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Abstract

It is widely accepted that one of the most important characteristics of an ef-

fective climate policy is to provide firms with credible incentives to make long-run

investments in R&D that can drastically reduce emissions. Recognizing that a

government may be tempted to revise its policy design after innovations become

available, this paper compares the performance of two policy instruments in such

a setting: prices (uniform taxes) and quantities (tradeable pollution permits). In

the case of drastic innovations, I show that the combination of (auctioned) permits

and subsidies to firms adopting the new technology allows the regulator to imple-

ment the social optimum. Taxes, on the other hand, perform poorly because of

commitment problems and the fact that subsidies provide no extra gain. In the

case of modest innovations, a government that can commit to its policy design can

still implement the social optimum with a combination of (auctioned) permits and

subsidies. And if the government cannot commit, it makes no difference whether

it uses prices or quantities.

1 Introduction

It is widely accepted that one of the most important characteristics of an effective climate

policy is to provide firms and individuals with credible incentives to make the long-run
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investments in R&D and capital equipment that will be needed to reduce emissions; see,

for example, the articles in Aldy and Stavins (2007). A climate policy will be unable to

induce such investments unless it is clear that the policy is likely to be enforced and is

unlikely to be loosened up or repealed in the future.

There is a vast literature studying how different environmental policies provide firms

with incentives to develop and adopt cleaner technologies (e.g., Requate, 2005; Popp

et al., 2009). Following practical experience (Stavins, 2003), most studies look at the

performance of relatively simple policy instruments aimed at polluting sources such as

standards, linear (Pigouvian) taxes and tradeable permits. It is also generally assumed

that R&D is carried out by the same polluting firms in an effort to reduce their abatement

costs. If this is so and polluting firms are small (i.e., non-strategic), a completely informed

regulator can implement the first-best amount of R&D and pollution by either using prices

(i.e., linear tax) or quantities (i.e., tradeable permits).1

In this paper I focus on the more relevant problem for climate change, and for many

other environmental problems as well, which is that innovations are developed by parties

other than polluting firms (Requate, 2005). For simplicity I assume there is a single

innovator who licenses its innovation to polluting sources facing an environmental policy

that take the form of either prices or quantities; later I also allow the regulator to combine

prices and quantities a la Roberts and Spence (1976). Central to the analysis of policy

choice and design is the regulator’s ability to credibly commit to its policy design for a

long period so that the innovator can be adequately compensated for its investment (the

choice of instrument cannot be revised).

The paper closest to mine is Laffont and Tirole (1996b) who consider a single innovator

that with some probability can invent a pollution-free technology.2 Polluting firms can

either buy permits, adopt the pollution-free technology (when is available) or shut down

production. The authors argue that stand-alone spot markets for pollution permits

provide no R&D incentives at all because the regulator can expropriate the innovation ex-

post by offering a competing "technology" (pollution permits) and putting an arbitrary

downward pressure on the licensing price. They show then that the social optimum can

be implemented by issuing options to pollute instead of permits. I depart from such

1See, for example, Laffont and Tirole (1996a). If there are spillovers the regulator is still indifferent
between prices and quantities. Obviously, she is not if there are information asymmetries (Weitzman,
1974).

2Denicolo (1999) also builds upon Laffont and Tirole (1996) to asks questions similar to mine. Hep-
burn (2006) also offers a discussion of the importance of commitment and credibility for the choice
between different policy instruments.
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framework in several directions. First, I stick to simple instruments —taxes or (plain)

permits— that eventually could be combined. Second, I model the invention as a more

continuous process. This is important as we can distinguish between drastic innovations

and more modest innovations.

After setting up the model in Section 2, I then explain, in Section 3, that prices and

quantities are not always equivalent ex-post, that is, after the innovation has been devel-

oped (i.e., the no commitment case), but it very much depends on the type of innovation.

Suppose, for example, that the innovator has developed a pollution-free technology. It

is socially optimal ex-post to widely diffuse the technology and to completely phase out

pollution. In a tax regime this can be done by lowering the tax level, possibly to zero

if there are no adoption costs, and forcing the innovator to license its technology at or

slightly below the tax level. This cannot be achieved with permits, so the innovator can

retain a large part of its rents. Issuing more permits puts downward pressure on the

licensing price but also lowers the price of existing permits (which remain in the market)

making it impossible to simultaneously diffuse the pollution-free technology and phase

out pollution. As we lower the quality of the innovation (i.e., the new technology can only

remove a lower fraction of a firm’s emissions) the trade-off between lowering the licensing

price and allowing more pollution disappears because the innovator becomes "capacity

constrained" in that its (lower-quality) technology perfectly complements with permits

(unlike with the pollution-free technology a firm that adopts a lower-quality technology

must also buy permits). Here, the regulator can implement the ex-post social optimum

with either prices or quantities.

In Section 4 I consider the case in which the regulator can commit to its policy design.

Commitment always improves welfare in a price regime by eliminating the regulator’s

incentives to expropriate the innovation ex-post. The same applies in a quantity regime

that produces lower-quality technologies. Surprisingly, commitment may be detrimental

for both the regulator and the innovator in a quantity regime with drastic innovations. In

this case the government would not like to commit ex-ante but let the firm innovate first

and issue permits after. When innovations are drastic the innovator and the regulator

know that the latter will react with a very low issuance of permits (below the ex-ante

first best) which encourages the innovator to develop those drastic technologies. The

government does not want to commit to such low issuance of permits ex-ante because

it will not induce as near the amount of innovation it does when the government moves

ex-post. A numerical exercise illustrates some of the results.

In Section 5 I consider the possibility of combining prices and quantities; in particular,
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combining taxes or permits with a subsidy to polluting firms adopting the new technology

(I also allow for imperfect monitoring). The use of subsidies offers no gain in a tax regime

because taxes and subsidies are perfect substitutes for a regulatory point of view. On

the other hand, permits and subsidies complement perfectly well so the government can

implement the first best if it can commit to it. But even if the government cannot

commit to its policy design it come close to implement the first-best for the case of very

clean technologies. Ex-post the government does not want to remove the subsidies (and

increase the number of permits) because it is the only in which it can induce the socially

optimal diffusion of the new technology. When the new technology is of low quality the

government wants to expropriate the innovator ex-post by removing the subsidies and

increasing the number of permits. So in the absence of commitment (and for low-quality

innovations) we are back to pure permits which are not different than taxes.

Extension to uncertainty is in Section 6. Many of the results of previous sections carry

through. It is not obvious, however, how to combine permits and subsidies to achieve

the first best. Section 7 concludes emphasizing the advantage of permits combined with

subsidies over taxes. In the case of drastic innovations, the combination of permits and

subsidies allow the regulator to implement the social optimum regardless of its ability to

commit to future policies. In other words, its policy design is time consistent. Taxes on

the other hand perform poorly –not so bad if governments can commit– because they

work too good ex-post. In order to prevent the government to run large deficits as a result

of the subsidies permits should be auctioned off. In the case of moderate innovations, a

government that can commit to its policy design can still implement the social optimum

with a combination of (auctioned) permits and subsidies, most likely running a surplus.

And if the government cannot commit, it makes no difference whether it uses prices or

quantities.

2 The model

2.1 Notation

There are two periods, t = 1, 2, a continuum of polluting firms of mass one. For nota-

tional simplicity I abstract from discounting and first-period pollution. In the absence of

regulation each firm produces a unit of output for a perfectly competitive output market

and emits one unit of pollution. A firm’s valuation for polluting one unit is θ ∈ [0, 1],
that is, θ is the profit obtained by the firm when producing and polluting one unit.
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Alternatively, θ can be viewed as the firm’s cost of abating pollution. Valuations are

distributed according to the cumulative distribution F (θ), with density f(θ). I make the

usual assumption that (1 − F )/f is nonincreasing in order to ensure concavity of the

social welfare function. In some places I will also use that the demand for pollution is

not too convex, that is, f(p) + pf 0(p) > 0.3 The government does not observe an agent’s

individual valuation θ but knows the distribution F and observes who pollutes and by

how much.

I model the innovation in clean technologies in a relatively simple way. Among other

things, I abstract from competition among potential innovators; that would only add

complexity (and need for additional instruments) without altering the central message of

the paper. Thus, I consider one potential innovator, who at private cost I(x) incurred at

date 1 can develop the technology x ∈ [0, 1] that removes a fraction x of a firm’s emissions
and where I(0) = 0, I 0(x) > 0 and I 00(x) > 0. In Section 6 I replace this deterministic

R&D process by an stochastic one where at cost I the innovator develops technology x or

superior with probabilityG(x|I). Higher investment I makes the development of a cleaner
technology (i.e., higher x) more likely in the sense of first-order stochastic dominance:

∂G(x|I)/∂I ≤ 0. Both functions I(x) and G(x|I) are also known by the government.
The technology x becomes available at the beginning of date 2. Polluting firms pay a

license fee r to the innovator for the new technology and incur in an arbitrarily small

but positive cost ε to install it (for most part of the analysis we can set this adoption

cost to zero). I am also implicitly assuming here that the innovator’s invention cannot

be imitated, either because it is not feasible or because it is protected by a patent.4

The social damage of an additional unit of pollution is constant and equal to h < 1,

so even in the absence of innovation it is socially optimal to have some pollution. To

rule out uninteresting cases, I further assume that h is not too large; more specifically,

h < (1 − F (h))/f(h). This implies that an innovator with a pollution-free technology

(i.e., x = 1) would, if unconstrained, price above h.5

The government’s objective is to regulate pollution but also to provide the innovator

with incentives to develop cleaner technologies. Following the environmental policy ap-

proaches we observe in practice (Stavins, 2003), I restrict attention to policy instruments

3The aggregate demand for pollution is D(p) = 1− F (p), where p is the pollution price.
4Again, relaxing this last assumption would introduce new elements to the model without altering

the central message of the paper.
5Since the new clean technology can be seen as a durable good (unless rented), we are implicitly

assuming that the innovator is not fatally affected by the Coase conjecture. There are different ways in
which this can happen, e.g., presence of arbitrarily small capacity costs (McAfee and Wiseman, 2008).
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aimed at polluting firms; hence, I rule out that the government can sign an ex-ante con-

tract (or negotiate ex-post) with the innovator.6 More specifically, the government has

two instruments at hand to regulate pollution in period 2: either a pollution tax p per

unit of pollution or an allocation of q tradeable pollution permits. Permits are allocated

for free or auctioned off to a perfectly competitive permits market. In Section 5, I allow

these instruments to be combined with a subsidy s to firms adopting the new technology.

Note that unless x = 1, adopting firms still need to either buy permits or pay taxes to

cover their 1− x remaining emissions in period 2.

The government’s potential commitment problem is captured by the fact that in pe-

riod 2, and after the innovation has become available, the government can revise his

period-1 policy design by either lowering the tax or issuing additional permits (in prin-

ciple, it can also revise the policy upwards by either increasing the tax or buying back

some permits). If the government decides to revise its policy design in period 2 I will

assume that it does so before the innovator licenses his technology to firms. This timing

assumes that the government has some minimum commitment power, e.g., that it can

revise its policy design not so frequently.7

2.2 First-best

The government’s first-best solution is given by the technology x and pollution level q

(or pollution price p) that maximize the social welfare function

W = −hq +
Z 1

p

θf(θ)dθ − I(x) (1)

Since adoption is costless, it is socially optimal to have each operating firm installing x;

hence, there is an immediate connection between p and q

q =

Z 1

p

(1− x)f(θ)dθ = (1− x)[1− F (p)] (2)

6REVISAR: As shown by Laffont and Tirole (1996b) the under-investment problem is readily solved
if the government can sign an ex-ante contract with the innovator. Such contracts are rarely seen
in practice, however, much less for clean technologies. Furthermore, those contracts are not free of
commitment problems either. The current administration may refuse to respect a contract signed by the
previous administration. This makes is more complicated if the regulator cannot observe investment.

7As discussed in more detail below, assuming a different timing (i.e, simultaneous move between the
regulator and the innovator in period 2) can change matters.
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Using (2), the first-order conditions for p and x are, respectively

h(1− x)− p = 0 (3)

h[1− F (p)]− I 0(x) = 0 (4)

Denote by x∗ and p∗ the first-best technology and price levels that solve (3) and (4).

Condition (3) says that the benefit from the last unit of output, p∗, is equal to its

pollution damage, h times the remaining emissions, 1− x∗. Since 1− F (p∗) is industry

output, condition (4), on the other hand, says that technology x∗ is stretched to the point

where the marginal cost of doing so is exactly equal to the marginal benefit of having a

cleaner industry.

3 Policies in the absence of commitment

Suppose the innovator has made available at period-2 technology x. After observing x

and before the innovator licenses his technology to firms, the government is ready to

revise its policy. I first analyze prices, which is easier, and then quantities.

3.1 Prices

Let p be the tax set by the government in period 2. Given technology x, the innovator’s

best response is to license his technology at price

r = min {px, rm(x, p)}

where rm(x, p) is the "unconstrained" monopoly price, which, assuming efficient ra-

tioning, is equal to

rm(x, p) = argmax
r

π = [1− F (r + p(1− x))]r

The monopoly price, however, is ruled out by assumptions (i) (1− F (h))/f(h) > h, and

(ii) (1−F (θ)]/f(θ) is nonincreasing.8 Hence, the innovator’s best response is to price at

8With these assumptions ∂π/∂r|r=p = 1− F (p)− f(p)p > 0 for all p ∈ [0, h].
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(slightly below) px and sell to all active firms (i.e., θ ≥ p). This results in pollution

q(p, x) = (1− x)[1− F (p)] (5)

Anticipating the inventor’s price response and (5), the government’s chooses the tax p

that solves

max
p
−hq(p, x) +

Z 1

p

θf(θ)dθ

which leads to the first-order condition (3). It is not surprising that the tax instrument

implements the ex-post social optimum since it can exert as much downward pressure

on the license price as needed.9 The innovator is forced to widely diffuse his technology

(i.e., no rationing) at a price set by the government.

For the same reason the tax instrument works so well ex-post it works poorly ex-ante,

i.e., it leaves insufficient rents with the innovator (and zero rents in case he develops the

cleanest technology). Consequently, the innovator underinvests relative to the first-best,

i.e., I(xncp ) < I(x∗), where xncp denotes the technology developed under a price regime

absent of commitment and is equal to

xncp = argmax
x
{p(x)x[1− F (p(x))]− I(x)} (6)

where p(x) = h(1− x). It is not difficult to show that xncp < x∗.10

The underinvestment is such that the innovator will never develop anything cleaner

than

x̄ =
1

2− p̄f(p̄)/(1− F (p̄))
< 1

(where p̄ = h(1− x̄)) even if R&D is costless. The underinvestment occurs because the

government cannot credibly commit not to expropriate the innovator’s rents ex-post (a

patent protects the inventor from potential imitators but not from the government).

3.2 Quantities

Let q be the number of tradeable pollution permits issued by the government in period

2. To find the best the government can do as a function of the available technology x it

9Note that if x = 1 the government will set p slightly above zero, providing the innovator with enough
room to undercut the government’s price.
10Take the first-order condition that solves for xncp , which is h(1− F (p))− hx[2(1− F (p))− pf(p)]−

I 0(x) = 0, and then notice that the term in square brackets is strictly positive, from the assumptions
above.
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is useful to start by finding the ex-post social optimum because, unlike with prices, it is

not obvious that the regulator can always implement it with quantities. From (2) and

(3), the socially optimal allocation of permits is (provided that all operating firms have

installed the new technology)

q∗(x) = (1− F (h(1− x)))(1− x) (7)

This function is plotted in Figure 1.11

Consider now the optimal response of an innovator with technology x and after q

permits have been issued by the government. When q is sufficiently large, the innovator

will find it optimal to ration the supply of the technology, that is, to set a license fee

such that only a fraction of active firms adopt the new technology. More specifically, the

innovator solves

max
y

π(y) = yp(x, q, y)x (8)

where y is the number of licenses sold in equilibrium, p(x, q, y) is the equilibrium price

of permits and xp(·) = r is the license fee charged by the innovator. Solving (8), we find

that in this "rationing" equilibrium the innovator will sell

ym =
p(·)f(p(·))

x
< 1− F (p) (9)

licenses at price p(·)x. The equilibrium price of permits p(x, q, y) is found from the market
clearing condition in the permits market, that is

1− F (p) = q + yx (10)

Depending on x and q, there will be a point where the innovator just rations his

supply of the clean technology, i.e., where ym = 1 − F (p) = q/(1 − x). Using (9) and

(13), the combinations of q and x that just induce "rationing" are given by

F−1
µ
1− q

1− x

¶
f(F−1(·)) = qx

1− x
(11)

Denote by qr(x) the solution of (11), which is also plotted in Figure 1 along with function

q∗(x) (I will shortly come back to the observation that qr(x) necessarily crosses q∗(x) at

11Note that ∂q∗(x)/∂x = −[1− F (h(1− x))] + h(1− x)f(h(1− x)) < 0
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some interior value of x).12 Thus, for any combination of q and x to the left of curve

qr(x), the innovator is "capacity constrained" in that it sells his technology to all possible

active firms, i.e., y = q/(1−x) = 1−F (p(·)). We can say that in this region permits and
clean technology work as perfect complements. Conversely, for any combination of q and

x to the right of qr(x), the innovator rations supply, i.e., y < q/(1 − x) = 1 − F (p(·)).
Here permits are a perfect substitute for the new technology, so the innovator optimizes

along the residual demand 1 − F (p) − q and the price of permits becomes independent

of x and given by (from (9) and (10))

p =
1− F (p)− q

f(p)
(12)

It remains to determine what is the government’s best response for any given x and

anticipating the innovator’s pricing reaction. To facilitate the discussion let x technology

level where q∗(x) and qr(x) cross (see Figure 1), i.e.,

x̂ =
p̂f(p̂)

1− F (p̂)
(13)

where p̂ = h(1− x̂). Furthermore, we will say that a technology development is drastic

when x > x̂ and modest when x ≤ x̂. Note that I am using the terms drastic and modest

in a very loose way; for example, if F (θ) is uniform and h = 1/3 then x̂ = 0.3, which is

not particularly clean. More importantly for our analysis, when the innovation is modest

the government has no problems in implementing the ex-post social optimum: it will

issue q = q∗(x) permits, resulting in the first-best equilibrium price h(1− x).

The government’s response is a bit more involved when the innovation is drastic.

The government cannot longer implement the ex-post social optimum because that is in

the innovator’s rationing zone. So in principle, the government would pick a number of

permits independent of x as follows

q0 = argmax
q
{−hq +

Z 1

p(q)

θf(θ)dθ}

where p(q) is implicitly given by (12). As shown in Figure 1, q0 is always strictly smaller

than q̂ ≡ q∗(x̂) and in many cases is equal to zero;13 for example, for a uniform F and

12Note that if F (θ) is the uniform distribution then qr(x) = (1− x)/(1 + x).
13In fact q0 < q̂ ⇐⇒ [1−F (p̂)][f(p̂)+ p̂f 0(p̂)]+ p̂f2(p̂) > 0, which holds for any demand function that

is not too convex.
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h ≥ 1/4. However, since the government would like to come as close as possible to the
(ex-post) first-best, it can do better and pick qr(x) instead of q0 for those cases in which

qr(x) > q0. Thus, the government’s best response is to issue q = qr(x) when x ∈ [x̂, x0]
and q = q0 when x ∈ [x0, 1]. In what follows I neglect this latter case by assuming that
q0 = 0 (and hence x0 = 1) (we are basically saying that h is not too small; assuming

otherwise would introduce more notation without adding much to the problem).14

We can summarize this discussion in the following proposition

Proposition 1 Prices and quantities are ex-post equivalent for "modest" innovations

(i.e., when x ≤ x̂). When innovations are "drastic" (i.e., x > x̂) quantities lead to

less diffusion of the clean technology, less output, less pollution and more rents to the

innovator.

The proof is relegated to the appendix but it basically consists in showing that Figure

1 is qualitatively correct; more specifically, that q∗(x) crosses qr(x) from above. To gain

intuition for the proposition it helps starting with the case in which the innovator has

developed a pollution-free technology, i.e., x = 1. It is ex-post socially optimal to diffuse

the technology to all firms and to completely phase out pollution. In a tax regime this

can be done by lowering the tax level to virtually zero (only slightly above the adoption

cost ε) forcing the innovator to license its technology at even lower price (enough to

cover the adoption cost). All firms adopt the new technology and pollution is completely

phased out. It is clear that this same outcome cannot be achieved with quantities. One

way to force the innovator to license its technology to all firms for "free" is by issuing

q ≥ 1 (i.e., total emissions in the absence of regulation) and setting ε = 0 (through

an adoption subsidy perhaps; something we will come back in Section 5). One possible

equilibrium in such scenario –after the government has issued q ≥ 1 permits and the
innovator has priced her technology at r = 0– is that all firms adopt the new technology

and the totality of permits remain unused (this is the equilibrium adopted by Laffont and

Tirole (1996b) in their Proposition 1 and where ε = 0). But another equally plausible

equilibrium is that no firm adopts the new technology but instead all firms cover their

emissions with (free) permits. Either equilibrium is equally good from the perspective of

a firm but not from the government’s. Obviously, there is also a continuum of equilibria

with partial adoption.

14A worth observation perhaps for the case in which q0 > 0 is that the government is willing to
issue pollution above the ex-post social optimum when a highly clean technology (i.e., x > x0) becomes
available, only because that would increase industry output at the expense of reducing the diffusion of
the new technology.
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This multiplicity is eliminated here, however, because ε > 0.15 Therefore, if the

government issues q ≥ 1,16 the permit prices would collapse to zero and there would

be nothing the innovator could do to outcompete the permits at non-negative profits.

Furthermore, if the government issue q < 1 (but close to the unity) with the idea to

generate a small but positive permit price that could report the innovator non-negative

profits, the innovator would not sell to the entire industry (that would collapse the price

to zero) but to a fraction of the residual demand 1− q − F (p) at price (12). Therefore,

the idea that the government can replicate with quantities what he can do with prices is

simply not possible (unless one believes in an equilibrium where the totality of permits

issued remain unused). Then, if a pollution-free technology comes available, the best the

government can do is to issue no permits (because q0 = 0) and let the innovator to price

its technology at the monopoly price.

Unlike the tax, the quantity instrument is a costly instrument to exercise downward

pressure on the license price for a pollution-free technology –or for any technology x > x̂

for that matter– because the adoption of the technology does not remove the permits

issued by the government. This provides the innovator with a credible protection against

ex-post expropriation by the government. It is then immediate that

Proposition 2 In the absence of commitment quantities provide more incentives for the

development of "drastic" technologies than do prices (and equal for "modest" technolo-

gies).

In some cases, when h is relatively low, incentives for the development of drastic

technologies can be beyond first-best levels, leading to xncq > x∗.17

Propositions 1 and 2 present a clear trade-off between prices and quantities that

prevents an unambiguous welfare ranking in the absence of commitment: prices provide

fewer innovation incentives for the development of drastic technologies but are always

ex-post efficient (i.e., static efficient) unlike quantities.

15Timing is also a powerful refinement even when ε = 0. Since permits are allocated before the
technology is licensed to firms, why would any firm bother adopting the new technology if it has already
enough permits to cover its emissions?
16Note that according to this logic the government would also need to issue q ≥ 1 if x < 1.
17For example, if F is uniform, h = 1/4 and I(x) = cx/(1− x) with c = 0.01, we have that x∗ = 0.79

and xncq = 0.81. But if h = 1/2, then x∗ = 0.85.

12



3.3 Timing

We have assumed that the government enjoys some minimum commitment power that

allows it to move first in period 2. This seems a reasonable assumption since policies are

hardly changed so frequently; much less frequently than prices set by a private party.

Yet, it is informative to ask what happens when government and innovator moves simul-

taneously in the second period. It turns out that prices look very much like quantities

(there is no much of a change in the quantity regime). Take for example x = 1. If

the innovator prices its technology at the monopoly price 1/f(0), the government’s best

response is to set the tax slightly above (for the same reason that q0 = 0).

4 Commitment

Consider now a government that at date 1, and before the innovator engages in R&D,

announces its policy for date 2 and commits not to revise it. We merge the analysis of

both instruments.

4.1 Prices and quantities

To understand how instruments perform under commitment it is useful to start with

the case in which R&D is almost costless. If so, it is socially optimal to develop a

pollution-free technology, or nearly so, and completely phase out pollution. A committed

government can achieve the first-best with prices; it needs to set the tax level slightly

above zero just to let the innovator break the indifference between undertaking R&D and

not. Once the pollution-free technology is developed, the innovator will sell it for almost

nothing, serving all firms and completely phasing out pollution.

The same committed government can not achieve the first-best with quantities for

the same reason that a government without commitment does not want to expropriate a

pollution-free innovation ex-post. The committed government will find it optimal not to

issue permits.18 The innovator will then develop the pollution-free technology and ration

its supply to the monopoly level. The price instrument (under commitment) has turned

out to be more flexible in accommodating both objectives: providing R&D incentives

–but not necessarily higher rents– and allowing wider diffusion of the new technology.

The same rationale applies for less drastic innovations, therefore

18Strictly speaking, the commited government has more reason not to issue permits than one that is
not because it moves first.
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Proposition 3 Prices perform better than quantities when the government can commit

not to revise its policy: W c
q < W c

p and x
c
q < xcp < x∗.

Proof. For the proof recall that x∗ and p∗ are the first-best technology and price

levels as defined by the solution of (3) and (4). In a price regime with commitment, the

government’s optimal policy is

pc = argmax
p
{−h[1− F (p)][1− x(p)] +

Z 1

p

θf(θ)dθ − I(x(p))}

where the function x(p) is obtained from the innovator’s R&D best-response (recall that

π = (1− F (p))px)

p(1− F (p))− I 0(x) = 0 (14)

Unless x∗ = 1, it is clear from looking at (4) and (14) that since x(p∗) < x∗ the government

will choose pc > h(1− xcp) > h(1− x∗) in order to bring xcp ≡ x(pc) closer to x∗.

On the other hand, the government’s optimal policy in a quantity regime with com-

mitment is

qc = argmax
q
{−hq +

Z 1

p(q,x)

θf(θ)dθ − I(x(q))}

where p(q, x) is the equilibrium price of permits as a function of q and of x, if it applies,

and x(q) is the innovator’s R&D response. Note that the innovator will never operate in

the "rationing (or perfect substitute) zone" for any allocation q because that would only

increase R&D costs without altering ex-post profits (π). This implies that equilibrium

price p(q, x) is given by

1− F (p(q, x)) =
q

1− x
(15)

and therefore
∂p(q, x)

∂x
= − 1− F

(1− x)f
< 0 (16)

In addition, the innovator’s R&D best-response x(q) can be obtained from the first-order

condition

p(·)(1− F (p(·)) + x[1− F − p(·)f ]∂p(·)
∂x
− I 0(x) = 0 (17)

where p(·) = p(q, x). Denote by xcq ≡ x(qc) the solution of (17).

Rather than computing pc and qc and then comparing W c
p and W c

q , I proceed dif-

ferently. The second term in (17) is negative, so if the government wants to induce

with the quantity instrument the same amount of R&D brought forward by the price

instrument at its optimum level, i.e., x(q) = xcp, it must set q such that p(q, x) > pc
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since d[p(1 − F (p)]/dp > 0. But the welfare gain of doing so is negative (despite lower

pollution) since pc > h(1− xcp) and hence

∂

∂p

µ
−h(1− F (p))(1− x) +

Z 1

p

θf(θ)dθ

¶
= h(1− x)f(p)− pf(p) < 0

for all p ≥ h(1−xcp). Using similar arguments, it can be shown that p(qc, xcq) > h(1−xcq).
If the government wants now to induce with the price instrument the same amount of

R&D brought forward by the quantity instrument at its optimum level, i.e., x(p) = xcq, it

must set p below p(qc, xcq) with the corresponding welfare gain (note that the resulting p

would still be above h(1−xcq)). The price instrument can replicate the R&D outcome of

the quantity instrument at a gain but not vice versa. It must then hold that W c
p > W c

q

and xcp > xcq.

The intuition for this results is nicely captured by expression (17). The quantity

regime gives the innovator, through his choice of x, some flexibility to set the equilib-

rium price of permits and the total amount of output. This flexibility is a cost for the

government who must depart even further from the first-best. And because of this same

flexibility, the innovator’s rents are necessarily higher under quantities. I present next

some are other interesting results that are hard to communicate in closed-form solutions.

4.2 Additional (numerical) results comparing instruments

Table 1 shows some additional results using simple functional forms: F uniform and

I(x) = cx/(1 − x). I also set h = 1/2 and let c vary from zero to 1/4, when it is

optimal to carry no R&D. Neglect the last column for a moment (we will come back

to it in the next section). Recall that "n" stands for commitment and "nc" for lack of

commitment. The first block (h = 0.5 and c = 0) shows how the performance of taxes

vary widely depending on whether the government can credibly commit or not. Permits,

on the other hand, face (almost) no commitment problems at the "top", i.e., when the

new technology is pollution-free or nearly so. In this particular example the government

does not want to issue any permits both ex-ante and ex-post.

The second block (h = 0.5 and c = 0.02) still falls in the area of "drastic" innovations

in the sense that the technology developed under the quantity regime is above xc, the

critical level above which the innovator is (partially) protected from expropriation, i.e.,

cannot be forced ex-post to diffuse its technology to the socially optimal level. It is

also interesting to observe that commitment is detrimental for both the government
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and the innovator in a quantity regime with drastic innovations. In this particular case

the government would not like to commit ex-ante but let the firm innovate first and

issue permits later. When innovations are drastic the innovator and the regulator know

that the latter will react with a very low issuance of permits, which is precisely what

encourages the innovator to develop those drastic technologies. The government does

not want to commit to such low issuance of permits ex-ante because it will not induce

as near the amount of innovation it does when the government moves ex-post. In fact,

if the government commits to q = 0.154 permits in period 1, the innovator develops an

even lower technology, x = 0.700.

Numbers in blocks 1 and 2 also illustrate how ambiguous the welfare ranking in the

absence of commitment can be. Quantities perform better when R&D costs justify the

development of very clean technologies but prices perform better when R&D costs are

relatively higher.

The third block (h = 0.5 and c = 0.074) marks the exact point at which two solutions

are possible in a quantity regime without commitment. The innovator is indifferent

between the two solutions (see innovator’s rents) but the government is not; it strictly

prefer the first solution, the one with the better innovation. In the first solution the

innovator develops a technology that is above xc (in this example xc = 0.414), preventing

the government from ex-post expropriation in the sense of Figure 1 (i.e., issuing qr instead

of q∗). Alternatively, in the second solution the innovator develops, at a lower cost, a

lower technology that is below xc and rationally anticipates the government will issue

q∗ < qr in period 2. This second solution involves less R&D but also lower rents ex-post.

Note that in a quantity regime without commitment we will never observe technologies

in the range of (1/3, 1/2), that is, x > 1/2 if c < 0.074 and x < 1/3 if c > 0.074. This

technology discontinuity is absent in the price regime.

To complete the table, the fourth and fifth blocks (h = 0.5 and c = 0.15 and h = 0.5

and c = 0.25) correspond to cases of modest and no innovation respectively.

5 A hybrid instrument

So far we have assumed that the government must pick a single instrument, either prices

of quantities. The first in proposing to combine prices and quantities were Roberts and

Spence (1976) in the context of asymmetric information. Here however, the combina-

tion of taxes and permits provides no gain: taxes dominate permits under commitment

and nullify them in its absence. Maintaining the assumption that the government can
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only target polluting sources, in this section I explore the welfare gain from adding a

third instrument –a subsidy to polluting sources adopting the new technology– to be

combined with either the tax or the permits. Let s be the subsidy per unit of reduction

paid to an adopting firm; thus, a firm adopting technology x gets a total subsidy of sx

(the government can just announce this latter). At the end of the section I relax the

assumption that the government perfectly monitors who is adopting the new technology.

5.1 Prices and subsidies

Regardless of whether the government can commit or not to its policy, after observing

tax p, subsidy s and technology x, the innovator licenses his technology at a price slightly

below

px+ sx = (p+ s)x

which implies

Proposition 4 Subsidies add nothing to prices.

Taxes and subsidies are perfect substitutes from a regulatory point of view.

5.2 Quantities and subsidies

The government combines q permits with a subsidy s. To fix ideas, consider first the

case in which the government can commit to its policy design q and s.

Proposition 5 The government can implement the first-best p∗ and x∗ with the following

policy design

qh = q∗ = [1− F (p∗)](1− x∗)

sh =
1− F (p∗)

f(p∗)
x∗

Proof. All we need for the proof is to show that the above policy design induces the

innovator to develop technology x∗. As with pure quantities, the innovator will never

operate in the "rationing zone", so the equilibrium prices of permits p(q, x) is given by

(15). The innovator sells his technology x for p(q, x)x+ sx, then his (ex-ante) problem is

max
x

π(x; q, s)− I(x)
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where π(x; q, s) = [p(q, x)+ s]x[1−F (p(q, x)]. Replacing sh and ∂p/∂x, as given by (16),

into the innovator’s first-order condition we obtain the first-order condition (4).

Quantities and subsidies complement perfectly well. While quantities are aimed for

static efficiency (for any given technology level), the subsidy plays the dual role of provid-

ing innovation rents and diffusion incentives. For instance, if R&D is costless, the inno-

vator will anyway develop the pollution-free technology but it is the subsidy s = 1/f(0)

that generates its full diffusion. Conversely, if R&D costs call for more modest technolo-

gies (i.e., x < xc), the subsidy plays no diffusion role (because the innovator is in the

"capacity constrained" zone) but it does stimulate the innovator to develop a cleaner

technology.

It is interesting to contrast this hybrid design with the first-best "permit and option"

approach proposed by Laffont and Tirole (1996b), who only allow for pollution-free de-

velopments (with a probability increasing in the amount of R&D).19 In their mechanism,

the government sells at date 1 securities to polluting firms at some price v. The holder

of such security is offered the following choice for date 2, which the government commits

to: either she exercises an option to purchase a pollution permit at price p0 −∆ (where

p0 is the first-best price in the absence of innovation) or she redeems the security to the

government and receives ∆ for it. As the probability of developing the free-pollution

technology goes to one, v becomes a subsidy equal to the size of the welfare gain from

the innovation. In that sense there is a close connection with the hybrid mechanism.

The hybrid policy raises other questions. One is about government’s budget. Even

if pollution permits are auctioned off, the collected revenues are not enough to cover for

the subsidy expenditures for very clean technologies (note that if x∗ = xc, then p∗ = sh).

The last column of Table 1 shows some numbers. Closely related to the above is the

question about the time consistency of the hybrid instrument and more generally about

the form of the hybrid policy in the absence of commitment. Since the hybrid policy is

ex-post socially optimal, in principle the government would not be tempted to change it

ex-post as long as subsidies constitute lump sum transfers. But if there is an arbitrarily

small but positive cost of public funds, the government would like to reduce the subsidy

ex-post: eliminate it when x ≤ xc and bring it down to the level that just induces full

diffusion when x > xc. Anticipating this commitment problem, the innovator will not

invest as much in R&D. The good news is that for pollution-free technologies (or nearly

so) the government does not (or barely does) adjust the subsidy; retaining the R&D

19They also consider a positive shadow cost of public funds.
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incentives at the top.

5.3 Imperfect monitoring

Subsidies are sometimes criticized in that they may fail to reach the right individuals.

Suppose the government cannot exactly tell whether a firm’s pollution reduction was the

result of the adoption the new technology –in which case the firm is entitled to the

subsidy– or a cease in operations (or internal abatement at cost θ using conventional

technologies). Let φ be the probability the government can tell whether a firm is legiti-

mately entitled to receive the subsidy or not. If s is the subsidy (per unit of reduction)

announced at date 1 (together with the allocation q) and p is the equilibrium price of

permits, in equilibrium we will have that firms with valuation θ ≥ p + (1 − φ)s are

adopting the new technology and firms with valuation θ < p+(1−φ)s are shutting down
operations and claiming the subsidy. Only a fraction 1− φ of these latter firms end up

receiving the subsidy (there is no penalty fee for dishonest behavior).

The government’s problem is now to choose q and s so as to solve

max
q,s
{−hq +

Z 1

p+(1−φ)s
θf(θ)dθ − I(x(q, s))}

where p is the equilibrium price of permits and given by (the innovator has not abandoned

the "capacity constrained" zone)

p(q, x, s, φ) = F−1(1− q/(1− x))− (1− φ)s

When φ is not too low, the government can still implement the first-best; it allocates q∗

permits and moves the subsidy upward to account for imperfect monitoring

shim =
1

φ

1− F (p∗)

f(p∗)
x∗

Since the solution is efficient, p+ (1− φ)s = h(1− x∗). Furthermore, for this solution to

be valid, it must hold that p ≥ 0 or

φ

1− φ
≥ 1− F (p∗)

p∗f(p∗)
x∗ (18)

The larger the subsidy the higher the effort the government must undertake to prevent

cheating. If (18) does not hold, the government adjusts both the subsidy s and q.
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To the extend that φ is not to low, imperfect monitoring does not introduce distor-

tions. That can change if imperfect information is model in such a way that low-valuation

firms need to do some costly adjustment to hide behind higher-valuation ones; for ex-

ample, all firms need to emit 1 − x to be considered for the subsidy. One possibility

to deal with this distortion is to think in a mechanism where the regulator can allocate

both permits and subsidies simultaneously. At the end the mechanism may resemble the

auction mechanism in Montero (2008).

6 Uncertainty

So far we have assumed that the R&D process is fully deterministic, which is not entirely

realistic. Suppose now that at private cost I incurred at date 1 the innovator develops

a technology x which is distributed according to the cumulative distribution function

G(x|I), with density g(x|I). I assume that higher investment I makes the development
of a cleaner technology (i.e., higher x) more likely in the sense of first-order stochastic

dominance: ∂G(x|I)/∂I ≤ 0. The government knows function G(x|I) but does not ob-
serve investment I; thus, even if feasible, it cannot write a contract with the innovator

on I. Uncertainty introduces new challenges to the government because the more uncer-

tainty the R&D process is the less likely the government wants to commit ex-ante to a

rigid policy whether it is based on prices, quantities or a combination of quantities and

subsidies.

6.1 First-best

The first best is given by the ex-post policy function p∗(x) = h(1 − x) and the ex-ante

investment

I∗ = argmax
I

E [W (I|p∗(x))] =
Z 1

0

½
−h[1− F (p∗(x))](1− x) +

Z 1

p∗(x)

θf(θ)dθ

¾
g(x|I)dx−I

Integrating by parts, we obtain that the socially optimal amount of investment solvesZ 1

0

−h[1− F (p∗(x))]
∂G(x|I)

∂I
dx− 1 = 0

which has the same interpretation of (4).
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6.2 Prices vs quantities

The introduction of uncertainty does not change much of the trade-off in the choice of

prices and quantities in the absence of commitment. If the government does not want

to (or cannot) commit, we know that ex-post social optimum can be implemented with

either prices or quantities to the extent that x ≤ x̂; if x > x̂, the optimal quantity

response is qr(x) < q∗(x). Because of the latter inefficiency, investment will be higher

under quantities. In fact, the amount of investment I in any policy regime is given by

−
Z 1

0

π0k(x)
∂G(x|I)

∂I
dx− 1 = 0

where πk(x) = p(x)x[1−F (p(x))] are the innovator’s rents as a function of the technology
developed under policy k = p, q and p(x) is either the tax or the equilibrium price of

permits. It is clear from the from the ex-post analysis of Section 3 that π0p(x) = π0q(x)

for x ≤ x̂ and π0p(x) < π0q(x) for x ≥ x̂. Note that π0p(x) becomes negative for higher

values of x,20 so eventually we can have a corner with Incp = 0. We can then establish

Proposition 6 Incp < Incq < I∗.

The proof is in the Appendix. Note that under deterministic R&D there may be cases

in which the innovator invests beyond R&D first-best levels. That never happens here

because the innovator does not control the outcome of the innovation.

We could extend this discussion to the case in which the government would like to

commit –provided it has the ability to– to a rigid policy ex-ante; perhaps, because

uncertainty is not that large. Proposition 3 readily extends to the case of uncertainty.

6.3 Hybrid instrument

As in the certainty case, we want to explore whether the combination of permits and

subsidies can implement the first-best. We want to find ex-post price and subsidy func-

tions that can do both: be efficient ex-post and provide first-best investment incentives

20π0p(x) < 0 for values of x > x̃, where 0 < x̃ < 1 and solves

1− F (p∗(x))

p∗(x)f(p∗(x))
= − x

1− 2x
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ex-ante. For the latter, we need the ex-post functions be such that

π0(x) = h[1− F (h(1− x))]

for all x. One policy candidate that is the ex-post efficient combination of permits and

subsidies that generate the following rents for the innovator

π(x) =

(
p∗(x)x[1− F (p∗(x))] if x ≤ x̂

[p∗(x) + s(x)]x[1− F (p∗(x))] if x > x̂

where

s(x) =
1− F (h(1− x))

f(h(1− x))
x− h(1− x)

Note that s(x̂) = 0. Unfortunately, this ex-post efficient policy can generate too many

rents, leading to too much investment. It remains to be investigated what is the optimal

mechanism that can be designed assuming that the policy instruments are exclusively

aimed at polluting sources (this is work in progress).

7 Conclusions

I conclude by emphasizing the advantage of permits combined with subsidies over taxes.

In the case of drastic innovations (i.e., pollution-free innovations or nearly so), the com-

bination of permits and subsidies allow the regulator to implement the social optimum

regardless of its ability to commit to its original policy design. Taxes on the other hand

do not perform as well –not bad if the government can commit– because they work

too good ex-post. In order to prevent the government to run large deficits as a result

of the subsidies permits should be auctioned off. In the case of moderate innovations, a

government that can commit to its policy design can still implement the social optimum

with a combination of (auctioned) permits and subsidies, most likely running a surplus.

If the government cannot commit (because subsidies are not pure transfers), it makes no

difference whether to use prices or quantities.
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Table 1. Policy performance for different levels of R&D costs (h = 0.5)

first-best permits--c permits--nc
permits--nc 
(2nd sol.) taxes--c taxes--nc

permits & 
subsidy--c

c=0
innovation x 1.000 1.000 1.000 1.000 0.577 1.000
pollution q 0.000 0.000 0.000 0.000 0.333 0.000
price/tax p 0.000 0.500 0.500 0.000 0.211 0.000
subsidy s 1.000
innovator's rent π 0.000 0.250 0.250 0.000 0.096 1.000
welfare W 0.500 0.375 0.375 0.500 0.311 0.500
govt. surplus -1.000

c=0.02
innovation x 0.789 0.621 0.734 0.672 0.483 0.789
pollution q 0.189 0.212 0.154 0.246 0.383 0.189
price/tax p 0.106 0.441 0.423 0.248 0.258 0.106
subsidy s 0.705
innovator's rent π 0.000 0.120 0.124 0.084 0.074 0.497
welfare W 0.325 0.264 0.279 0.305 0.256 0.325
govt. surplus -0.477

c=0.074
innovation x 0.565 0.376 0.500 0.333 0.423 0.333 0.565
pollution q 0.341 0.360 0.333 0.444 0.383 0.444 0.341
price/tax p 0.218 0.423 0.333 0.333 0.335 0.333 0.218
subsidy s 0.442
innovator's rent π 0.000 0.047 0.037 0.037 0.040 0.037 0.195
welfare W 0.210 0.186 0.204 0.185 0.198 0.185 0.210
govt. surplus -0.121

c=0.15
innovation x 0.328 0.191 0.183 0.212 0.183 0.328
pollution q 0.446 0.455 0.483 0.465 0.483 0.446
price/tax p 0.336 0.437 0.408 0.410 0.408 0.336
subsidy s 0.218
innovator's rent π 0.000 0.012 0.011 0.011 0.011 0.047
welfare W 0.147 0.141 0.141 0.143 0.141 0.147
govt. surplus 0.103

c=0.25
innovation x 0.000 0.000 0.000 0.000 0.000 0.000
pollution q 0.500 0.500 0.500 0.500 0.500 0.500
price/tax p 0.500 0.500 0.500 0.500 0.500 0.500
subsidy s 0.000
innovator's rent π 0.000 0.000 0.000 0.000 0.000 0.000
welfare W 0.125 0.125 0.125 0.125 0.125 0.125
govt. surplus 0.250


