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Abstract

We defend the forecasting performance of the FOMC from the recent criticism of Christina

and David Romer (2008). Our argument is that the FOMC forecasts a worst-case scenario that

it uses to design robust decisions that will work well enough despite possible misspecification of

its model. Our interpretation of the FOMC as reporting forecasts designed to rationalise a robust

decision rule can explain all the findings of Romer and Romer, including the pattern of differences

between FOMC forecasts and forecasts published by the staff of the Federal Reserve System in

the Greenbook.
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1 Introduction

A recent paper by Romer and Romer (2008) provocatively questions how much value the Federal

Reserve Open Market Committee (FOMC) adds to the monetary policymaking process in the US.

Their criticism is derived from an econometric comparison of the accuracy of forecasts published by

the FOMC in the Monetary Policy Report and forecasts published by the staff of the Federal Reserve

System in the Greenbook. The staff forecasts are available to FOMC members at the time they

produce their own forecasts so, together with presumed superior knowledge of their own preferences,

the information advantage lies firmly with the FOMC. Despite this, Romer and Romer (2008) find

that:

1. Optimal predictions of inflation and unemployment essentially put zero weight on FOMC fore-

casts and unit weight on staff forecasts.

2. Staff forecasts have smaller mean squared forecast errors than FOMC forecasts.

3. There is statistical and narrative evidence to suggest that differences between FOMC and staff

forecasts affect actual policy outcomes.

Romer and Romer (2008) use these findings to paint a bleak picture of the FOMC as a policymaker

that is “not using the information in the staff forecasts effectively” and that “may indeed act on

information that is of little or negative value”. In their opinion the evidence is sufficiently damning

to warrant a radical restructuring of the role of the FOMC in monetary policymaking:

“a more effective division of labor within the Federal Reserve System might be for the

staff to present policymakers with policy options and related forecast outcomes, and for

policymakers to take those forecasts as given. With this division, the role of the FOMC

would be to choose among the suggested alternatives, not to debate the likely outcome

of a given policy.”

The criticisms made by Romer and Romer (2008) are understandable in a world where private

agents, policymakers, and researchers have common knowledge of the true probability densities gov-

erning economic outcomes. In such a context it is difficult to justify the apparently poor performance

of FOMC forecasts. Our defence therefore rests on breaking the single probability density assump-

tion by allowing the FOMC to doubt the specification of the model used by the staff to produce

its forecasts.1 In our view of policymaking, the staff uses state-of-the-art but imperfect economic

1A very incomplete list of examples drawn from the growing body of work in macroeconomics that incorporates

concerns about robustness of decisions to model misspecifications includes Barlevy (2009), Benigno and Nisticò (2009),

Billi (2009), Brock and Durlauf (2005), Brock, Durlauf, and Rondina (2008), Brock, Durlauf, Nason, and Rondina
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models to produce the best possible forecasts, but these forecasts are not taken at face value by the

members of the FOMC. Instead, the FOMC suspects that the staff’s model is imperfect and wants

policies that are robust to specification errors.

The technicalities of how to design robust decisions are laid down in detail in the robust control

literature. The idea is to construct a decision rule that satisfies bounds on expected losses under

alternatives to an approximating model by paying special attention to events that give higher ex-

pected loss. To achieve this, the policymaker “exponentially twists” what in our application are the

forecasting densities of the staff and puts larger probabilities on outcomes that involve inflation and

unemployment being away from their targets. Twisting the staff’s forecasting probability densities

in this way results in worst-case scenarios, differing in their severity according to how large are the

specification doubts the policymakers wishes to guard against. These worst-case scenarios are a

key input to the robust policymaking decision process, because by responding optimally to them a

policy maker acquires acceptable performance of its loss function evaluated under each of a large

set of possible models, not just under the imperfect staff model.2 Our defence of the FOMC argues

that the forecasts it publishes are exactly these worst-case scenarios and should not be interpreted

as forecasts of what the FOMC necessarily thinks is going to happen. They are instead worst-case

scenarios used to construct robust decisions.

Our equating of FOMC forecasts with worst-case scenarios immediately causes us to question the

appropriateness of the forecasting horse race run by Romer and Romer (2008). In our interpretation,

the forecasts of the staff and the FOMC are incomparable, like apples and pears, because only the

staff forecast can be fairly compared to actual outcomes. The FOMC forecast is a worst-case scenario

that by construction is likely to be an inferior predictor of future events if, as the Fed hopes, the

staff’s approximating statistical model actually does govern the data. In this light, it is not surprising

that Romer and Romer (2008) found that the staff forecast outperforms that of the FOMC. It is what

we would expect if the division of labour within the Federal Reserve System is as we have described.

Furthermore, if the FOMC undertakes robust control, then the worst-case scenarios that it publishes

will definitely influence the policy actions actually taken; it is precisely when the worst-case scenario

(2007), Caballero and Krishnamurthy (2008), Caballero and Kurlat (2009), Dennis, Leitemo and Söderström (2009a,

2009b), Epstein and Schneider (2008), Giannoni (2002, 2007), Kasa (2002), Leitemo and Söderström (2008a, 2008b),

Lewis and Whiteman (2006), Luo and Young (2009), Onatski and Stock (2002), Tetlow (2007), Tetlow and Ironside

(2005), Tetlow and von zur Muehlen (2001, 2004, 2009), and Uhlig (2009). See Kasa (2001, 2006) for work focusing on

robust filtering and prediction. All of these papers feature some version of max-min expected utility theory, although

they differ in terms of the details of how misspecifications are formalised. See Woodford (2006,2009) for an analysis

in which a monetary policy maker trusts its own model but not its knowledge of private agents’ expectations. In

Woodford’s model, equilibrium prices do not reveal private agents’ beliefs to the Ramsey planner, while in the model

of Karantounias (2009) they do, and that affects the robust policy design problem.
2See the ex post Bayesian interpretation of robust decision rules advanced by Hansen and Sargent (2008, chapters

1 and 7).
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differs from the staff forecast that robust policy calls for the FOMC to take preemptive policy steps.

The finding of Romer and Romer (2008) that forecast differences predict monetary policy actions is,

therefore, completely compatible with careful application of robust control techniques by the FOMC.

In our view, the FOMC may be setting policy rationally to guard against model misspecification by

responding to worst-case scenarios rather than reacting to “information that has little or negative

value”. Our case defending the FOMC rests on whether specification doubts of this type really can

quantitatively explain the differences in forecasts published by the FOMC and the staff.

To make our defence more precise, we demonstrate how a concern about robustness can explain

the results of Romer and Romer (2008) in a simple model of US monetary policy inspired by Primiceri

(2006). In our model, the FOMC faces a joint estimation and optimisation problem as it attempts to

set appropriate policy whilst simultaneously keeping track of a time-varying NAIRU. Allowing the

policymaker to have specification doubts puts our model in the general class of hidden Markov models

discussed by Hansen and Sargent (2007) and Hansen et al. (2009). Accordingly, our policymaker

faces a policy design problem in which it doubts not only its model per se but also how it uses its

potentially misspecified model to construct a Kalman filter to infer the NAIRU. Once the model has

been set up, it is a simple matter to apply the techniques in Hansen et al. (2009) to show that the

evidence used by Romer and Romer (2008) to criticise the FOMC is explained and negated by the

assumption that the FOMC follows robust policy and publishes worst-case scenarios that are not

comparable to the forecasts published by the staff.

The idea that the FOMC twists staff forecasts in the process of calculating robust policies is in

itself sufficient to explain the Romer and Romer (2008) findings. However, for our defence of the

FOMC to be convincing, it should be that the forecasts published by the FOMC are systematically

biased towards a worst-case scenario in comparison to the staff forecasts. Romer and Romer (2008)

found that FOMC forecasts were on average higher than staff forecasts for inflation and lower than

staff forecasts for unemployment. At first sight, the optimistic bias in unemployment forecasts ap-

pears at odds with our claim that the FOMC forecasts are worst-case scenarios. However, what

constitutes a worst-case scenario is dependent on the staff’s approximating model as well as on the

policy maker’s objective function and involves complicated nonlinear present value calculations. In

our simple model, we find that for plausible regions of the parameter space the worst-case scenario

biases the inflation forecast upwards away from its target and the unemployment forecast downwards

towards zero. The intuition for this lies in the dynamics of the model and the way in which the com-

bination of high inflation and low unemployment at the forecast horizon considered by the FOMC

is a strong signal of persistently bad outcomes into the more distant future. We therefore argue

that seemingly “pessimistic” inflation forecasts and “optimistic” unemployment forecasts can still be

rationalised as a description of the worst-case scenario. Furthermore, the region of the parameter

space where this happens is consistent with the FOMC being more concerned about model misspec-
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ifications that lead to poor quality inferences about the current state of the economy rather than

misspecifications that lead to poor understanding of the state transition dynamics of the system.

According to Bullard (2009), it is precisely the concern for accurate tracking of the economy - not a

concern for accurate forecasting - that is uppermost in the minds of FOMC members.

The paper is organised as follows. Section 2 describes a simple model of monetary policymaking

and shows how it maps into the more general class of hidden Markov models analysed by Hansen

et al. (2009). After Section 3 describes the policy maker’s filtering problem, the robust policy is

derived in Section 4 and a calibrated numerical example is constructed in Section 5 to show how

the findings of Romer and Romer (2008) can be explained as an artefact of the FOMC exhibiting a

preference for robustness. Section 6 demonstrates how our story can also justify the relative degree of

optimism and pessimism seen in actual FOMC and staff forecasts once the FOMC is assumed to be

more concerned about tracking hidden states than dynamics of the system given those hidden states.

A final Section 7 concludes with a discussion of the narrative evidence in support of a division of

labour in the Federal Reserve System whereby FOMC forecasts become twists of the staff forecasts.

2 A Simple Model of Monetary Policymaking

The precisemodus operandi of monetary policymakers is never completely clear and has to be inferred

from the speeches and decisions made by central bankers. Nevertheless, a consensus has emerged

that modern monetary policymaking incorporates three key beliefs. First, there is a natural rate of

unemployment at which inflation is stable. Second, there is a transmission mechanism through which

monetary policy actions affect the economy. Third, monetary policymakers face trade-offs. Indeed,

the Financial Times (“King backs job losses to curb inflation”) imputed this type of model to Bank

of England Governor Mervyn King on Tuesday April 1, 2008. The FT wrote:

“The economy needs to slow to the point where there is spare capacity in order to bring

inflation under control, Mervyn King, the Bank of England governor, said on Monday.

... Mr King’s recognition that the Bank’s monetary stance was designed to slow the

economy to reinforce its monetary policy committee’s inflation-fighting credentials came

at an awkward time, he conceded, describing the ‘difficult balancing act’.”

The simple model of monetary policymaking we present is designed to capture these features

in a parsimonious way. The model shares much of the structure proposed by Primiceri (2006) but

features an unobserved non-accelerating inflation rate of unemployment (NAIRU) that confronts the

monetary policymaker with a joint estimation and decision problem. We assume that the policymaker

has an approximating model in which the NAIRU u∗t evolves as:

(u∗t+1 − u∗∗) = δ(u∗t − u∗∗) + ηt+1,
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where ηt+1 is an i.i.d. mean zero Gaussian shock and
[
u∗0 u

∗

−1

]
′ ∼ N (µ(u∗),Σ(u∗)). u∗∗ is the steady-

state value of the NAIRU. The approximating model further describes inflation πt and unemployment

Ut as related to the NAIRU and a policy variable Vt by:

πt+1 = πt + γ0(Ut − u∗t ) + γ1(Ut−1 − u∗t−1) + επt+1,
(Ut+1 − u∗t+1) = ρ1(Ut − u∗t ) + ρ2(Ut−1 − u∗t−1) + Vt + εUt+1,

with επt+1 and εUt+1 i.i.d. mean zero Gaussian shocks to inflation and unemployment, respectively.

The monetary policymaker’s objective is the expected value of:

−.5
∞∑

t=0

βt
(
(πt − π∗)2 + λ(Ut − ku∗t )2 + φ(Vt − Vt−1)2

)

where λ is the weight placed on unemployment and k ∈ (0, 1) controls whether the policymaker
dislikes unemployment or the gap between unemployment and the NAIRU. The parameter φmeasures

the preference for policy smoothing. The monetary policymaker’s signal vector at time t+ 1 is:

[
π̃t+1

Ũt+1

]

=

[
πt+1

Ut+1

]

+

[
ϑπt+1

ϑUt+1

]

,

i.e., it observes noisy measures of inflation and unemployment. To map the model into the hidden

Markov models of Hansen et al. (2009), let the observed state vector yt, the unobserved state vector

zt, the control at, the shock vector wt, and the signal vector st be given by:

yt =

[
1

Vt−1

]

, zt =






πt

Ut

Ut−1 − u∗t−1
u∗t





, at = Vt, wt =






ηt

επt

εUt

ϑπt

ϑUt






, st =

[
π̃t

Ũt

]

,

and write the matrices in the laws of motion and signal equation:

yt+1 = A11yt +A12zt +B1at +C1wt+1,

zt+1 = A21yt +A22zt +B2at +C2wt+1,

st+1 = D1yt +D2zt +Hat +Gwt+1 (1)

as

A11 =

[
1 0

0 0

]

, A12 = 02×4, B1 =

[
0

1

]

, C1 = 02×5,
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A21 =






0 0

0 0

0 0

(1− δ)u∗∗ 0





, A22 =






1 γ0 γ1 −γ0
0 ρ1 ρ2 (δ − ρ1)
0 1 0 −1
0 0 0 δ





, B2 =






0

1

0

0





, C2 =






cπ

cU + cu∗

01×5

cu∗





,

D1 = 02×2, D2 =

[
1 γ0 γ1 −γ0
0 ρ1 ρ2 (δ − ρ1)

]

, H =

[
0

1

]

, G =

[
cπ + cπ̃

cU + cu∗ + cŨ

]

,

where cπ, cU , cu∗ , cπ̃, cŨ are indicator vectors that pick out the required elements of wt+1. Notice that

the matrices in the systematic parts of the signal equation are identical to those in the equation of

the unobserved state vector zt+1. The quadratic form in the Hansen et al. (2009) objective function:

−1
2

∞∑

t=0

βt






at

yt

zt






′ 




Q P1 P2

P ′1 R11 R12

P ′2 R21 R22











at

yt

zt






can be expressed as:

−1
2

∞∑

t=0

βt






Vt

1

Vt−1

πt

Ut

Ut−1 − u∗t−1
u∗t






′





φ 0 −φ 0 0 0 0

0 π∗2 0 −π∗ 0 0 0

−φ 0 φ 0 0 0 0

0 −π∗ 0 1 0 0 0

0 0 0 0 λ 0 −λk
0 0 0 0 0 0 0

0 0 0 0 −λk 0 λk2











Vt

1

Vt−1

πt

Ut

Ut−1 − u∗t−1
u∗t






.

3 Filtering

Here is how the policymaker would infer the unobserved NAIRU if it had full confidence in the

specification of its approximating model. The policymaker observes yt, has a prior distribution

z0 ∼ N (ž0,∆0) over the initial values of the unobserved states, and observes a sequence of signals
{st+1}. With no concerns about model misspecification, the policymaker applies Bayes’ law directly
to the approximating model (1) to construct a sequence of posterior distributions zt ∼ N (žt,∆t)
for t ≥ 1, where žt = E(zt |yt, . . . , y0 ) and ∆t = E [(zt − žt)(zt − žt)′ |yt, . . . , y0 ] satisfy the recursive
linear system:

yt+1 = A11yt +A12žt +B1at +C1wt+1 +A12(zt − žt),
žt+1 = A21yt +A22žt +B2at +K2(∆t)Gwt+1 +K2(∆t)D2(žt − zt),
∆t+1 = C(∆t), (2)

7



and are sufficient statistics for the history of signals. K2(∆t) and ∆t satisfy the Kalman filtering

equations:

K2(∆) = (A22∆D
′

2 +C2G
′)(D2∆D

′

2 +GG
′)−1,

C(∆) ≡ A22∆A
′

22 +C2C
′

2 −K2(A22∆D′

2 +C2G
′)′, (3)

and the policymaker’s information set at t can be represented as (yt, žt,∆t).

4 Robust Policy and Worst-Case Scenarios

Now we allow the policymaker to doubt the specification of its approximating model. Hansen and

Sargent (2007) and Hansen et al. (2009) show how to compute a decision rule for at that is robust

to possible misspecifications of (i) the approximating model (1) defining the distribution of (yt+1

zt+1)
′ conditional on values of (yτ zτ )

′ for τ ≤ t, and (ii) the distribution of the unknown state zt

conditional on the history of signals sτ for τ ≤ t that comes from applying the ordinary Kalman

filter (2)-(3) to the approximating model. Following the steps in Hansen et al. (2009), we begin by

letting primes represent next period values to ease notation and noting that the law of motion for

(y, z, ž,∆) can be written in terms of the state variables (y, ž,∆) as:

y′ = A11y +A12ž +B1a+C1w
′ +A12(z − ž),

z′ = A21y +A22ž +B2a+C2w
′ +A22(z − ž),

ž′ = A21y +A22ž +B2a+K2(∆)Gw
′ +K2(∆)D2(ž − z),

∆′ = C(∆),

where w′ ∼ N (0, I) and z − ž ∼ N (0,∆).3 To represent misspecification in the dynamics of the

approximating model, the policymaker replaces the distributions of w′ and z − ž by distorted dis-

tributions w′ ∼ N (ṽ,Σ) and z − ž ∼ N (u,Γ) that potentially feed back on state variables. The
idea of the distorted distributions is to allow perturbations to the dynamics of the approximating

model that make it difficult for the policymaker to achieve its objectives. At this point, Hansen et

al. (2009) suggest deriving robust policy as the outcome of a two-player zero-sum game in which the

policymaker chooses an action a to maximise its objective whilst a fictitious agent chooses pertur-

bations w′ and z − ž to minimise that same objective. Hansen and Sargent (2007, p. 33) show that
a modified certainty equivalence principle holds in this setting, so instead of directly analysing the

full stochastic game it is sufficient to solve a deterministic game in which the policymaker chooses an

action a and the minimising agent chooses the mean distortions ṽ and u rather than the distortions

3Notice how the approximating model includes the law of motion for (ž,∆) as dictated by Bayes’ law.
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themselves.4 The appropriate law of motion for the deterministic game then has shocks replaced by

distorted means:

y′ = A11y +A12ž +B1a+C1ṽ +A12u,

z′ = A21y +A22ž +B2a+C2ṽ +A22u,

ž′ = A21y +A22ž +B2a+K2(∆)Gṽ +K2(∆)D2u,

∆′ = C(∆), (4)

where ṽ and u are treated as under the control of the minimising agent and allowed to feed back on

state variables (z, ž,∆). For a quadratic continuation value function W (y, ž,∆, z) and one-period

return function Ũ(y, ž, z − ž, a), the policymaker chooses an action a and accompanying mean dis-

tortions ṽ and u for the minimising agent by solving:5

max
a
min
u

[
Ũ(y, ž, z − ž, a) + θ2

u′∆−1u

2
+min

ṽ

(
βW (y′, ž′,∆′, z′) + θ1

ṽ′ṽ

2

)]
, (5)

where the optimisation is subject to the laws of motion (4) and the minimising agent faces penalties

θ1(ṽ′ṽ)/2 and θ2(u′∆−1u)/2 on its choices of ṽ and u.6 The penalties are on the entropy contributions

(ṽ′ṽ)/2 and (u′∆−1u)/2 created when the minimising agent distorts the means of w′ and z. The

4This is a consequence of the return function being quadratic, the transition law being linear, and distributions of

random shocks and the prior for z0 being Gaussian. The minimising decision player increases shock covariance matrices

as well as means, but the certainty equivalence result allows us to compute the mean distortions by solving the purely

deterministic game. The omitted stochastic terms affect constants in the value functions but not decision rules.
5This is game I of Hansen et. al. (2009), which corresponds to recursions (17)-(18) of Hansen and Sargent (2007).

These pertain to a situation in which the decision maker conditions continuation values on hidden state variables.
6The continuation value function W has form:

W (y, ž,∆, z) = −
1

2






y

z

ž






′

Ω(∆)






y

z

ž




− ω,

and is computed as the fixed-point of:

W (y, ž,∆, z) = U(y, z, a) + min
v

{
βW (y′, ž′,∆′

, z
′) + θ1

v′v

2

}
,

where ′s denote next period values and the law of motion is modified in the following way to condition on z:





y′

z′

ž′




 =






A11 A12 0

A21 A22 0

A21 K2(∆)D2 A22 −K2(∆)D2











y

z

ž




−






B1

B2

B2




F (∆)

[
y

ž

]

+






C1

C2

K2(∆)G




 v,

together with:

∆∗ = C(∆).

Here v is the distorted mean of w′ conditioned on (y, z, ž,∆), while ṽ is the distorted mean of w′ emerging from (5)

conditional on (y, ž,∆).
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precise degree to which the minimising agent is constrained depends on the positive multipliers θ1

and θ2, with lower values giving more scope for the minimising agent to perturb the approximating

model. When θ1 = θ2 = +∞, the policy maker trusts his model. Then the minimizing values of u and
ṽ are both zero and problem (5) becomes an ordinary Bellman equation. The more the policymaker

distrusts its approximating model of the dynamics of the state, given the current state, the lower

is the value of θ1; the more the policy maker distrusts its current probability distribution over the

hidden state z, the lower is the value of θ2. We discuss the impact of the penalty parameters θ1 and

θ2 in the context of our model in section 6.

The maxmin problem faced by the policymaker can be solved using standard techniques from

linear-quadratic control. The solution is for the policymaker to follow a feedback rule:

a = −
[
Fy Fz

] [ y

ž

]

, (6)

and for the minimising agent to choose distorted conditional means according to:

ṽ = −
[
Ky Kz

] [ y

ž

]

, (7)

u = −
[
Ly Lz

] [ y

ž

]

. (8)

The feedback rule (6) prescribes a robust policy for a policymaker concerned that its approximat-

ing model may be misspecified. In this paper, we argue that the staff of the Federal Reserve system

produces Greenbook forecasts by using the approximating model of the economy. Of course, the

staff’s forecast have to assume some decision rule for the monetary authority. To make its forecast

under the approximating model, we endow the staff with the decision rule that the FOMC ultimately

chooses, namely, the robust decision rule. Under this interpretation, the staff produce forecasts

believing that decisions and outcomes are governed by the first-order vector stochastic difference

equation:






yt+1

zt+1

žt+1




 =






A11 −B1Fy A12 −B1Fz
A21 −B2Fy A22 −B2Fz
A21 −B2Fy K2(∆)D2 A22 −B2Fz −K2(∆)D2Lz











yt

zt

žt




+






C1

C2

K2(∆)G




wt+1,

(9)

and one-period ahead staff forecasts are:

E [y∗ |y, ž ] = (A11 −B1Fy)y + (A12 −B1Fz)ž,
E [z∗ |y, ž ] = (A21 −B2Fy)y + (A22 −B2Fz)ž. (10)
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Multi-period staff forecasts are obtained by iterating forward (10) and raising the appropriate tran-

sition matrices to the jth power. The j-period ahead staff forecasts under the approximating model

are denoted by:

E
[
yj |y, ž

]
= A11(j)y +A12(j)ž,

E
[
zj |y, ž

]
= A21(j)y +A22(j)ž. (11)

The staff forecasts represent the best objective assessment of how the states in the economy will

evolve, given the approximating model and the robust policy being followed by the policymaker.

However, they are not the forecasts currently exerting most influence on policy. To see those we

return to the policymaker’s minmax problem. The forecasts underpinning its solution are worst-

case scenarios that explicitly incorporate the actions of the minimising agent, as imagined by the

policymaker as a way to cope with specification doubts. The worst-case one-step ahead forecasts

that result are twisted by the actions (7)-(8) of the minimising agent:7

Ê [y∗ |y, ž ] = (A11 −B1Fy −C1Ky −A12Ly)y + (A12 −B1Fz −C2Kz −A12Lz)ž,
Ê [z∗ |y, ž ] = (A21 −B2Fy −K2(∆)GKy −K2(∆)D2Ly)y

+(A22 −B2Fz −K2(∆)GKz −K2(∆)D2Lz)ž,

with multi-step worst-case forecasts given by forward iteration as before:

Ê
[
yj |y, ž

]
= Â11(j)y + Â12(j)ž,

Ê
[
zj |y, ž

]
= Â21(j)y + Â22(j)ž. (12)

It is our contention that these worst-case forecasts are the ones published by the FOMC in the Mon-

etary Policy Report. The gap between (11) and (12) is our theory of the differential prediction errors

analysed by Romer and Romer (2008). Whilst the approximating model says that the conditional

expectations (11) are the best forecasts, the twisted forecasts given by (12) influence decisions in the

sense that the FOMC, as the maximising player in a two-player zero-sum game, plays a best response

to the twisted forecasts. The FOMC does this to protect itself against both misspecified dynamics

and a misspecified posterior probability distribution over hidden states.

7 In addition to twisting forecast means, the minimizing agent also increases conditional variances as described in

footnote 4. That means that worst-case ‘fan charts’ would be wider than those produced under the approximating

model. We do not pursue this observation about fan charts here because we think that to do so in an informative way

would require expanding the features about which there is uncertainty by treating the coefficients in our state space

model (1) as hidden state variables too.
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5 A Calibrated Example

Our defence of the FOMC relies on the ability of our model to rationalise the findings of Romer

and Romer (2008). In this section we present our arguments via a numerical example, although

qualitatively our defence does not really depend on specific parameter settings. The parameter

values for the numerical example are presented in Table 1, which with two exceptions are taken

from the OLS estimates in the third column of Table 1 in Primiceri (2006). The first exception is

that we set a lower value of δ and a higher value of cu so fluctuations in the NAIRU play less of a

role in determining unemployment.8 The second exception is that we set a lower k to induce the

policymaker to move unemployment away from its estimate of NAIRU. The parameters cπ̃ and cũ

calibrating measurement error volatilities have small values. We set the initial prior over u∗0, u
∗

−1 to

have a mean of 6, 6 and a covariance equal to the steady state implied by the Kalman filter. We

examine the model at first for θ1 = θ2 = 200. In section 6, we explore how aspects of our results

depend on our setting of the parameter θ1 governing fear of misspecified state transition dynamics

and parameter θ2 governing fear of a misspecified posterior distribution over hidden states.

γ0 −1.02 β 0.99 θ2 200

γ1 0.93 π∗ 2 cu∗
√
0.02

ρ1 1.756 k 0.2 cπ 1.04

ρ2 −0.779 λ 1 cu 1

δ 0.95 φ 475 cπ̃
√
0.1

u∗∗ 6 θ1 200 cũ
√
0.1

Table 1: Parameter values

The behaviour of the calibrated model is illustrated by a representative simulation in Figure 1.

The solid line in the first part of each panel is a simulated time path for inflation and unemployment,

so at t = 10 the economy is just exiting a recession with inflation low and unemployment high. The

solid and dotted lines in the second part of each panel are forecasts for t > 10 using information

available up to and including period t = 10. The solid lines, labelled ‘staff forecast’, are derived

under the approximating model (11) and predict rapid return of inflation and unemployment to their

steady-state values. The dotted lines, labelled ‘FOMC forecast’, are worst-case scenarios (12) in

which both inflation and unemployment overshoot and the return to steady state is prolonged and

oscillatory.

8The rationale for this will be discussed in footnote 10 of Section 6.
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Figure 1: Simulation of the model with θ1 = θ2 = 200; staff and FOMC forecasts at t = 10

We now use the numerical example to defend the FOMC against the criticisms made by Romer

and Romer (2008). In the introduction, we reported how three specific findings led them to their

conclusions, so to refute their claims we show that each finding is consistent with our interpretation

of FOMC forecasts as twists of the staff forecasts.

1. Optimal predictions of inflation and unemployment essentially put zero weight on FOMC fore-

casts and unit weight on staff forecasts.

The first finding of Romer and Romer (2008) follows immediately from our interpretation of

FOMC forecasts as forecasts under its worst-case model. In our model, the FOMC forecasts contain

no information over and above that in the staff forecasts, so by definition the optimal predictions

of inflation and unemployment under the approximating model should put zero weight on FOMC

forecasts and unit weight on staff forecasts. To make this more concrete, we replicate the econometric

analysis of Romer and Romer (2008) but with data simulated from our calibrated model. They

estimate a regression of the form Xt = a+ bSt+ cPt+ et, where Xt is inflation or unemployment and

St and Pt are the relevant FOMC and staff forecasts. We simulate the model for n = 68 periods and

consider FOMC and staff forecasts at the horizon of four periods ahead. Table 2 shows the results;

it is directly comparable to Table 1 in Romer and Romer (2008).
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Constant Staff forecast FOMC forecast R2

Inflation −0.83
(0.44)

1.22
(0.42)

−0.16
(0.24)

0.38

Unemployment 0.52
(1.28)

1.02
(0.45)

−0.15
(0.26)

0.17

Table 2: Role of staff and FOMC forecasts in predicting

actual values for simulated data with θ1 = θ2 = 200

As expected, the optimal predictions of inflation and unemployment put close to zero weight on

the FOMC forecast and close to unit weight on the staff forecast. In this particular simulation, there

is over-weighting of the staff forecast relative to the FOMC forecasts, a result also obtained and

stressed by Romer and Romer (2008). None of this is a cause for concern once FOMC forecasts are

interpreted as twisted staff forecasts.

2. Staff forecasts have smaller mean squared forecast errors than FOMC forecasts.

We can explain the second finding of Romer and Romer (2008) as an artefact of a misguided

attempt to run a horse race between two forecasts that answer different questions. In our model,

only the staff forecasts are designed to minimise forecast errors in a mean squared sense under the

approximating model - the FOMC forecasts come from a worst-case model used for planning purposes

that, by construction, will not minimise mean squared forecast errors under the approximating model.

With the two forecasts answering different questions, it is inappropriate to measure their performance

against a common mean squared error criterion that by definition favours the staff forecast, at least

if as we hope, the approximating model actually comes closer to governing the data. Calculations

using simulated data from our calibrated model confirm this; in a representative simulation the mean

squared errors of staff forecast are 3.36 for inflation and 2.80 for unemployment, which compare

favourably to the mean squared errors of 4.26 for inflation and 3.34 for unemployment made by

FOMC forecasts. Again, this should not be a cause for concern.

3. There is statistical and narrative evidence to suggest that differences between FOMC and staff

forecasts affect actual policy outcomes.

The statistical evidence that differences in forecasts affect policy decisions is based on the cor-

relation between forecast differences and the Romer and Romer (2004) measure of monetary policy

shocks. The main finding in Romer and Romer (2008) is that contractionary monetary policy shocks
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are associated with the FOMC inflation forecast being above that of the staff. We refute using this

finding to criticise the FOMC by pointing out that it obtains by construction in our model. The

problem lies in the way Romer and Romer (2004) estimate a series of monetary policy shocks by

regressing the intended federal funds rate on Greenbook forecasts to arrive at a “series for monetary

policy shocks that should be free of both endogenous and anticipatory actions”. The shock series that

results is purged of information in the staff forecast but there is no guarantee that it will be exoge-

nous with respect to the FOMC forecast. Quite the contrary, as robust policy expressly requires the

policymaker to take particular policy actions at times when worst-case forecasts differ from forecasts

from the approximating model. The ‘shocks’ identified by the Romer and Romer (2004) procedure

are then by construction correlated with the differences in forecasts. To see this mechanism in action

in our model, we apply the Romer and Romer (2004) procedure to simulated data and identify a

measure of monetary policy shocksMt that is orthogonal to the staff forecasts. We then follow Romer

and Romer (2008) by estimating a regression of the form Mt = a+ b(St − Pt) + et, where St − Pt is
the difference between FOMC and staff forecasts. The results appear in Table 3 in the same format

as those for actual data in Table 2 of Romer and Romer (2008).

Constant Inflation Unemployment R2

−0.07
(0.02)

0.023
(0.009)

0.08

−0.05
(0.02)

−0.030
(0.015)

0.06

Table 3: Role of forecast differences in predicting

monetary policy shocks for simulated data with θ1 = θ2 = 200

The difference between FOMC and staff forecasts correlates with monetary policy shocks in

simulated data as expected. The strongest finding is that monetary policy contractions are associated

with the FOMC inflation forecast being above that of the staff, which mirrors the results of Romer

and Romer (2008). It is worth stressing that this result is a misleading consequence of incorrect

identification of monetary policy shocks by the Romer and Romer (2004) procedure. If we identify

shocks by regressing policy actions on both staff and FOMC forecasts then we are unlikely to find a

significant correlation between shocks and forecast differences. For simulated data this is certainly

the case.

The narrative evidence presented by Romer and Romer (2008) centres on the transcripts of three

FOMC meetings at which policy actions appear to be rationalised by the differences between FOMC

and staff forecasts. At the meetings in July 1979 and February 1982 the FOMC inflation forecast
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was well above that of the staff, and it is argued that there was a substantial contractionary policy

shock. At the meeting in February 1991 the situation was reversed, with the FOMC inflation forecast

well below the staff’s and the argument being that there was a substantial expansionary shock. Even

putting aside the difficulty of correctly identifying policy shocks, it is not clear how much weight one

should put on the narrative evidence. For example, Romer and Romer (2008) quote Mr Mayo in

July 1979 as arguing that “Although the staff forecast is a reasonable one, I find myself a little more

pessimistic. I am concerned about both the likelihood of less real growth and more inflation" and Mr

Boehe as saying in February 1991 that “I think the staff forecast, while well thought out, is on the

rosy side ... I’d rather err on the side of too much stimulus at this point than too little". Whilst the

interpretation of narrative evidence such as this is debatable, we see both these quotes as consistent

with our view that the FOMC produces worst-case scenarios by twisting the staff forecasts.

6 Average Forecast Differences

The findings of Romer and Romer (2008) are consistent with our interpretation of FOMC forecasts

as worst-case scenarios that inform robust policy designed to confront specification doubts. As such,

we have already provided a full defence of the FOMC against their criticisms. We can go further

though, because our characterisation of policymaking has sharp predictions about the relationship

between FOMC and staff forecasts. In particular, the FOMC forecast should be systematically

biased towards the worst-case scenario. Romer and Romer (2008) report that the FOMC inflation

forecasts is on average 13 basis points above the corresponding staff forecast. For unemployment, the

FOMC forecast is on average 6 basis points below that of the staff. At first sight the combination

of pessimistic inflation forecasts and optimistic unemployment forecasts appears difficult to reconcile

with our idea of FOMC forecasts as worst-case scenarios. However, what constitutes a worst-case

scenario depends on the objectives and approximating model of the policymaker. A worst-case

scenario is dynamic and time-varying, so it is generally inappropriate to equate average forecast

difference with pessimism or optimism. Instead, we need to return to the model and calculate the

average forecast differences it implies at different horizons. We do this now and ask whether our

model can explain the differences in forecasts found by Romer and Romer (2008).

To calculate the average forecast differences at any horizon, it is sufficient to apply forecasting

equations (11) and (12) to the steady-state values of y, z, ž of the stochastic difference equation for

decisions and outcomes (9). It is a common feature of models with robust control that the policymaker

can become completely overwhelmed if they have too many doubts about the specification of their

model.9 In the language of Whittle (2002), there is ‘neurotic breakdown’ as specification doubts

9Technically, what happens if the θs are set low enough is that the min-max problem becomes ill-defined because

the minimising player has been granted so much power to harm the maximising player that the objective function gets

16



completely overwhelm the ability of the decision maker to choose. To see how much this affects our

calibrated model, Figure 2 documents the range of θ1 and θ2 values for which breakdown occurs and

finds problems if either of the entropy multipliers is too small. It is clear that any explanation of the

average forecast differences in Romer and Romer (2008) needs to avoid calibrations that are in the

breakdown region.10

1θ

2θ0 100 200 300 400 500
0
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1000

1500

2000

2500

Figure 2: Region of neurotic breakdown

The average difference between FOMC and staff inflation forecasts is shown in Figure 3 as a

function of θ1 and θ2. The rest of the calibration is as before. Forecast differences are shown via

a contour map so, for example, the 0.2 contour depicts the locus of θ1 and θ2 values for which

the four-period ahead inflation forecast of the FOMC is on average 20 basis points higher than

the corresponding staff forecast. According to the figure, the largest forecast differences occur near

the region of neurotic breakdown at the point where the policymaker has the largest permissible

specification doubts. Conversely, if θ1 and θ2 are large then the policymaker has a lot of confidence

in its approximating model and the difference between the worst-case scenario and the forecast from

the model is small. The contour map shows that FOMC inflation forecasts are on average higher

than staff inflation forecasts for any values of θ1 and θ2 outside the region of neurotic breakdown.

driven to −∞ under any policy that the maximising player can choose. Setting the θs that low amounts to asking for

robustness over a larger set of models than it is feasible to attain. See Hansen and Sargent (2008, chapter 8) for a

discussion of breakdown points.
10This requirement explains our decision in Section 5 to calibrate δ such that fluctuations in the NAIRU play less of a

role in determining unemployment. If δ is set such that the NAIRU has near unit root behaviour as in Primiceri (2006),

then the region of neurotic breakdown is very large and it is difficult for the model to generate noticeable differences in

FOMC and staff forecasts.
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This means it is easy to reconcile our model with the Romer and Romer (2008) finding of FOMC

inflation forecasts being on average 13 basis points higher than those of the staff.
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Figure 3: Average difference between FOMC and staff inflation forecasts four periods ahead

The average difference between FOMC and staff unemployment forecasts is shown in Figure 4.

This time the contour map is non-monotonic and whether the FOMC forecasts are higher or lower

than the staff forecasts depends on the values of θ1 and θ2. An early indication that this might

be the case was present in Figure 1 where the FOMC unemployment forecast first drops below and

then rises above the staff forecast. This is caused by the dynamic nature of the minmax problem

underpinning the worst-case scenario. In the simulated example, the initial low FOMC forecast of

unemployment is a valid description of the worst-case because it signals large fluctuations in inflation

and unemployment in the future. A similar mechanism drives the average forecast differences in the

model, so for some regions of the parameter space, the worst-case scenario for unemployment appears

to be ‘optimistic’ initially and then ‘pessimistic’. The non-monotonicity of the contour map means

we can rationalise the average optimism of the FOMC in unemployment forecasts with the average

pessimism of FOMC inflation forecasts. Values of θ1 = 76383 and θ2 = 238 give a match between

our model and the results of Romer and Romer (2008).
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Figure 4: Average difference between FOMC and staff unemployment forecasts four periods ahead

The need to tilt the calibration towards a large θ1 and a small θ2 helps identify the nature of

specification doubts held by the FOMC. A large value of θ1 in the minmax problem (5) implies that

the FOMC is not overly concerned with its ability to forecast the future state of the economy, provided

that it can accurately estimate the current state. The small value of θ2 means that the FOMC is

concerned about its ability to infer the current state of the economy. In the parlance of monetary

policymakers, this translates as the FOMC being more worried about tracking than forecasting. This

result resonates with the discussion by President James Bullard of the Federal Reserve Bank of St.

Louis (2009) on an earlier version of this paper. In it he claimed that “Forecasting is tracking ...

Most of the focus in policy discussion concerns today’s state vector ... Further out is normally slow

mean reversion ... Through experience, forecasters learned that the near random walk model works

best”.

7 Conclusions

The arguments in this paper amount to a spirited defence of the FOMC. Once we identify FOMC

forecasts as worst-case scenarios, there is no need to reorganise the division of labour within the

Federal Reserve System. In our story, policymakers do “use the information in the staff forecasts

effectively” and do not “act on information that is of little or negative value”. The model with

specification doubts is consistent with all the findings of Romer and Romer (2008) and explains the

average difference between forecasts as what we regard as a rational response of the FOMC to doubts

about the specification of its model.
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Whether individuals within the Federal Reserve System see themselves as dividing up policymak-

ing tasks in the way we propose is open to debate. The communications strategies of policymakers

mean they are unlikely to describe their forecasts in terms of explicit adjustments that express doubts

about their model. But some policymakers have though gone on the record with arguments that sup-

port our view. For example, on 4th January 2008 Forbes Magazine (“Kohn says Fed operating with

diverse views, not just strong chairman”) reported on a discussion of Romer and Romer (2008) given

by former Federal Reserve Monetary Affairs Director Vincent Reinhart at the American Economic

Association meetings in New Orleans. Forbes wrote:

“However, former Fed staffer Vincent Reinhart said while it may look as if ‘the FOMC’s

contribution to the monetary policy process is to reduce forecast accuracy,’ they are not

there primarily to be forecasters. Instead, they exist in a political system and have to be

held accountable for the outcomes of their decisions. ‘They can be bad forecasters and

good policymakers,’ Reinhart said, ‘if the diversity of views about the outlook informs

their policy choice.’”

This paper also contributes to a recent literature due to Elliott et al. (2006) that uses forecast

biases to identify the objective functions of the people making those forecasts. For example, in this

vein Capistrán (2008) argues that the systematic biases periodically appearing in Greenbook forecasts

can be rationalised by assuming that the staff of the Federal Reserve System has a time-varying and

asymmetric forecasting objective. Our approach is arguably more disciplined than this because the

objective function we identify has a structural interpretation as expressing a forecaster’s doubts about

the specification of its model. We believe that our approach has the potential to deliver real insights

into the mindset of policymakers. In future work, we plan to push our story further by asking whether

specification doubts can explain actual - not just average - differences between forecasts. Another

exciting development is the dataset of individual FOMC member forecasts recently put together by

Romer (2009). This is likely to prove a rich seam for future research.

20



References

[1] Barlevy, G., 2009, Policymaking under uncertainty: Gradualism and robustness, Economic Per-

spectives QII, Federal Reserve Bank of Chicago, 38-55.

[2] Benigno, P. and S. Nisticò, 2009, International Portfolio Allocation under Model Uncertainty,

NBER Working Paper No. 14734.

[3] Billi, R.M., 2009, Optimal Inflation for the U.S. Economy, Federal Reserve Bank of Kansas City

Working Paper No. 07-03 (revised).

[4] Brock, W.A. and S.N. Durlauf, 2005, Local robustness analysis: Theory and application, Journal

of Economic Dynamics and Control 29. 2067-92.

[5] Brock, W.A., Durlauf, S.N. and G. Rondina, 2008, Frequency-Specific Effects of Stabilization

Policies, American Economic Review 98, 241-5.

[6] Brock, W.A., Durlauf, S.N., Nason, J.M. and G. Rondina, 2007, Simple versus optimal rules as

a guide to policy, Journal of Monetary Economics 54, 1372-96.

[7] Bullard, J., 2009, Discussion of Ellison and Sargent: What questions are staff and FOMC fore-

casts supposed to answer?, 10th EABCN Workshop on Uncertainty over the Business Cycle,

Frankfurt.

[8] Caballero, R.J. and A. Krishnamurthy, 2008, Collective Risk Management in a Flight to Quality

Episode, Journal of Finance LXIII, 2195-230.

[9] Caballero, R.J. and P. Kurlat, 2009. The “Surprising” Origin and Nature of Financial Crises:

A Macroeconomic Policy Proposal, mimeo, Prepared for the Jackson Hole WY Symposium on

Financial Stability and Macroeconomic Policy, August 2009.

[10] Capistrán, C., 2008, Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational

or just cautious?, Journal of Monetary Economics 55, 1415-27.

[11] Dennis, R., Leitemo, K and U. Söderström, 2009a, Methods for robust control, Journal of

Economic Dynamics and Control 33, 1604-16.

[12] Dennis, R., Leitemo, K and U. Söderström, 2009b, Monetary policy in a small open economy

with a preference for robustness, mimeo, Federal Reserve Bank of San Francisco.

[13] Elliott, G., Komunjer, I., and A. Timmermann, 2005, Estimation and Testing of Forecast Ra-

tionality under Flexible Loss, Review of Economic Studies 72, 1107—25.

21



[14] Epstein, L.G. and M. Schneider, 2008, Ambiguity, Information Quality, and Asset Pricing,

Journal of Finance 63, pp. 197—228.

[15] Giannoni, M.P., 2002, Does Model Uncertainty Justify Caution? Robust Optimal Monetary

Policy In A Forward-Looking Model, Macroeconomic Dynamics 6, 111-44.

[16] Giannoni, M.P., 2007, Robust optimal monetary policy in a forward-looking model with para-

meter and shock uncertainty, Journal of Applied Econometrics 22, 179-213.

[17] Hansen, L. P. and T.J. Sargent, 2007, Recursive robust estimation and control without commit-

ment, Journal of Economic Theory, 136(1), 1-27.

[18] Hansen, L.P. and T.J. Sargent, 2008, Robustness, Princeton, New Jersey, Princeton University

Press.

[19] Hansen, L.P., Mayer, R. and T.J. Sargent, 2009, Robust Hidden Markov LQG Problems, mimeo,

University of Chicago and New York University.

[20] Karantounias, A.G., (with Lars Peter Hansen and Thomas J. Sargent), 2009, Managing expec-

tations and fiscal policy, mimeo, Federal Reserve Bank of Atlanta.

[21] Kasa, K., 2001, A robust Hansen-Sargent prediction formula, Economics Letters 71, 43-8.

[22] Kasa, K., 2002, Model Uncertainty, Robust Policies, And The Value Of Commitment, Macro-

economic Dynamics 6, 145-66.

[23] Kasa, K., 2006, Robustness and Information Processing, Review of Economic Dynamics 9, 1-33.

[24] Leitemo, K. and U. Söderström, 2008a, Robust monetary policy in a small open economy,

Journal of Economic Dynamics and Control 32, 3218-52.

[25] Leitemo, K. and U. Söderström, 2008b, Robust monetary policy in the New Keynesian frame-

work, Macroeconomic Dynamics 12, 126-35.

[26] Lewis, K.F. and C.H. Whiteman, 2006, Robustifying Shiller: Do Stock Prices Move Enough To

Be Justified By Subsequent Changes In Dividends?, mimeo, University of Iowa.

[27] Luo, Y. and E.R. Young, 2009, Risk-sensitive Consumption and Savings under Rational Inat-

tention, American Economic Journal: Macroeconomics, forthcoming.

[28] Onatski, A. and J.H. Stock, 2002, Robust Monetary Policy Under Model Uncertainty In A Small

Model of the U.S. Economy, Macroeconomic Dynamics 6, 85-110.

22



[29] Primiceri, G.E., 2006, Why Inflation Rose and Fell: Policy-makers’ Beliefs and U. S. Postwar

Stabilization Policy, Quarterly Journal of Economics 121, 867-901.

[30] Romer, D.H., 2009, A New Data Set on Monetary Policy: The Economic Forecasts of Individual

Members of the FOMC, NBER Working Paper No. 15208.

[31] Romer, C.D. and D.H. Romer, 2004, A New Measure of Monetary Shocks: Derivation and

Implications, American Economic Review 94, 1055-84.

[32] Romer, C.D. and D.H. Romer, 2008, The FOMC versus the Staff: Where Can Monetary Poli-

cymakers Add Value?, American Economic Review 98, 230-235.

[33] Tetlow, R.J., 2007, On the robustness of simple and optimal monetary policy rules, Journal of

Monetary Economics 54, 1397-405.

[34] Tetlow, R.J. and B. Ironside, 2005, Real-Time Model Uncertainty in the United States: The

Fed, 1996-2003, Journal of Money, Credit and Banking 39, 1533-61.

[35] Tetlow, R.J. and P. von zur Muehlen, 2001, Robust monetary policy with misspecified models:

Does model uncertainty always call for attenuated policy?, Journal of Economic Dynamics and

Control 25, 911-49.

[36] Tetlow, R.J. and P. von zur Muehlen, 2004, Avoiding Nash Inflation: Bayesian and Robust

Responses to Model Uncertainty, Review of Economic Dynamics 7, 869-99.

[37] Tetlow, R.J. and P. von zur Muehlen, 2009, Robustifying Learnability, Journal of Economic

Dynamics and Control 33, 296-316.

[38] Uhlig, H., 2009, A model of a systemic bank run, NBER Working Paper No. 15072.

[39] Whittle, P., 2002, Risk Sensitivity, a Strangely Pervasive Concept, Macroeconomic Dynamics 6,

5-18.

[40] Woodford, M., 2006, An Example of Robustly Optimal Monetary Policy with Near-Rational

Expectations, Journal of the European Economic Association 4, 386-95.

[41] Woodford, M., 2009, Robustly Optimal Monetary Policy Under Near-Rational Expectations,

American Economic Review, forthcoming.

23


