is so strong

(+40 bp) that it is statistically significant even though there are only 180 months in the

post-1993 sample.

The lack of performance in the post-1973 sample provides the background why our

empirical findings in the next few sections are interesting:

As of 2008, the evidence and thus the interpretation in Daniel and Titman (1997)

is obsolete. The Fama-French model can price sort-based incongruence portfolios

on ĥ and log(BE/ME) very accurately.

In much of the rest of the paper, we shall follow the DFF perspective of adopting the

“Overall” sample as a benchmark—not because we necessarily disagree with Daniel, Titman,

and Wei (2001), but because it presents a stronger challenge to incongruence tests, i.e., a

more stringent test of the characteristics hypothesis. This overall sample is in the first row

in Table 1. Here, the portfolio’s undesirable exposures are indeed low (b ≈ −6%, s ≈ 7%,

u ≈ 7%), while its HML exposure is, as desired, a much higher h ≈ 44%. Performance-
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wise, the portfolio has an unadjusted average net return of +21 bp. After this return is

adjusted by the Fama-French model to control for (small) exposures to the market and SMB

factors, and to control for the (large) exposure to the HML factor, it has an economically

and statistically insignificant +4 bp of abnormal performance. The overall sample portfolio

presents a pricing challenge that the FF model passes with flying colors. The FFC model

performs similarly well.

Not reported, the net portfolio also retains a small residual positive bias in its log-book-

to-market characteristics. This is almost inevitable, despite the attempt to control for the

(known) book-to-market characteristic in the sort. After all, within the last sort based on

preformation HML, one will still find some small spread in book-to-market characteristics.

(These sort-based portfolios also have residual ex-ante exposures to other factors, such as

the market, that are ignored.) These issues do not cause a bias towards rejecting the FF

model, because the FF model receives the opportunity to adjust for exposures after the

portfolio is formed. Instead, they cause a loss in the power of the test, in effect making it

harder to reject the FF model.

B Exposures Shrunk and/or Computed From Daily Stock Returns

Again, the ex-post exposure to HML was much lower than a naïve user of the model would

have imagined. The ex-ante monthly HML exposure ĥ of the overall-sample incongruency

portfolios, computed over the 5 years and used in the sort, was 165%. The equivalent realized

ex-post exposure h was only 44%. The monthly ex-ante ĥ exposures of the incongruency

portfolio overestimated their ex-post h exposures by not just a little.3 The stark discrepancy

between ex-ante ĥ exposures and ex-post h exposures suggests that it is worthwhile to see

if one can improve the accuracy of the exposure estimation. We therefore compute HML

exposures that were shrunk via the standard Bayesian procedure suggested by Vasicek

(1973), as explained on Page 4. The shrunk exposures can then be used as inputs for the

sort procedure instead in lieu of the raw exposures. The upper panel in Table 2 shows the
[Table 2 here]

performance of these revised incongruence portfolios. Table 2 shows that shrunk exposures

are slightly better predictors of future monthly exposures: The ex-post h is higher in the

upper panel of Table 2 than it was in Table 1.

The lower panel in the table is based on sorts whose inputs experienced one more

change: their HML exposures were computed from daily stock returns before they were

shrunk. The ex-post performance regressions reported in the tables (i.e., the benchmark

models) are always based on monthly stock return data. The table shows that portfolios

3Th presence of this noise is not in itself a problem, but it also makes it more likely that their sort portfolio
accidentally picks stocks ex-ante out of the cross-section that are not extreme ex-post.
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formed based on ĥ exposures computed from daily stock returns have about the same

ex-post h exposures as portfolios formed based on ĥ exposures computed from monthly

stock returns in the Overall sample. However, this hides time-variation: Before 1963, the

monthly exposures produce better portfolios than the daily exposures. After 1963, the

daily exposures produce much better portfolios. One might therefore want to consult the

former as inputs to form incongruence portfolios before 1963, and the latter after 1963.

Although our results are similar if we use monthly stock return-based exposures as inputs,

the rest of our paper relies mostly on daily exposures.4

Using daily exposure estimates to sort should provide more power for tests in the

DT 1973–1993 sample period. Yet, Table 2 shows that this diminishes the abnormal

performance of the incongruence portfolio in the DT sample. The DT alpha drops from –25

bp to –15 bp, and (just) loses its statistical significance. Thus, we can conclude that—besides

the extension of the sample to 2008—the DT evidence was also not as robust as it appeared.

The DFF conclusion stands: the FF model prices the incongruence portfolios quite well,

except in the DFF sample period.

III Optimized Portfolios

A principal objective of our paper is to offer an alternative to sorts as the method of forming

zero-investment portfolios that are suitable for tests of asset-pricing models. We want to

find portfolios that are investable based strictly on the same ex-ante, known information that

is used in the sorts, and that are designed to have ex-post exposures on some dimensions

(e.g., HML exposures), but not on other dimensions (e.g., firm size and book-to-market

characteristics).

4Even though it would be defensible to use monthly-based HML exposures prior to 1963 and daily-based
HML exposures after 1963 in subsequent tests, we stick to daily returns based exposures throughout the
sample, because we do not want to be accused of excessive data mining.
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Ultimately, the goal will be to produce a test of whether the alpha of this portfolio is

different from zero. Therefore, a natural objective function would be5

min
wi

∑
i
w2
i · ÆVar(ai) (1)

subject to the constraints that∑
i
wi = 0 The portfolio is zero-investment

∑
i
wi · log(MEi) = 0 Zero (investment-)weighted firm-size

∑
i
wi · log(BEi/MEi) = 0 Zero weighted book-market characteristic

∑
i
wi · ĥi = constant Positive (net) HML exposure

Under the assumption that the residual error variances of stocks are homoskedastic,ÆVar(ai) is a scalar that does not depend on the stock’s own historical return volatility.

Thus, it effectively drops out. In this case, the program simplifies to portfolios that are the

equivalents of Fama-Macbeth regressions. This was first recognized Fama (1976, Chapter 9,

Section 1.C). Fama shows that these portfolios have minimum variance under assumptions

similar to those of OLS (e.g., no errors-in-variables, homoskedastic errors, etc).6

These OLS portfolios are easy to compute. In a given month, define X as an n×k matrix

of n stocks that holds (past) realizations of k− 1 variables of interest, plus a constant. The

X matrix is based strictly on the same lagged information as the sorts. The test portfolio to

determine whether variable k has marginal power in explaining abnormal returns, holding

constant the other variables, are then the k rows in

W ≡ (X′ X)−1 X′ .

The first row of W is a portfolio costing $1 that has no ex-ante loading on any of the

included variables. Because the constant is included as the first column, the k−1 remaining

5Although it would be desirable to examine a maximum “T-statistic” (e.g., forming a portfolio that has the
highest average historical alpha with the lowest standard error), such a program does not yield a closed-form
portfolio vector. With thousands of stocks in each month as variables that need to be reoptimized, this is
not an easy task. Moreover, historical average alphas are unlikely to be very good predictors of future alphas.
First moments are less stable and more difficult to predict than second moments.

6An earlier draft considered portfolios that minimized the estimated variance of exposures. Again, under
a homoskedasticity assumption, this simplifies into OLS portfolios.
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portfolios are all zero investment. The second row is a portfolio that has ex-ante loading of

1 on the first x variable and ex-ante loadings of 0 on all of the other variables, and so on. For

obvious reasons, we shall call the rows in W “OLS Portfolios.” (In standard Fama-Macbeth

tests, one then obtains each month’s k vector of gammas by multiplying the W matrix with

the one-month-ahead rate of return vector, i.e., ~γ = W ~r .) For intuition, Figure 1 provides a
[Figure 1 here]

numerical illustration of such a portfolio.

To mimic the plain sort portfolios in Daniel and Titman (1997), the four columns in our

basic specification of X are the constant, the stock’s own log(ME), the stock’s own log(BE/ME)

ratio, and the stock’s own ĥ (its historical HML exposure).

• Including the constant ensures that the incongruence portfolio is zero investment.

• Including the stock’s own log(ME) ensures that the weighted-average market cap of

stocks in the incongruence portfolio is 0, i.e., that the long and short legs are matched

in their log marketcaps.

• Including the stock’s own log(BE/ME) ensures that the weighted average value-growth

characteristics of the incongruence portfolio is 0, i.e., that the long and short legs are

matched in their log book-to-market ratios.

• The incongruence portfolio itself is the final column in W, which is the investment

weights of a portfolio that has one investment-weighted unit positive exposure on

HML.

Intuitively, this zero-investment marketcap-balanced portfolio is long “growth firms”

that have high HML exposures relative to their book-to-market ratios, and short “value

firms” that have low HML exposures.7

In contrast to sort portfolios, all stocks are (typically) used in an optimized portfolio; stocks

that have more of the variable of interest (in our case, ĥ exposure) receive more weight;

and there is no need to specify break points ex-ante or to be limited to two or three control

variables.

In contrast to the Fama-Macbeth cross-sectional then time-series regression method,

we use the rates of return on OLS portfolios as dependent variables in a Fama and French

(1993) time-series regression on a benchmark pricing model. This combines the advan-

tage of the linear regression-like approach from Fama-Macbeth (which allows for efficient

7In both the exposure variance minimization and return variance minimization techniques, we would
ideally like the ex-ante estimated exposure estimates imposed by our constraints also to hold up ex-post (of
course, after normalization). In real life, estimation error, regression-to-the-mean, and the generic instability
of stock return processes prevent this. This reduces the power of our tests—just as it reduces the power of
sort-based tests. It is the same discrepancy between ex-ante ĥ and ex-post h that was in earlier tables.
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control of multiple factors) with the advantage of the Fama-French method (in which the

mismeasurement of exposures does not bias the results against the factor model.)

The input variables and arbitrage portfolios can be linearly scaled without changing the

statistical inferences. Always investing $1 long and $1 short results in the same statistical

inference as always investing $2 long and $2 short. This irrelevance does not extend to

the magnitude of the coefficient estimates (including the intercept). To make our results

more comparable to those in earlier work, we report coefficients with respect to a portfolio

that invests $1 dollar in each leg. This can be done by dividing all coefficients (incl. the

intercept) by the optimizer’s investment in either leg. This is only a reporting normalization

to make it easier to interpret economic significance, not an ex-post adjustment.

However, the OLS portfolio objective function is not without drawbacks. First, as noted

earlier, in the presence of violations of the standard OLS assumptions, these portfolios are no

longer necessarily minimum return variance. (In Section IV.F, we allow for heteroskedastic

errors, based on historical own stock return variances.) Second, this method tends to select

smaller stocks than the DT and DFF sort techniques. (In Section IV.D, we show that this is

not responsible for our differences in inference.)

IV Empirical Results

A A Single Target

Table 3 shows that the optimized incongruence portfolios after 1963 have higher ex-post
[Table 3 here]

h exposures than sort portfolios (Tables 1 and 2). This suggests that our test portfolios

should have more power. The alphas shows that this worsens the performance of both

benchmark models. In the overall sample, the FF model underperforms by –12 bp per

month, with a T-statistic of –1.85. This barely misses conventional significance levels. The

UMD-augmented FFC model is solidly rejected, however, with economically meaningful

abnormal performance of –25 bp and a T-statistic of –3.26. The incongruence portfolios

also have significant abnormal performance in DFF’s own sample period and in the pre-1963

sample. (There does not seem to be an issue with lack of power before 1963.) However,

after 1994, the alpha of this spread portfolio under the FF benchmark is modest.

Not reported, compared to their equivalent incongruence portfolios in Table 1, the

portfolio investment weights in the portfolios in Table 3 tend to be less extreme. (This is

the case in all tables below, too.) The optimizer has more stocks to work with than do sort
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methods, which counterbalances its tendency to want to load up more on stocks with more

ĥ exposures.

B Conflicting Dual Targets

The portfolio formation technique can be easily altered to increase the incongruence between

log(BE/ME) characteristics and ĥ exposures. We can replace these two variables in the X

matrix with one variable that is the difference of the two. Computing the plain difference

would however give more weight in the difference to the variable that has higher cross-

sectional standard deviation. Thus, before we compute the difference, we first standardize

both variables by their own cross-sectional means and standard deviations.

The performance of the resulting incongruence portfolios is in Table 4. These incongru-
[Table 4 here]

ence portfolios are even more difficult to price by the benchmark models. The alphas are

now solidly negative in all sample periods, regardless of whether the benchmark model

is UMD-augmented or not. In the overall sample, the abnormal performance is –18 bp

per month (T of –3.19) under the FF benchmark, and –30 bp (T of –5.03) under the FFC

benchmark. After 1994, the point estimates are –21 bp and –29 bp, respectively.

C Recalibrated Conflicting Targets

Table 4 shows that the ex-post h is small in the overall sample: Firms with unit-standardized

high ex-ante ĥ exposures but low unit-standardized book-to-market characteristics tend to

have almost zero ex-post h exposures. This means that the test portfolio’s incongruence

between book-to-market characteristic and ĥ exposure is now delivered more by the fact

that log(BE/ME) is low than by the fact that ĥ is high. This is not a big problem, because

it does not favor rejection of the benchmark models. (They are supposed to soak up any

ex-post variation in HML.) Nevertheless, such a low exposure is unappealing.

An easy way to lean more on ĥ is to “re-target” the portfolio. Instead of subtracting the

standardized log(BE/ME) from the standardized ĥ, we can subtract log(BE/ME) from the

standardized ĥ amplified by a scaling factor. An arbitrary choice, such as a scaling factor

of 2, would do. In our case, we chose this scaling factor to be greater than 1 in a way that
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takes the historical (i.e., up-to-date) deviation of the ex-post h from a presumed target of ĥ

of 1 into account.8 The results are similar in either case.9

Table 5 shows that the resulting incongruence portfolios have both higher ex-ante ĥ
[Table 5 here]

optimizer inputs and higher ex-post h exposures. Thus, the incongruence is now based

relatively more on the ex-ante ĥ than the log(BE/ME) when compared with Table 4. The

abnormal performance of these portfolio is however almost the same as those in Table 4.

D Market Capitalization

As already mentioned, the OLS incongruence portfolios are more aggressive than the DFF

and DT incongruence portfolios in tilting towards stocks with smaller market capitalizations.

Although the point of our paper is not to fish for a high alpha that can be converted into

a profitable trading strategy (which therefore means that high average marketcaps are

not as important), it is still interesting to learn whether our results derive from this more

aggressive size tilt.

Fortunately, the OLS approach can be tweaked to tilt the incongruence portfolios towards

larger firms. Just as the OLS portfolios are the equivalent of an OLS Fama-Macbeth regression,

one can create portfolios that are the equivalent of a WLS Fama-Macbeth regression. Here,

the weights are based on stocks’ marketcaps. Define a weighting matrix Ω, in which the

diagonal is the firm’s known lagged market capitalization. The equivalent test portfolio is

now a row of
W(e) = (X′ΩeX)−1 X′Ωe ,

where e is an exponent constant between 0 and 1. An exponent of 0 is equal-weighting, i.e.,

what we had in our earlier tables. An exponent of 1 is full value-weighting (i.e., marketcap-

weighting). Incidentally, we know of no equivalent parsimonious procedures that smoothly

alter the marketcap-weights of sort-based test portfolios.

A value-weighted portfolio is of course too stark a test. For example, of 4,259 traded

stocks in December 2008, the single largest stock had as much marketcap as the bottom

59% of stocks together. Therefore, a test based on a value-weighted portfolio will obviously

8We compare the to-date realized coefficients to the to-date targets in unnormalized space. For example,
if our target was 1 on the normalized ex-ante ĥ variable (which had time-varying standard deviations, but
typically around 0.4), and we obtain an ex-post h coefficient of 0.1, we know we were 0.3 normalized units
off in the past. (This is 0.3/0.4 = 0.75 in unnormalized h exposures.) We would thus have missed by 0.25
sd-normalized units. We therefore raise our sd-normalized target by a little more (in fact, 1.5 times as much,
which here is 0.25 · 1.5 ≈ 0.375). We then rerun the optimizer. This gives us the final portfolio, which is
renormalized to $1 investment.

9Note that retargeting can slightly change the portfolio’s investment weights. Thus, the original and
retargeted portfolios are different.

19



not be very successful in constructing a spread portfolio with incongruous ĥ exposures

and log(BE/ME) characteristics.

To assess the market capitalization of incongruence portfolios, we compute in each

month the investment-weighted marketcap of the equal-weighted market portfolio and of

the value-weighted market portfolio for stocks that satisfied our criteria. For example, in

December 2008, these figures were $3.9 billion and $68.8 billion respectively. For a given

e weighting factor, we then compute the investment-weighted market capitalization of

the incongruence portfolio, and its linear location between the equal- and value-weighted

portfolios. For example, an exponent of e = 47.2% yields a portfolio that has an average

investment-weighted marketcap location of 26.7% between the equal- and value-weighted

market portfolio. This is the same location as the average location of the sort portfolios

in DT and DFF. (We call this portfolio “MFFM” for “matched Fama-French marketcap.”) In

12/2008, this 26.7% location corresponded to an investment-weighted marketcap of $21.2

billion. (This corresponds roughly to the 96th percentile firm.) We repeat the calculations

for different exponents e ∈ [0,1] to get a range of portfolios. We also compute an abnormal

alpha for each e weighted portfolio with respect to the momentum-adjusted FF benchmark

model.

Figure 2 plots the FFC alpha and its two-standard deviation bounds as a function of
[Figure 2 here]

the linear location between equal- and value-weighted portfolio of all stocks. In the overall

sample, even incongruence portfolios whose marketcap is about halfway between the equal-

and value-weighted stock market are still economically significant. The portfolios’ alphas

deteriorate with marketcap weighting, but not in an overly sensitive fashion. For the 26.7%

location (e = 47.2%), alpha is still more than –20 bp per month.

E Additional Ex-ante Controls

The top panel in Table 6 shows the abnormal performance of three differently value-
[Table 6 here]

weighted incongruence portfolios. This table thus provides similar information as the top

left panel in Figure 2. The first portfolio is the same as that considered in Table 4 and

Table 5. The second portfolio is an incongruence portfolio that has similar marketcap

characteristics as the sort portfolio tests in DT and DFF. It has an average location of 26.7%

between the equal-weighted and value-weighted market portfolio. The third portfolio is the

fully value-weighted incongruence portfolio. The first two portfolios have statistically and

economically significant abnormal performance. The third portfolio does not.

So far, we have only used the optimizer to balance out the same variable as our predeces-

sors: market capitalization. Optimization has another advantage that we have not yet used:

it can control for more dimensions ex-ante. In our case, we can include market-beta (b̂),
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SMB exposure (̂s), UMD exposure (û), and own momentum (2 to 13 months lagged, denoted

r−2,−13) as additional controls in the X matrix.10 Note that the justification for ex-ante

control of these other portfolio characteristics is the philosophically same as it is for control

for market capitalization. Instead of relying merely on the ex-post model to take out the

influence of size, the portfolios are themselves tilted to help in this control. To the extent

that the exposures do not control well for own momentum, however, the extra balance

would be appropriate.

The lower panel in Table 6 shows the abnormal performance of the same three incon-

gruence portfolios as the upper panel, except the incongruence portfolios are now balanced

with respect to the aforementioned additional ex-ante characteristics and exposures. The

first lines show that more constraints actually dampen the alpha of the unweighted port-

folios. However, the bottom lines show that more constraints enhance the alpha of the

value-weighted portfolios. The alpha of the incongruence portfolio now remains at –17

bp per month, or about 2 percent per year. Further investigation (not reported) revealed

that it is the additional control for ex-ante own momentum (and not for ŝ, b̂, or û) that

is principally responsible for keeping the significance so high. Again, we would not have

expected that a test that relies so heavily on value-weighting would have enough power to

reject the NULL. The fact that it can do so is surprising.

Figure 3 plots the abnormal performance of the ex-ante multidimensionally balanced
[Figure 3 here]

portfolios vis-a-vis the momentum-adjusted FFC benchmark model. The overall, post-1963,

and post-1993 sample alphas are now significantly negative, even when the Ω is fully

value-weighted. After 1963, the alpha is still more than –20 bp per month.

F Heteroskedasticity

As explained in Section III, the OLS portfolios in effect assume homoskedasticity. Thus, the

portfolio construction did not use information about the historical volatility of stocks. Put

differently, it ignored the fact that some stocks could have had seemingly more reliable

returns ex-ante than others. If this is not transient and thus estimable, ignoring historical

stock return volatility would be inefficient. In other words, if we can predict ÆVar(ai) in (1)

with past stock return (or past alpha) variance, we should be able to form incongruence

portfolios that are more reliable. Note that tilting away from high volatility firms has a

10Recall that power in our model does not come from the in-sample fit of our optimizer. It comes from how
good our portfolios are in delivering the out-of-sample portfolio exposures that our target requests. Thus,
unlike in an in-sample test, it is quite possible that an additional constraint increases the test power. Adding
market exposure can be viewed as improving the prediction by controlling for a previously omitted variable,
which improves the OOS prediction, because it delivers a portfolio with better out-of-sample characteristics,
more in line with the (ĥ) target we were after.
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similar effect as tilting towards larger firms, because larger firms tend to be less volatile.

Value-weighting is thus closely related to heteroskedasticity adjusting.

To explore whether second moments are persistent, we ran a Fama-Macbeth regression

in the first 10 years of the sample (1929–1939), predicting ex-post variance with a linear

combination of the stock’s own ex-ante variance and the cross-sectional average ex-ante

variance. Clearly, there are more sophisticated methods, but in this simple framework, the

best predictor of future variance in the data put about equal weight on both:

Var(ai) ≈ 0.5 · ÆVar(ai)+ 0.5 · Var(ai)+ εi ,

where the first term is the historical own variance for stock i, and the second term is the

cross-sectional average of i. (A linear combination of own historical volatility and the

cross-sectional average volatility is also analogous to the shrinkage of the exposures that

we used as inputs into the optimizer.) The 50-50 best rule also held up when we extended

the period to the entire sample period.11

Substituting such an estimate of the future variance into the optimizer in (1) yields a

portfolio optimization program that also has a simple closed-form solution. Table 7 shows
[Table 7 here]

the results. As in the case of larger marketcap tilts, the alpha decreases but remains signifi-

cant. Further investigation reveals that this portfolio is still mostly tilted towards smaller

stocks. Thus, this incongruence enhancement does not seem to provide more mileage than

its simpler homoskedastic cousin in the construction of incongruence portfolios.

11We denote one firm-year as one observation, and we fit the Fama-French 3 factor model firm by firm
in each year using daily return data in this given year, and we extract the standard error of the intercept
and square this. We refer to this variable as the "ex-post variance" and it is the dependent variable in the
Fama-MacBeth regression we explore. We compute the ex-ante variance of the intercept using the same 3
factor model, but we use daily data over the five years ex-ante (as used in the rest of our study). In particular,
for year t ex-post variance, ex-ante variance is computed over the five year period starting in November of
year t-6 and ending in November of year t-1 (if available, but a minimum of 3 years). We compute a "candidate
predictor" of ex-post variance using various shrinkage factors lambda from zero to one, where a candidate is
equal to (cross sectional variance) lambda + (ex_ante_variance) (1-lambda). We then test each candidate using
a Fama-Macbeth regression (with no intercept, as the shrinkage method is a linear combination of the ex-ante
variance and a constant) and compare candidate R2 to find the best predictor of ex-post variance. The results
(both overall and pre-1940) reach the same conclusion, and a lambda of 0.5 is the best ex-post predictor.
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G Calendar Months: January vs. non-Januaries

It is well-known that many empirical anomalies either occur only in January (the small-firm

effect), or reverse in January (momentum). Thus, Table 8 splits the sample of all firms into
[Table 8 here]

Januaries and non-Januaries. The results are generally consistent with the view that the

results are harmed by Januaries before 1963, and unaffected after 1963. In the overall

sample, the abnormal performance is negative and significant only in non-Januaries.

H Size and Momentum

We can also use optimized portfolios to take a quick look at the contrast of size charac-

teristics vs. SMB exposures; and the contrast of own momentum characteristics vs. UMD

exposures. These are exact analogs to the tests contrasting book-to-market characteristics

with HML exposures.

SMB Exposure vs. Market Cap, Extended Controls Table 9 explores whether the FFC model
[Table 9 here]

can price large stocks that have positive exposures to the small-firm factor—i.e., ex-

posures that are incongruous with their own marketcaps. The table shows that the

FF model can price these incongruence portfolios. Thus, market cap can clearly be

viewed as an exposure rather than as a characteristic in the context of the FFC model.

UMD Exposure vs. Own Momentum, Extended Controls Table 10 explores whether the
[Table 10 here]

FFC model can price stocks that have positive UMD exposures with negative momentum,

i.e., exposures that are incongruous with their own momentum.12 The table shows that

momentum should not be viewed as an exposure to UMD. After 1963, the incongruence

portfolio has extremely poor abnormal performance. The evidence strongly suggests

that momentum is a characteristic, not a factor, in the context of this benchmark

model.

12The UMD exposures that are used to form portfolio were created from their own 1-year regressions, not
from the same 3-5 year regressions that provided us with MFAC, HML, and SMB exposures.
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V Fama-French Factor Alternatives

Having concluded our investigation of the performance of the Fama-French model on

characteristics/exposure incongruence portfolios, we now investigate whether we can

produce better benchmark factors than the sort-based HML, SMB, and UMD factors.

The following manual of how the Fama-French factors are constructed is adopted almost

verbatim from Ken French’s website (which is itself based on Fama and French (1993)):

HML (high minus low): The six portfolios, which are constructed at the end of each June,

are the intersections of 2 portfolios formed on size (market equity, ME) and 3 portfolios

formed on the ratio of book equity to market equity (BE/ME). The size break point

for year t is the median NYSE market equity at the end of June of year t. BE/ME for

June of year t is the book equity for the last fiscal year end in t-1 divided by ME for

December of t-1. The BE/ME break points are the 30th and 70th NYSE percentiles.

Median ME

Small Value Big Value
70th BE/ME Percentile

Small Neutral Big Neutral
30th BE/ME Percentile

Small Growth Big Growth

Each of the six portfolios is value-weighted. However, the factor portfolio itself is

equal-weighted. It is the average return on the two value portfolios minus the average

return on the two growth portfolios,

HML = 1/2 · (Small Value + Big Value) − 1/2 · (Small Growth + Big Growth)

SMB (Small Minus Big): is the average return on the three small portfolios minus the average

return on the three big portfolios,

SMB = 1/3 · (Small Value + Small Neutral + Small Growth)

− 1/3 · (Big Value + Big Neutral + Big Growth)

The portfolios are rebalanced once per year (at the end of each June). They include all

stocks for which there is market equity data for December of t-1 and June of t, and (positive)

book equity data for t-1.
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Optimized portfolios can provide a more parsimonious alternative. There is no need

to decide on break points. There is no need for value-weighting inside the portfolio and

equal-weighting across portfolios to find a factor that is a trade-off between de facto

ignoring small firms (if one fully value-weighted) and relying too much on small firms (if

one equal-weighted). The HML factor portfolio can control for more than just firm-size

(especially own momentum), and/or downweight stocks that have high idiosyncratic stock

return volatility. In contrast to the original Fama-French portfolios, optimized factors will

tilt more heavily towards stocks that have higher characteristics (e.g., log(BE/ME) for the

HML portfolio) within the long and short portfolios. In the Fama-French factors, after a

stock is allocated to a portfolio based on its characteristics, its characteristics are ignored.

(Fama-French investment weights are determined on the basis of marketcap.)

We entertain four substitute versions:

1. EW, Balanced: Factors constructed from an OLS portfolio optimization that hold constant

log(ME), log(BE/ME), market-beta (computed from a univariate regression), and own

momentum (r−2,−11, as in the original UMD construction).

2. MFFM, Balanced: Factors constructed from an OLS portfolio optimization that hold

constant the same four input variables, but which are weighted to match the FF market

cap. (For now, with an e exponent of 0.47, this portfolio has a location of 26.7%

between the equal- and value-weighted market portfolio.)

3. Volat.-adjusted, Balanced: Factors constructed under the assumption that futureVar(ai) ≈
0.5 · ÆVar(ai)+ 0.5 · Var(ai). These factors are not designed to match the marketcap

of the FF benchmark factors.

In all cases, the factors are different rows from the same W matrix. (We also experimented

with unbalanced factors, but these are more difficult to interpret, because they have much

higher correlations among the factors. Thus, we do not report them.)

Table 11 shows statistics for the original Fama-French factors and the factor alternatives.
[Table 11 here]

The original HML sort factor has a lower Sharpe ratio than its optimized alternatives. The

differences are statistically significant. The original SMB sort factor has a lower Sharpe

ratio than two of its three optimized alternatives (again, statistically significant). There is

no meaningful economic or statistical difference between the original UMD sort factor and

its optimized alternatives.

Table 12 shows the correlation matrices of the factor alternatives. Surprisingly, ex-ante
[Table 12 here]

control for the correlation between the UMD factor and other factors is not very successful.

The correlations are no lower (but also not generally higher) than that of the sort portfolios.
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Table 13 replicates the incongruence tests with respect to benchmark models that are [Table 13 here]

constructed from these alternative factors. Because the factors are different in each model,

so are the factor exposures, and thus so are their incongruence test portfolios. The gray lines

are the same as those in Table 5 and included for quick comparison with the original FFC

model. The factor model that relies on optimized factors that take into account historical

stock return volatility by-and-large seems to be able to price its own incongruence test

portfolios. In this sense, this factor model can explain what it was constructed to explain—

the returns of value firms vis-a-vis growth firms. The “EW, balanced” model performs

worse, but at least it still halves the alphas of its incongruence portfolios relative to the

Fama-French model. In contrast, the balanced MFFM based factor model (whose factors

have similar marketcap characteristics as the FF factors) fails to price its own incongruence

portfolio. Together, this suggests that factors that are more tilted towards smaller firms

than the Fama-French factors are more likely to be capable of explaining the performance

of value over growth stocks.

VI Summary and Conclusion

Our paper proposed replacing the sorting method in Fama-French time-series tests with a

portfolio optimizer. We showed that optimized portfolios could provide for more powerful

tests of benchmark models. These established that the Fama-French model cannot price its

book-to-market incongruence portfolios. In addition, we showed that more parsimonious

alternatives to the Fama-French factors themselves also perform better. The optimized HML

and SMB factors have higher Sharpe ratios than the sort-based HML and SMB factors. Some

versions of these factors (that however also tilt more towards smaller firms) are capable of

explaining their own incongruence portfolios.
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Figure 1: Numerical Illustration of Portfolio

For example, consider a situation in which there are 9 stocks with 3 characteris-
tics:

A B C D E F G H I
log(ME) 0 0 0 1 1 1 2 2 2
h -1 0 1 -1 0 1 -1 0 1
log(BE/ME) 0.5 0.7 0.9 1.1 1.5 1.3 1.9 1.7 2.1

In this example, the correlation between log(BE/ME) and log(ME) is higher (95%)
than the correlation between log(BE/ME) and h (21%). The correlation between h
and log(ME) is 0. The computed W matrix, quoted in percent, is then

A B C D E F G H I
constant 49 44 39 16 –4 21 –32 –7 –27
log(ME) 13 –17 –47 30 –90 60 –43 107 –13
h –10 0 10 –10 –20 30 –30 20 10
log(BE/ME) –50 0 50 –50 150 –100 100 –150 50

For example, the final line is a zero-investment portfolio that has zero loading
on log(ME) and h, but unit loading on log(BE/ME). To confirm:

• This portfolio is long 3.50 and short 3.50. Thus it is zero investment.

• The investment-weighted log-ME in both its long and short leg is 8.

• The investment-weighted h in both its long and short leg is 0 (which is
coincidence).

• The investment-weighted log(BE/ME) is 5.65 long and 4.65 short, for a net
unit exposure.

The portfolio loads most heavily long on E and then G, and most heavily short
on H and F. Unfortunately, the portfolio’s investment weights are only intu-
itive for those used to inverting matrices mentally and/or thinking in multiple
dimensions.

Unfortunately, it would require 27 stocks to illustrate a three-dimensional sort
procedure. It is obviously difficult to convey the intuition thereon.

This table will probably be only in the working paper, not the publication.
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Table 1: Zero-Investment Portfolios Created By Sorts to Spread Book-to-Market Charac-
teristics, holding own Size and HML exposures constant (with HML Exposures
Estimated from Monthly Stock Returns).

⇓ ⇓

Unadj. Net Fama-French-Adjusted

Sample Period ĥ Ave T-stat Alpha T-stat b s h u R2

Overall 165% 0.21%∗ (+2.74) 0.04% (+0.71) –6%∗, 7%∗, 44%∗, 42.2%

7/29–12/08, 954 mo –0.03% (–0.49) –5%∗, 7%∗, 47%∗, 7%∗ 43.6%

DFF 155% 0.12% (+1.54) –0.04% (–0.65) –5%∗, 9%∗, 40%∗, 39.5%

7/29–6/97, 816 mo –0.08% (–1.18) –5%∗, 9%∗, 42%∗, 4% 40.0%

DT 157% –0.03% (–0.24) –0.30%∗ (–3.16) 1%, 4%, 49%∗, 49.2%

7/73–12/93, 246 mo –0.24%∗ (–2.37) 1%, 3%, 48%∗, –6% 50.5%

DT–2008 182% 0.23%∗ (+2.08) –0.01% (–0.09) –1%, 3%, 53%∗, 51.5%

7/73–12/08, 426 mo –0.07% (–0.77) -0%, 3%, 54%∗, 7% 53.0%

-6/1963 154% 0.20% (+1.48) 0.04% (+0.41) –6%∗, 15%∗, 38%∗, 38.0%

7/29–6/93, 408 mo –0.03% (–0.22) –5%, 15%∗, 41%∗, 7% 39.1%

7/1963- 172% 0.22%∗ (+2.46) 0.01% (+0.18) –3%, 2%, 50%∗, 50.1%

7/63–12/08, 546 mo –0.06% (–0.73) –2%, 2%, 52%∗, 7%∗ 51.8%

1/1994- 217% 0.57%∗ (+2.98) 0.40%∗ (+3.04) –5%, 4%, 56%∗, 56.3%

1/94–12/08, 180 mo 0.24% (+1.65) 1%, 2%, 60%∗, 15%∗ 64.3%

Description: This table presents the (ex-post) performance of portfolios formed based on indepen-
dent sorts of ex-ante firm size, book-to-market ratio, and h exposure. The sorting procedure is
identical to that in DFF and described in the text. Both the long and short portfolios are constructed
from (three by three [by three]) equal-weighted portfolios, which are themselves value-weighted.
The table displays the ex-post performance of this net portfolio. The format of this table is almost
identical to the format of Table IV in Davis, Fama, and French (2000), and mostly self-explanatory.
b is the ex-post exposure to the market rate of return net of the risk-free rate (MFAC), s to the SMB
factor, h to the HML factor, and u to the UMD factor (not used in this table). ĥ is the ex-ante HML
exposure of each portfolio, used in the sort. Bold-faced numbers with a star denote an absolute
T-statistic greater than 1.96. Unlike DFF/DT, we exclude firms with negative book values of equity.

Interpretation: Intuitively, these portfolios are long HML-exposed stocks that are not themselves
value stocks. The benchmark FF and FFC models will thus attribute a high expected rate of return
to these portfolios, which these non-value stocks should meet.

• The FF model cannot price these portfolios in the DT period. This confirms the DT results
and inference.

• If the sample period is extended forward to 2008, the FF model explains the discrepancy
portfolio almost perfectly. This confirms the DFF conjecture that the DT results were unusual.
It renders the Daniel, Titman, and Wei (2001) response (that there were not enough stocks
pre-1973) moot.

• Control for u, the ex-post momentum factor (UMD), alters magnitudes a little, but does not
alter inference.

(File: replicant)

replicant


Table 2: V1 Zero-Investment Portfolios Created By Sorts to Spread Book-to-Market Char-
acteristics, holding Own Size and HML exposures constant (with HML Expo-
sures Estimated from Shrunk Monthly and Daily Stock Returns).

⇓ ⇓

Unadj. Net Fama-French-Adjusted

Sample Period ĥ Ave T-stat Alpha T-stat b s h u R2

Ex-ante h Exposures Are Computed from Monthly Stock Returns

Overall 136% 0.21%∗ (+2.70) 0.03% (+0.57) –6%∗, 6%, 45%∗, 43.6%

–0.04% (–0.53) –4%∗, 6%, 48%∗, 6%∗ 44.8%

DFF 127% 0.12% (+1.54) –0.08% (–1.19) –4%∗, 9%∗, 43%∗, 3% 41.3%

DT 135% –0.04% (–0.30) –0.25%∗ (–2.41) 1%, 3%, 48%∗, –6% 50.0%

-6/1963 122% 0.21% (+1.54) –0.02% (–0.13) –4%, 15%∗, 42%∗, 6% 40.6%

7/1963- 146% 0.21%∗ (+2.34) –0.07% (–0.84) –2%, 1%, 52%∗, 7%∗ 52.5%

1/1994- 185% 0.56%∗ (+2.89) 0.23% (+1.62) 0%, 0%, 61%∗, 15%∗ 65.3%

Ex-ante h Exposures Are Computed from Daily Stock Returns

Overall 88% 0.19%∗ (+2.49) 0.04% (+0.65) –6%∗, –1%, 44%∗, 41.2%

–0.06% (–0.91) –4%, 0%, 48%∗, 9%∗ 43.8%

DFF 84% 0.17%∗ (+2.23) –0.06% (–0.92) –4%, 6%, 41%∗, 8%∗ 38.2%

DT 91% 0.09% (+0.71) –0.15% (–1.81) –3%, –3%, 53%∗, –2% 62.6%

-6/1963 77% 0.18% (+1.46) –0.07% (–0.63) 0%, 14%∗, 33%∗, 10%∗ 33.1%

7/1963- 96% 0.20%∗ (+2.04) –0.11% (–1.34) 1%, –7%∗, 63%∗, 7% 63.0%

1/1994- 112% 0.26% (+1.11) –0.12% (–0.69) 8%, –10%∗, 76%∗, 13%∗ 70.8%

Description: This table is identical in format, variables, and samples to Table 1, except that the
ex-ante exposures used in the sort are shrunk in the upper panel, and computed from daily stock
returns and shrunk in the lower subpanel. The (reported) ex-post model exposures b, s, h, and u
are always monthly.

Interpretation:

• After 1963, the incongruence portfolios have higher ex-post h exposures when the ex-ante ĥ
exposures are computed from daily stock return data.

• Despite its higher h coefficient with daily exposures (53% instead of 48%) in the DFF sample,
suggesting more power, the DFF abnormal performance loses significance.

• The FF model can price these sort-based incongruence portfolios.

• When exposures are computed from daily stock returns, they seem more accurate (stable) than
when exposures are computed from monthly stock returns (ĥ is always much closer to h.)
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Table 3: Zero-Investment OLS Portfolios with a Positive HML Exposure Target and a
Zero Log B/M Average Target

⇓ ⇓

Unadj. Net Fama-French-Adjusted

Sample Period ĥ Ave T-stat Alpha T-stat b s h u R2

Overall 105% 0.09% (+0.94) –0.12% (–1.85) –3%, –7%∗, 56%∗, 47.7%

–0.25%∗ (–3.26) 0%, –6%∗, 61%∗, 12%∗ 50.8%

DFF 101% 0.05% (+0.55) –0.15%∗ (–2.28) -0%, –3%, 48%∗, 43.6%

–0.25%∗ (–3.64) 1%, –2%, 53%∗, 10%∗ 45.9%

DT 108% –0.03% (–0.16) –0.38%∗ (–3.58) 1%, –1%, 68%∗, 56.1%

–0.43%∗ (–3.92) 1%, 0%, 69%∗, 6% 56.7%

-6/1963 94% –0.02% (–0.13) –0.21%∗ (–2.12) 6%, -0%, 35%∗, 40.8%

–0.31%∗ (–2.94) 8%∗, 1%, 40%∗, 10%∗ 43.2%

7/1963- 112% 0.17% (+1.33) –0.14% (–1.78) –1%, –5%, 76%∗, 60.6%

–0.27%∗ (–2.73) 1%, –5%, 80%∗, 13%∗ 63.5%

1/1994- 126% 0.19% (+0.65) –0.10% (–0.56) –2%, –4%, 89%∗, 67.0%

–0.27% (–1.31) 4%, –7%, 94%∗, 16%∗ 71.2%

Description: This table is identical in format, variables, and sample to the lower panel in Table 2,
except that the portfolios are formed by optimization. (The ĥ input exposures are daily and Vasicek
shrunk.) The optimizer is based on Fama (1976) and generates incongruence portfolios that are the
equivalents of Fama-Macbeth regressions. These “OLS” portfolios have no cost (

∑
wi = 0), balance

out the (investment-weighted) log-firm-size characteristic (
∑
wi log(MEi) = 0), and log-book-to-

market characteristic (
∑
wi log(BE/MEi) = 0). The investment-weighted ex-ante HML exposure is

positive (
∑
wiĥi = pos constant). This target constant is arbitrary, because the dollar investment

in the short and long legs is normalized to $1/month to make it easier to interpret the magnitude
of alpha. The T-statistic is not affected by this normalization.

Interpretation:

• The higher ex-post h coefficients suggest that these portfolios are better in spreading HML
exposures than those produced by sorts. This increases the power of the test.

• In the overall sample, the FF model is not rejected at the 5% statistical significance level. The
UMD-augmented FFC model is rejected.

• Both benchmark models are rejected in the DFF, DT, and pre-1963 sample periods.
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Table 4: Zero-Investment OLS Portfolios with a Positive HML Exposure Target and a
Negative Log B/M Average Target

⇓ ⇓

Unadj. Net Fama-French-Adjusted

Sample Period ĥ Ave T-stat Alpha T-stat b s h u R2

Overall 61% –0.18%∗ (–2.96) –0.18%∗ (–3.19) –1%, 5%, –1%, 0.3%

–0.30%∗ (–5.03) 1%, 5%∗, 5%, 12%∗ 6.8%

DFF 58% –0.22%∗ (–3.45) –0.21%∗ (–3.53) 1%, 5%, –6%, 1.2%

–0.34%∗ (–5.21) 3%, 6%∗, -0%, 12%∗ 7.2%

DT 68% –0.39%∗ (–3.75) –0.53%∗ (–5.28) 4%, 13%∗, 16%∗, 10.2%

–0.60%∗ (–5.74) 4%, 14%∗, 17%∗, 7%∗ 12.1%

-6/1963 50% –0.21%∗ (–1.99) –0.19%∗ (–1.97) 5%, 1%, –15%∗, 5.7%

–0.32%∗ (–3.19) 8%∗, 2%, –9%∗, 13%∗ 12.4%

7/1963- 69% –0.15%∗ (–2.22) –0.29%∗ (–4.50) 2%, 15%∗, 22%∗, 16.6%

–0.37%∗ (–5.58) 3%, 15%∗, 24%∗, 8%∗ 20.6%

1/1994- 76% –0.08% (–0.58) –0.21% (–1.89) 0%, 19%∗, 32%∗, 29.6%

–0.29%∗ (–2.47) 3%, 18%∗, 34%∗, 8%∗ 33.9%

Description: This table is identical in format, variables, and sample to Table 3, except that these
zero-investment OLS portfolios maximize the difference between the standardized h exposure and
the standardized log(BE/ME), of course holding log(ME) constant.

Interpretation:

• The ex-post h exposure is low. Much of the discrepancy between exposure and characteristic
in the incongruence portfolio now comes from low book-to-market characteristics, and not
from high h exposures.

• Both the FF model and the FFC are now statistically rejected in all sample periods, with the
exception of the FF model post-1994 [a sample with only 180 months]. The underperformance
is economically significant, too.
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Table 5: Recalibrated (2-Step) Zero-Investment OLS Portfolios with a Positive HML Ex-
posure Target and a Negative Log B/M Average Target

⇓ ⇓

Unadj. Net Fama-French-Adjusted

Sample Period ĥ Ave T-stat Alpha T-stat b s h u R2

Overall 84% –0.05% (–0.78) –0.16%∗ (–2.74) –2%, 1%, 27%∗, 19.6%

Overall 83% –0.06% (–0.91) –0.29%∗ (–4.51) 1%, 2%, 30%∗, 12%∗ 23.0%

DFF 82% –0.09% (–1.31) –0.19%∗ (–3.06) 0%, 1%, 21%∗, 14.6%

DFF 81% –0.10% (–1.46) –0.32%∗ (–4.70) 2%, 3%, 25%∗, 12%∗ 17.3%

DT 91% –0.22% (–1.78) –0.48%∗ (–4.68) 2%, 7%, 43%∗, 34.7%

DT 91% –0.23% (–1.84) –0.54%∗ (–5.08) 2%, 8%∗, 44%∗, 6%∗ 34.8%

-6/1963 74% –0.12% (–1.06) –0.21%∗ (–2.14) 6%∗, 1%, 10%∗, 10.7%

-6/1963 73% –0.13% (–1.19) –0.34%∗ (–3.29) 9%∗, 3%, 14%∗, 13%∗ 14.2%

7/1963- 92% –0.01% (–0.07) –0.22%∗ (–3.26) 0%, 7%∗, 47%∗, 40.9%

7/1963- 91% –0.01% (–0.14) –0.33%∗ (–4.36) 2%, 7%∗, 49%∗, 10%∗ 43.7%

1/1994- 97% 0.02% (+0.13) –0.17% (–1.34) –1%, 11%∗, 54%∗, 50.7%

1/1994- 97% 0.02% (+0.11) –0.29%∗ (–2.00) 4%, 9%∗, 57%∗, 11%∗ 54.9%

Description: This table is identical in format, variables, and sample to Table 4, except that these
OLS portfolios increase the weights of ĥ in the difference between the standardized ĥ exposure
and the standardized log(BE/ME).

Interpretation:

• The 2-step procedure increases the portfolio’s ex-ante ĥ exposure that is an input into the
optimizer. This in turn increases the ex-post h coefficient.

• This has little effect on the ex-post alpha. Both the FF model and the FFC are statistically
rejected in most all sample periods. The underperformance is economically significant, too.
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Figure 2: Portfolio MarketCap Sensitivity of Alpha
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Description: The x-axis is the average investment-weighted marketcap of the incongruence port-
folio, quoted in terms of location between the equal-weighted (=0) and the value-weighted (=1)
overall stock market. Different average marketcaps arise from different Ω weights (i.e., exponent
e’s). This is analogous to marketcap-WLS Fama-Macbeth regressions. Depending on this Ω matrix,
incongruence portfolios are between about 5% and 80% of the value-weighted stock market portfolio.
The y values are the mean and the two standard deviation bounds of the portfolio alpha.
Interpretation: Portfolios constructed to be as tilted towards larger firms as the DFF/DT sort
portfolios still reject the FF model solidly, except in the short 1993- period.
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Table 6: WLS Marketcap-Tilted Incongruence Portfolios and Enhanced Balance

⇓ ⇓

Unadj. Net Fama-French-Adjusted

Sample Period ĥ Ave T-stat Alpha T-stat b s h u R2

Spread Portfolio balances only log(ME).

Equal-Weighted.1Stage 61% –0.18%∗ (–2.96) –0.30%∗ (–5.03) 1%, 5%∗, 5%, 12%∗ 6.8%

Equal-Weighted.2Stage 83% –0.06% (–0.91) –0.29%∗ (–4.51) 1%, 2%, 30%∗, 12%∗ 23.0%

MFFM-Weighted.1Stage 55% –0.15%∗ (–2.33) –0.20%∗ (–3.23) –3%, –2%, –2%, 12%∗ 12.8%

MFFM-Weighted.2Stage 80% –0.06% (–0.85) –0.23%∗ (–3.16) –4%, –5%, 24%∗, 13%∗ 17.2%

Value-Weighted.1stage 46% –0.03% (–0.42) –0.07% (–0.96) –5%∗, –9%∗, 1%, 12%∗ 12.8%

Value-Weighted.2stage 70% 0.01% (+0.06) –0.12% (–1.37) –7%∗, –11%∗, 20%∗, 14%∗ 15.2%

Spread Portfolio also balances b̂, ŝ, û, and r−2,−13.

Equal-Weighted.1Stage 57% –0.16%∗ (–2.85) –0.26%∗ (–4.65) –1%, –5%, 14%∗, 8%∗ 10.0%

Equal-Weighted.2Stage 76% –0.08% (–1.27) –0.24%∗ (–4.06) –4%∗, –6%∗, 32%∗, 8%∗ 30.6%

MFFM-Weighted.1Stage 51% –0.15%∗ (–2.96) –0.22%∗ (–4.12) –1%, –8%∗, 11%∗, 6%∗ 9.1%

MFFM-Weighted.2Stage 73% –0.09% (–1.49) –0.23%∗ (–3.88) –3%∗, –7%∗, 30%∗, 6%∗ 28.8%

Value-Weighted.1stage 42% –0.09% (–1.46) –0.16%∗ (–2.59) 1%, –10%∗, 11%∗, 7%∗ 7.5%

Value-Weighted.2stage 61% –0.06% (–0.84) –0.17%∗ (–2.59) –2%, –7%∗, 25%∗, 5%∗ 17.1%

Description: This table is identical in format, variables, and sample to Tables 4 and 5 (indeed,
the first two rows are copied), except that MFFM-Weighted and Value-Weighted portfolios tilt
more towards stocks with more market cap. The “MFFM” portfolio matches the average market
capitalization (location as defined in Figure 2) of the DT and DFF sort-based incongruence portfolios.
The “value-weighted” portfolio weights stocks according to their marketcap. In the lower panel,
the optimizer also balances the portfolio’s ex-ante SMB exposure, MFAC exposure, UMD exposure,
and own 1-year momentum (in addition to the firm’s own marketcap).

Interpretation:

• The MFFM portfolio cannot be priced by either model, either with or without additional
constraints.

• The value-weighted incongruence portfolio without extra balance can be priced by the FF and
FFC models.

• When the portfolio is better balanced ex-ante to control for other characteristics—principally,
momentum—neither the FF nor the FFC model can price the value-weighted test portfolio.
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Figure 3: Portfolio MarketCap Sensitivity of Alpha,
Enhanced Multidimensional Controls (b̂, ŝ, û, log(ME), and r−2,−13).
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Description: This figure replicates Figure 3, but the incongruence portfolios are balanced not only
with respect to market cap log(ME), but also with respect to their ex-ante b̂, ŝ, and û exposures, and
their own momentum (r−2,−13).
Interpretation: The FF and FFC models cannot price even the value-weighted incongruence portfo-
lios in the overall, post-1963, and post-1993 samples.
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Table 7: Variance-Tilted Incongruence Portfolios (Heteroskedasticity)

⇓ ⇓

Unadj. Net Fama-French-Adjusted

Sample Period ĥ Ave T-stat Alpha T-stat b s h u R2

Overall 73% –0.06% (–1.00) –0.21%∗ (–3.73) –4%∗, –5%∗, 32%∗, 7%∗ 34.2%

DFF 70% –0.07% (–1.16) –0.19%∗ (–3.50) –3%∗, –5%∗, 27%∗, 5%∗ 26.4%

DT 84% –0.15% (–1.37) –0.31%∗ (–3.71) –5%∗, –3%, 39%∗, –1% 48.1%

-6/1963 59% –0.08% (–0.90) –0.21%∗ (–2.69) 2%, –5%, 20%∗, 8%∗ 18.4%

7/1963- 83% –0.05% (–0.57) –0.27%∗ (–3.47) –3%∗, –1%, 47%∗, 4% 52.1%

1/1994- 90% –0.08% (–0.41) –0.38%∗ (–2.56) 3%, 2%, 62%∗, 10% 62.5%

Description: This table is identical in format, variables, and sample to Table 5, except that the
portfolio increases the investment weight on stocks that have lower abnormal expected ˆse(a).
Stocks with high past return volatility are therefore downweighted. This is equivalent to adjusting
for heteroskedasticity.

Interpretation:

• This procedure downweights high volatility stocks. Relative to Table 5, this shrinks both the
alpha and its standard error. The inference is weaker, but essentially unchanged.
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Table 8: Recalibrated (2-Step) Zero-Investment OLS Portfolios with a Positive HML Ex-
posure Target and a Negative Log B/M Average Target, in Januaries and non-
Januaries

⇓ ⇓

Unadj. Net Fama-French-Adjusted

Sample Period ĥ Ave T-stat Alpha T-stat b s h u R2

Overall All 83% –0.06% (–0.91) –0.29%∗ (–4.51) 1%, 2%, 30%∗, 12%∗ 23.0%

Overall Jan 80% 0.29% (+1.04) 0.06% (+0.25) 2%, –4%, 27%∗, 20%∗ 25.6%

Overall Not-Jan 83% –0.11% (–1.60) –0.30%∗ (–4.33) 1%, 2%, 29%∗, 11%∗ 20.0%

DFF All 81% –0.10% (–1.46) –0.32%∗ (–4.70) 2%, 3%, 25%∗, 12%∗ 17.3%

DFF Jan 77% 0.43% (+1.58) 0.12% (+0.47) 4%, -0%, 18%, 14%∗ 7.3%

DFF Not-Jan 81% –0.17%∗ (–2.35) –0.35%∗ (–4.76) 2%, 3%, 24%∗, 12%∗ 15.1%

DT All 91% –0.23% (–1.84) –0.54%∗ (–5.08) 2%, 8%∗, 44%∗, 6%∗ 34.8%

DT Jan 91% 0.69% (+1.35) –0.61% (–1.64) 12%∗, –19%∗, 57%∗, 5% 69.9%

DT Not-Jan 91% –0.31%∗ (–2.46) –0.51%∗ (–4.58) 1%, 13%∗, 44%∗, 5% 30.9%

-6/1963 All 73% –0.13% (–1.19) –0.34%∗ (–3.29) 9%∗, 3%, 14%∗, 13%∗ 14.2%

-6/1963 Jan 65% 0.11% (+0.27) 0.61% (+1.52) 21%∗, –15%, –2%, 14% 3.3%

-6/1963 Not-Jan 73% –0.19% (–1.68) –0.39%∗ (–3.55) 9%∗, 3%, 12%∗, 13%∗ 13.3%

7/1963- All 91% –0.01% (–0.14) –0.33%∗ (–4.36) 2%, 7%∗, 49%∗, 10%∗ 43.7%

7/1963- Jan 91% 0.43% (+1.10) –0.35% (–1.38) 4%, –6%, 59%∗, 16%∗ 64.2%

7/1963- Not-Jan 91% –0.05% (–0.61) –0.29%∗ (–3.92) 1%, 9%∗, 48%∗, 7%∗ 41.0%

1/1994- All 97% 0.02% (+0.11) –0.29%∗ (–2.00) 4%, 9%∗, 57%∗, 11%∗ 54.9%

1/1994- Jan 97% –0.62% (–0.74) –0.30% (–0.68) –16%, –5%, 50%∗, 24%∗ 72.3%

1/1994- Not-Jan 96% 0.07% (+0.42) –0.21% (–1.52) 3%, 11%∗, 54%∗, 7%∗ 53.4%

Description: This table repeats Table 5, but breaks out Januaries vs. other months. Variables and
sample periods are defined in Table 1.

Interpretation:

• The failure of the FFC model to price the incongruence portfolios is not due to the January
effect.
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Table 9: Recalibrated (2-Step) Zero-Investment OLS Portfolios with a Positive SMB Expo-
sure Target and a Positive Log-Marketcap Average Target

⇓ ⇓

Unadj. Net Fama-French-Adjusted

Sample Period ĥ Ave T-stat Alpha T-stat b s h u R2

Overall All 16% –0.12% (–1.28) –0.14% (–1.66) 23%∗, 16%∗, –26%∗, –4% 34.2%

Overall Jan 15% –0.44% (–1.42) –0.39% (–1.31) 20%∗, 10%, –25%∗, –1% 17.8%

Overall Not-Jan 16% –0.10% (–1.08) –0.10% (–1.10) 23%∗, 16%∗, –27%∗, –5% 34.7%

-6/1963 All 18% –0.12% (–1.21) –0.21% (–1.92) 12%∗, 3%, –6%, 2% 10.3%

-6/1963 Jan 16% –0.96%∗ (–2.45) –0.34% (–0.65) -0%, –19%, –6%, –6% –3.5%

-6/1963 Not-Jan 18% –0.09% (–0.87) –0.19% (–1.64) 12%∗, 3%, –6%, 2% 11.2%

7/1963- All 14% –0.11% (–0.79) –0.12% (–1.06) 36%∗, 26%∗, –21%∗, –11%∗ 52.7%

7/1963- Jan 14% –0.05% (–0.12) –0.56% (–1.46) 31%∗, 24%∗, –21%, 4% 39.9%

7/1963- Not-Jan 14% –0.11% (–0.75) –0.01% (–0.05) 36%∗, 29%∗, –19%∗, –16%∗ 54.9%

1/1994- All 9% –0.01% (–0.03) 0.04% (+0.15) 51%∗, 44%∗, –26%∗, –22%∗ 66.4%

1/1994- Jan 8% –0.15% (–0.15) –1.07% (–1.76) 66%∗, 66%∗, –3%, –3% 57.5%

1/1994- Not-Jan 9% 0.01% (+0.04) 0.23% (+0.89) 47%∗, 44%∗, –31%∗, –28%∗ 67.6%

Description: This is the analog of Table 8. Instead of contrasting HML exposure vis-a-vis log-book
market size, this table contrasts SMB exposure vis-a-vis log-firm size. (Note that the portfolio
formation also controls for log(BE).)

Interpretation: Intuitively, these portfolios are long SMB-exposed stocks that are themselves big-
firm stocks. The FF model should thus attribute a high expected rate of return to these portfolios.

• The FFC model can price these portfolios statistically, although the magnitude in Januaries is
suggestive.
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Table 10: Recalibrated (2-Step) Zero-Investment OLS Portfolios with a Positive UMD Ex-
posure Target and a Negative Own Momentum Average Target

⇓ ⇓

Unadj. Net Fama-French-Adjusted

Sample Period ĥ Ave T-stat Alpha T-stat b s h u R2

Overall All –4% –0.17%∗ (–2.27) –0.21%∗ (–2.55) 2%, 1%, 8%∗, –1% 1.8%

Overall Jan –3% 0.17% (+0.48) –0.54% (–1.41) 7%, 0%, 19%, –9% 4.8%

Overall Not-Jan –4% –0.19%∗ (–2.42) –0.22%∗ (–2.34) 2%, 1%, 9%∗, 0% 1.9%

-6/1963 All –4% –0.05% (–0.45) 0.05% (+0.49) 2%, 3%, –4%, –19%∗ 21.6%

-6/1963 Jan –3% 1.14% (+1.62) –0.83% (–0.93) 5%, 13%, 16%, –44% 15.7%

-6/1963 Not-Jan –4% –0.11% (–1.01) 0.02% (+0.21) 3%, 3%, –4%, –18%∗ 22.8%

7/1963- All –5% –0.26%∗ (–2.60) –0.39%∗ (–3.53) –5%, –3%, 1%, 17%∗ 10.1%

7/1963- Jan –3% –0.56% (–1.89) –0.58%∗ (–2.14) 3%, 6%, –5%, 5% –6.8%

7/1963- Not-Jan –5% –0.24%∗ (–2.28) –0.45%∗ (–3.84) –6%, –6%, 0%, 21%∗ 13.0%

1/1994- All 0% –0.42% (–1.65) –0.65%∗ (–2.37) –8%, –8%, 8%, 27%∗ 19.3%

1/1994- Jan 2% –0.71% (–1.29) –0.90%∗ (–2.19) 32%, 4%, 18%, 2% –10.7%

1/1994- Not-Jan 0% –0.40% (–1.48) –0.76%∗ (–2.78) –6%, –11%, 12%, 34%∗ 23.7%

Description: This is the analog of Tables 8 and 9, but contrasts UMD exposures against own
12-month momentum (with one-month lag). (The portfolio formation also controls for log(ME) and
log(BE/ME).)

Interpretation: Intuitively, these portfolios are long UMD-exposed stocks with negative momentum.
The FF model should thus attribute a high expected rate of return to these portfolios.

• The FFC model fails in pricing these portfolios in all months. January performance is worse,
but not statistically significant, because there are too few observations.
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Table 11: Optimized Portfolio Alternatives to FF Factors

HML

Mean Sd Sharpe Corr

Original-FF 0.43% 3.61% 11.9% 100%

EW,Balanced 0.46% 2.95% 15.5% 79%

MFFM,Balanced 0.36% 2.62% 13.6% 85%

Volat-adj,Balanced 0.52% 3.13% 16.5% 77%

SMB

Mean Sd Sharpe Corr

Original-FF 0.26% 3.36% 7.8% 100%

EW,Balanced 0.40% 4.38% 9.0% 82%

MFFM,Balanced 0.27% 3.65% 7.4% 90%

Volat-adj,Balanced 0.44% 4.59% 9.6% 80%

UMD

Mean Sd Sharpe Corr

Original-FF 0.74% 4.72% 15.7% 100%

EW,Balanced 0.74% 4.49% 16.4% 84%

MFFM,Balanced 0.70% 4.25% 16.4% 88%

Volat-adj,Balanced 0.72% 4.63% 15.5% 82%

Description: These are zero-investment factor portfolios (not incongruence portfolios). The first
line is the original Fama-French factor, available from Ken French’s website. The remaining lines are
optimized (OLS) portfolios. All portfolios are balanced. (They are different columns from the same
W matrix.) The four input characteristics into the optimizer are market-beta, log-market-to-book
ratio, marketcap, and own momentum. The “EW” lines are OLS portfolio factors. The “MFFM” lines
are WLS portfolio factors whose long and short legs are matched in average market cap to the
incongruency factors (now; soon the Fama-French factors themselves). The Volat-adj lines are the
equivalents of Table 7, where stocks with more historical variance are downweighted. “Corr” is the
correlation with the original equivalent FFC factor. The sample is 7/1929 to 12/2008.

Interpretation:

• The Sharpe ratios of the optimized HML factor portfolios is higher than that of the equivalent
original sort-based FF HML factor.

• The Sharpe ratios of some optimized SMB factor portfolios is higher than that of the equivalent
original sort-based FF SMB factor.

• There is no improvement for the UMD factor.

todo: add stars for significance of difference from original FF.
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Table 12: Own Correlations of Factors

Fama French Factors MFFM,Balanced

hml smb mfac umd

hml 100% 10% 22% –40%

smb 10% 100% 33% –16%

mfac 22% 33% 100% –35%

umd –40% –16% –35% 100%

hml smb mfac umd

hml 100% –8% 10% –43%

smb –8% 100% 39% –7%

mfac 10% 39% 100% –22%

umd –43% –7% –22% 100%

EW,Balanced Volat-adj,Balanced

hml smb mfac umd

hml 100% –16% 7% –46%

smb –16% 100% 27% –11%

mfac 7% 27% 100% –22%

mom –46% –11% –22% 100%

hml smb mfac umd

hml 100% –18% 4% –43%

smb –18% 100% 26% –14%

mfac 4% 26% 100% –21%

umd –43% –14% –21% 100%

Description: These are the same zero-investment factor portfolios from the previous table.

Interpretation:

• By construction, the FF portfolio has HML and SMB mutually balanced.

• Balance with respect to MFAC is not controlled the same way. It is balance with respect to b̂,
instead.

• The UMD factor (based on own momentum) is tough to balance against HML. Fallen angels
become value stocks.

• Maybe we should delete this table.
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Table 13: Incongruence Test Using Alternative Benchmark Models

⇓ ⇓

Unadj. Net Fama-French or Novel-Factor-Adjusted

ĥ Ave T-stat Alpha T-stat b’ s’ h’ u’ R2

Overall 84% –0.05% (–0.78) –0.16%∗ (–2.74) –2%, 1%, 27%∗, 19.6%

Overall 83% –0.06% (–0.91) –0.29%∗ (–4.51) 1%, 2%, 30%∗, 12%∗ 23.0%

...EW,balanced 81% –0.02% (–0.27) –0.05% (–0.78) –6%∗, 16%∗, –1%, 10.5%

... 80% –0.02% (–0.32) –0.16%∗ (–2.30) –5%, 18%∗, 5%, 10%∗ 14.2%

...MFFM,balanced 87% –0.11% (–1.45) –0.13% (–1.79) –3%, 14%∗, –1%, 3.8%

... 85% –0.12% (–1.51) –0.30%∗ (–3.69) –1%, 16%∗, 9%, 19%∗ 12.9%

...Volat-adj,balanced 66% 0.03% (+0.42) 0.01% (+0.19) –7%∗, 10%∗, 2%, 7.0%

... 65% 0.02% (+0.35) –0.08% (–1.33) –7%∗, 12%∗, 7%, 9%∗ 11.0%

-6/1963 73% –0.13% (–1.19) –0.34%∗ (–3.29) 9%∗, 3%, 14%∗, 13%∗ 14.2%

...EW,balanced 77% –0.09% (–0.79) –0.09% (–0.81) –13%∗, 13%∗, 6%, 6% 14.7%

...MFFM,balanced 80% –0.15% (–1.32) –0.22%∗ (–2.09) –7%∗, 5%, 8%, 20%∗ 20.2%

...Volat-adj,balanced 57% –0.08% (–0.72) –0.05% (–0.47) –14%∗, 6%, 7%, 6% 19.4%

7/1963- 91% –0.01% (–0.14) –0.33%∗ (–4.36) 2%, 7%∗, 49%∗, 10%∗ 43.7%

...EW,balanced 80% 0.04% (+0.57) –0.24%∗ (–3.21) 9%∗, 24%∗, 21%∗, 6%∗ 32.0%

...MFFM,balanced 89% –0.09% (–0.88) –0.41%∗ (–3.91) 15%∗, 23%∗, 29%∗, 11%∗ 26.8%

...Volat-adj,balanced 70% 0.10% (+1.30) –0.20%∗ (–2.83) 7%∗, 20%∗, 23%∗, 6%∗ 24.2%

1/1994- 97% 0.02% (+0.11) –0.29%∗ (–2.00) 4%, 9%∗, 57%∗, 11%∗ 54.9%

...EW,balanced 77% 0.16% (+1.06) –0.06% (–0.50) 17%∗, 20%∗, 10%, 7%∗ 47.7%

...MFFM,balanced 96% 0.03% (+0.10) –0.35% (–1.86) 45%∗, 28%∗, 35%∗, 10%∗ 57.1%

...Volat-adj,balanced 70% 0.25%∗ (+1.99) 0.01% (+0.10) 8%∗, 16%∗, 16%∗, 6%∗ 21.7%

Description: The gray lines are from Table 5, where the benchmark model is the standard Fama-
French model. The remaining lines test benchmark factor models constructed from optimized factor
portfolios. The factor portfolios of these alternatives are explained in Table 11. The incongruence
tests in this table were reconstructed from scratch. In other words, each line explains its own,
different portfolio, constructed to maximize the incongruence between its own h’ exposures and
the log(BE/ME) characteristics. (The tests are analogous to the tests in Table 5.)

Interpretation:

• A factor model based on a balanced MFFM cannot explain the performance of its incongruence
portfolio.

• The equal-weighted balanced performs better.

• The volatility-adjusted balanced factor benchmark models can price its own inconguence
test portfolio.

• Conjecture: Factors that use more information from small firms are better.
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