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Abstract

Randomized Controlled Trials (RCT) enroll hundreds of millions of people and in-

volve many human lives. In this paper, I propose a design of RCT with high-stakes

treatment. Unlike conventional RCT, my design respects subject welfare; it optimally

randomly assigns each treatment to subjects predicted to experience better treatment

effects, or to subjects with stronger preferences for the treatment. For preference elic-

itation, my design is also almost incentive compatible. Finally, this design unbiasedly

estimates any causal effect estimable with standard RCT. To quantify these properties,

I apply my proposal to a water cleaning experiment in Kenya (Kremer et al., 2011).

Compared to usual RCT, my design substantially improves subjects’ well-being while

reaching similar treatment effect estimates with similar precision.
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1 Introduction

Now is the golden age of Randomized Controlled Trials (RCT; equivalently, randomized ex-

periments or A/B tests). Having originally started as a safety and efficacy test of farming and

medical treatments (Gaw, 2009), RCT has grown to become the gold standard of evidence-

based decisions and evaluations. RCT is widespread in business and politics (Siroker and

Koomen, 2013), as well as public policy (Gueron and Rolston, 2013), economics (Banerjee

and Duflo, 2012), other social sciences (Gerber and Green, 2012), and engineering.

RCTs are high-stakes. Firstly, a large number of individuals participate in RCTs. For

example, I find that above 360 million patients in total participate in clinical trials registered

in WHO’s International Clinical Trials Registry Platform (ICTRP) during 2007-2017.1 As for

social and economic RCTs, over 22 million individuals participate in experiments registered

in American Economic Association’s registry for the last decade.

To such a big subject pool, RCT sometimes randomizes high-stakes and even life-or-death

treatment. For instance, in a glioblastoma therapy trial, the five-year death rate of glioblas-

toma patients is 97% in the control group but only 88% in the treatment group (Stupp et al.,

2009). This means that in expectation, the lives of 9% of its 573 participants depend on who

receive treatments. Social and economic RCTs also sometimes randomize critical treatment

such as basic income2, health insurance (Baicker et al., 2013), high wage job offers (Dal Bó

et al., 2013), HIV testing (Angelucci and Bennett, 2017), and cash transfers (Haushofer

and Shapiro, 2016). As a consequence of the high-stakes nature, some RCTs resulted in

media controversies and lawsuits by participants (for instance, Gelsinger v. University of

Pennsylvania and Grimes v. Kennedy-Krieger Institute).3

RCT thus determines the fate of numerous people. Physician and prior editor-in-chief of

the New England Journal of Medicine, Marcia Angell, noted the resulting ethical dilemma:

How can a physician committed to doing what he thinks is best for each patient tell

a woman with breast cancer that he is choosing her treatment by something like a

coin toss? How can he give up the option to make changes in treatment accord-

ing to the patient’s responses? (“Patients’ Preferences in Randomized Clinical

1Related to the subtitle of this paper, clinical trials are a costly investment. For the US, for example, the
average trial cost is believed to be at least thousands of dollars per subject (Morgan et al., 2011). Multiplying
a few thousands of dollars by the number of subjects in the US (still over 300 millions in total), the total
investments into clinical trials may amount to 1 trillion dollars for the last decade just in the US.

2“8 basic income experiments to watch out for in 2017,” at http://www.businessinsider.com/

basic-income-experiments-in-2017-2017-1/#finland-2, retrieved October 2017.
3Gelsinger v. University of Pennsylvania was about a gene-therapy clinical trial whileGrimes v. Kennedy-

Krieger Institute about a social experiment that randomly assigned lead reduction methods to housings.
For details, see https://www.sskrplaw.com/publications.html and http://www.courts.state.md.us/

opinions/coa/2001/128a00.pdf, accessed in October 2017.
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Trials”)

The welfare impact of RCTs motivates me to study how to care about subject well-

being. I formulate experimental design as the problem of computing treatment assignment

probabilities based on data about the predicted treatment effect of each treatment on each

subject and each subject’s willingness-to-pay (WTP) for each treatment. Predicted effects

and WTP may be arbitrarily correlated and come from prior experimental, observational,

or self-report data.

I propose a data-driven experimental design which I call Experiment-as-Market (EXaM).4

I call my EXaM design Experiment-as-Market because EXaM uses economic ideas on market

to solve the statistical and empirical problem of experimental design. EXaM randomly

assigns treatments to subjects via an imaginary centralized market (inspired by the long-

standing idea of competitive market equilibrium from equal incomes by Friedman (1962);

Varian (1974); Hylland and Zeckhauser (1979); Budish et al. (2013); He et al. (2017)). EXaM

endows each subject with a common artificial budget and lets her use the budget to purchase

a most preferred bundle of treatment assignment probabilities given their prices. The prices

are discriminated so that each treatment is cheaper for subjects predicted to experience

better effects of the treatment. EXaM computes its treatment assignment probabilities as

what subjects demand at market clearing prices, where subjects’ aggregate demand for each

treatment is balanced with its capacity (assumed to be exogenously given).

This virtual-market construction gives EXaM nice welfare and incentive properties. Un-

like standard RCT, EXaM has a Pareto optimality property that no other design makes every

subject better-off in terms of expected predicted effects of and WTP for assigned treatment.

EXaM also allows the experimenter to elicit WTP in an almost incentive compatible way.

That is, when the experimenter asks subjects to self-report their WTP to be used by EXaM,

every subject’s optimal choice is to report her true WTP, at least for large experiments.5

EXaM also allows the experimenter to unbiasedly estimate the same treatment effects as

standard RCT does (in a wide class of treatment effect parameters). Since EXaM gives ev-

erybody the same budget, if subjects share the same predicted effects and WTP, the subjects

purchase the same distribution of treatment assignment. In other words, EXaM produces

treatment assignment that is independent (unconfounded) from potential outcomes condi-

4For running EXaM, I assume the experimenter has data on the set of subjects and treatments, treatment
capacities, each subject’s WTP for each treatment, and the predicted effect of each treatment for each subject.
EXaM is executable, however, even without WTP and predicted effects (perhaps when WTP and predicted
effects are unknown or irrelevant to the experimenter). When the experimenter uses neither WTP nor
predicted effects, EXaM reduces to standard RCT. Therefore, EXaM nests standard RCT.

5The analysis of EXaM’s incentive property owes much to studies on the incentive compatibility of
competitive equilibria (Roberts and Postlewaite, 1976; Jackson, 1992; Azevedo and Budish, 2017; He et al.,
2017).
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tional on observable predicted effects and WTP. This property puts EXaM in the context of

causal inference with stratified experiments and selection-on-observables, as summarized by

Imbens and Rubin (2015).

Specifically, the conditionally independent treatment assignment in EXaM allows the ex-

perimenter to unbiasedly estimate the conditional average treatment effects conditional on

observables. The estimable conditional effects turn out to contain Marginal Treatment Ef-

fects (Björklund and Moffitt, 1987; Heckman and Vytlacil, 2005) as a subset. By integrating

such marginal or conditional effects, EXaM can also unbiasedly estimate the (unconditional)

average treatment effect, the single most important causal effect estimable with RCT. Per-

haps more importantly, EXaM’s unbiased average treatment effect estimation may have a

smaller standard error than RCT’s.6

I compare EXaM not only with RCT but also with more elaborate designs that pay

attention to WTP or predicted effects. Such sophisticated designs include Randomized

Consent Trials (Zelen, 1979; Angrist and Imbens, 1991), Selective Trials (Chassang et al.,

2012), and Multi-Armed Bandit algorithms (White, 2012). Compared to these existing

designs, EXaM integrates the WTP and predicted effect considerations into a unified design

in an optimal and incentive compatible way.

Finally, as a proof of concept, I empirically apply EXaM to data from a water cleaning

experiment in Kenya (Kremer et al., 2011). Compared to RCT, EXaM turns out to sub-

stantially improve participating households’ welfare, which is measured by predicted child

diarrhea reduction by water cleaning and revealed WTP for it. Data from EXaM also allows

me to get similar treatment effect estimates with similar standard errors as RCT does. Along

the way, I develop a computer program to implement EXaM with little computational cost.

Taken together, EXaM sheds light on a way economic thinking can “facilitate the ad-

vancement and use of complex adaptive (...) and other novel clinical trial designs,” one of

the federal Food and Drug Administration (FDA)’s performance goals for 2018-2022.7 More

concretely, my analysis shows the value of using subjects’ WTP for treatments. The use of

WTP in EXaM complements existing uses in Ashraf et al. (2006); Cohen and Dupas (2010);

Ashraf et al. (2010); Chassang et al. (2012); Devoto et al. (2012); Dupas (2014). EXaM

combines the preference consideration with another idea of respecting predicted effects. The

use of predicted effects is becoming established in medicine (Food and Drug Administration,

6These informational values materialize regardless of whether the experimenter correctly predicts treat-
ment effects and WTP. This experimental value of EXaM and competitive equilibrium from equal incomes
echoes Abdulkadiroğlu et al. (2017) and Narita (2016), who highlight the informational values of a different
sort of mechanism design (centralized school choice with lotteries).

7See https://www.fda.gov/downloads/forindustry/userfees/prescriptiondruguserfee/

ucm511438.pdf, retrieved in October 2017
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2010) and business (White, 2012) but just emerging in social sciences (Manski, 2008).

The next section motivates my agenda with facts about the impact of RCT on partic-

ipant welfare. Following this context, Section 3 develops the EXaM experimental design

while Section 4 shows its welfare and incentive properties. Section 5 turns to the experimen-

tal information embedded in EXaM and explains how to use data from EXaM for causal

inference. After comparing EXaM with existing designs in Section 6, Section 7 presents an

empirical application. Finally, Section 9 summarizes my findings, discusses their limitations,

and outlines future directions. Proofs are in Appendix A.1.2.

2 Why Subject Welfare?

I study experimental design with an emphasis on subject welfare. Why should I study subject

well-being? This section demonstrates facts that show that treatment allocation in RCTs

impacts the lives of numerous individuals.

Normative Considerations

First of all, RCTs involve a large number of subjects. To see it, I assemble data on clinical

trials registered in the WHO International Clinical Trials Registry Platform (ICTRP).8 IC-

TRP is the largest international clinical trial registry and subsumes domestic platforms like

ClinicalTrials.gov for the US.9 Table 1 shows that the number of registered trials amounts

to about 290 thousands from 2007 to mid-2017. The sum of their sample sizes is over 360

millions for the same period.10

It is important to note that the figures in Table 1 are likely to underestimate the total

scale of the clinical trial landscape. Many countries (such as Australia and Japan) do not

legally require clinical trials to register (as of October 2017). Even when trials are required

to register, the expected fine for failing to do so is often negligible compared to the total

trial cost.11 As a consequence of these regulatory loopholes, there is likely a “dark pool” of

clinical trials never reflected in any public database like ICTRP (Goldacre, 2014).12

8http://www.who.int/ictrp/en/, retrieved in October 2017
9https://clinicaltrials.gov, retrieved in October 2017

10More detailed statistics are in Appendix Tables A.1-A.3. I also find the sum of sample sizes of registered
economic RCTs amounts to above 23 millions for the last decade (Appendix Table A.4).

11See Stat News’ article, “Failure to report: A STAT investigation of clinical trials reporting,” at https:
//www.statnews.com/2015/12/13/clinical-trials-investigation/, retrieved October 2017.

12Consistent with this hypothesis, as legal and institutional pressures for trial registration mount, the
annual numbers of registered trials and subjects are rapidly growing (about 14 millions in 2007 vs. 72
millions in 2016 for the number of subjects; see Figure 1.b). This also means that these figures will likely be
larger in the next decade. As a conservative scenario, assume the annual sum of sample sizes will stay at the
2016 level (72 millions). The total sample size for the next decade will be 720 millions (= 10× 72 millions)
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For such a large subject population, RCTs frequently randomize high-stakes treatment.

The high-stakes and occasionally life-threatening nature of many RCTs is highlighted by

examples in Table 2. In the first clinical trial (row i in Panel (a)), for example, a cholesterol

lowering drug treatment was found to lower the 5 year death rate by about 30% relative to

the baseline death rate in the control group. Other clinical trials in Table 2 Panel (a) also

report significant impacts on survival and other crucial outcomes.13

Even social and economic RCTs randomized treatment such as cash transfers, health

insurance, HIV testing, and police patrol, as can be seen in Table 2 Panel (b). As expected,

these treatments are often found to have profound treatment effects. In addition to these

published examples, several RCTs of basic income are also ongoing or announced (recall

footnote 2).

Practical Considerations

Practical considerations also motivate a care for subject welfare. The successful implemen-

tation of any RCT depends on subject choices and behavior such as whether subjects par-

ticipate in the RCT; whether subjects take up and use the assigned treatment; and whether

subjects stay in contact in a follow-up period. The RCT produces useful information only

if participants are active enough in each step. This prerequisite is hard to achieve, however.

Many RCTs suffer from subject indifference or fear in the form of non-participation, non-

compliance, and dropouts before, during, and after the experiment (Friedman et al. (1998)

chapters 10 and 14 and Duflo et al. (2007) sections 4.3 and 6.4).

A welfare-conscious experimental design could alleviate non-participation, non-compliance,

and dropouts.14 In fact, King et al. (2005) provide a clinical trial meta-analysis suggesting

that incorporating subject preferences makes subject recruitment easier. Chan and Hamilton

(2006) suggest that better-off subjects experiencing better treatment effects are less likely to

drop out. In a range of econometric and theoretical models (Heckman and Vytlacil, 2005;

Chan and Hamilton, 2006), welfare-enhancing treatment assignment is predicted to facilitate

compliance with treatment assignment.15

13The medical ethics literature reviews other examples (Shamoo and Resnik (2009) chapters 12 and 13
and Freeman et al. (2001)).

14In an effort to minimize attrition and maximize the treatment take-up rate, many field experiments
start with an expression-of-interest survey before randomization and recruit only survey respondents who
express strong interest (Duflo et al., 2007). This recruitment practice causes external validity concerns.
These concerns may also be alleviated by replacing the experimenter’s discretionary selective recruitment
with an experimental design respecting subject welfare in a rule-based way, as I do in this paper.

15In addition, more ethical experimental designs would ease collaboration with partner governments and
companies that may have an ethical and reputational concern with involvement in RCTs.
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3 Experiment-as-Market (EXaM)

3.1 Framework

The normative and practical importance of subject well-being prompts me to design an

experiment that balances experimental information with subject welfare. An experimental

design problem consists of:

• Experimental subjects i1, ..., in.

• Experimental treatments t0, t1, ..., tm where t0 is a placebo or control.

• Each treatment t’s capacity or supply ct ∈ N with Σtm
t=t0ct = n.

• Each subject i’s preference or WTP wit ∈ R for treatment t where wit ≥ wit′ means

subject i weakly prefers treatment t over t′. Let wi ≡ (wit)t.

• Each treatment t’s predicted treatment effect eti ∈ R for subject i where eti ≥ et′i means

treatment t is predicted to have a weakly better effect than t′ for subject i.16

I normalize eti and wit by assuming et0i = wit0 = 0 for every subject i. eti and wit are

therefore predicted effects of t and WTP for t, respectively, relative to the control t0. This

normalization is without loss of generality because only differences in WTP and predicted

effects matter for subject welfare from inside treatments t0, t1, ..., tm. Every experimental

design discussed in this paper produces the same treatment assignment probabilities with

and without the normalization.

A few remarks are in order. First of all, where do WTP and predicted effects come from?

As for WTP wit, there are a few possible sources. The experimenter may estimate WTP

from data on treatment choices by subjects, as I do with a discrete choice model in my

empirical application in Section 7.17 Alternatively, the experimenter may ask each subject i

to self-report WTP wi, as proposed by Zelen (1979) and Chassang et al. (2012).18

On predicted effects eti, it is best to estimate them from prior experimental or obser-

vational data. The most reliable data source is a prior RCT of a similar treatment. Such

sequential RCTs with the same treatment are common in medicine (Friedman et al., 1998)

16Here I assume WTP and predicted effects are fixed and with cardinal meaning. See Section 8 for what
to do when WTP and predicted effects are uncertain or ordinal.

17Similar demand estimation but for different purposes can be found in Ashraf et al. (2006); Cohen and
Dupas (2010); Ashraf et al. (2010); Kremer et al. (2011); Devoto et al. (2012); Dupas (2014).

18This self-report method raises the question of incentive compatibility. I study incentive compatibility
theoretically in Sections 4.2 and empirically in Section 7.3.
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and business (Siroker and Koomen, 2013) and are growing in social sciences (Hahn et al.,

2011). I illustrate the use of such a prior RCT in my empirical application in Section 7.19

Finally, predicted effects and WTP may be freely correlated. This is an important

generality since evidence of selection or correlation between treatment effects and WTP is

ample both in economics and medicine (Preference Collaborative Review Group, 2008; Swift

and Callahan, 2009). To be consistent with the evidence, the above setup allows arbitrary

selection.

3.2 Experimental Designs

An experimental design maps each experimental design problem into treatment assignment

probabilities (pit) satisfying the capacity constraint Σipit ≤ ct for every treatment t. Here

pit is the probability that subject i is assigned to treatment t under the experimental design.

The benchmark design is the standard Randomized Controlled Trial (RCT), formalized as

follows.

Definition 1 (Randomized Controlled Trial a.k.a. RCT ). Randomized Controlled Trial is

an experimental design that assigns each subject i to each treatment t with the impersonal

treatment assignment probability pRCT
it ≡ ct/n.

I investigate welfare-enhancement with an alternative design, which I call Experiment-as-

Market or EXaM in short.

Definition 2 (Experiment-as-Market a.k.a. EXaM ). (1) In a computer, distribute com-

mon artificial budget b > 0 to every subject. Find any price-discriminated competitive

market equilibrium, i.e., any treatment assignment probabilities (p∗it) and their prices

πte with the following properties:

• Effectiveness-discriminated treatment pricing: There exist α < 0 and βt ∈ R for

each treatment t such that the price of a unit of probability of assignment to t for

subjects with eti = e ∈ R is

πte = αe+ βt.

• Subject utility maximization subject to the budget constraint: For all subject i,

(p∗it)t ∈ argmaxpi∈P Σtpitwit s.t. Σtpitπteti ≤ b,

19DellaVigna and Pope (2016) investigate an alternative approach of asking experts to forecast treatment
effects.
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where pi ≡ (pit)t=t0,t1,...,tm and P ≡ {pi ∈ Rm+1|Σtm
t=t0pit = 1} is the set of feasible

treatment assignment probability vectors (m-dimensional simplex) for each sub-

ject. πtet1i
is the price of a unit of the probability of assignment to treatment t

for subject i. EXaM breaks ties by uniformly mixing utility-maximizing pi’s that

solve the above problem with the minimum expenditure Σtpitπteti .

• Meeting capacity constraints: Σip
∗
it ≤ ct for every treatment t.

(2) Compute

p∗it(ε) ≡ (1− q)p∗it + qpRCT
it ,

where q ≡ inf{q′ ∈ [0, 1]|(1− q′)p∗it + q′pRCT
it ∈ [ε, 1− ε] for all i and t}. Here ε ∈ [0, ε̄)

is a parameter fixed by the experimenter where ε̄ ≡ min{mint p
RCT
it , 1−maxt p

RCT
it } is

the largest possible value of ε.20

I name this experimental design Experiment-as-Market (EXaM) because EXaM randomly

assigns treatments to subjects via a synthetic centralized market. This market builds up

on the classic idea of competitive market equilibrium from equal incomes, owing much to

the literature comprising Friedman (1962), Varian (1974), Hylland and Zeckhauser (1979),

Budish et al. (2013), He et al. (2017) among others. EXaM can be seen as a generalization

or variation of their ideas.

More specifically, in Step 1 of Definition 2, EXaM endows each subject with a common

artificial budget. EXaM then lets each subject use the budget to purchase a most preferred

bundle of treatment assignment probabilities taking their prices as given. The prices are

partially personalized so that each treatment is cheaper for subjects predicted to benefit

more from the treatment. EXaM computes its treatment assignment probabilities as those

subjects purchase at market clearing prices, where subjects’ total demand for each treatment

is balanced with its given supply.21 EXaM finally requires each subject to get each treatment

with a probability strictly between 0 and 1, as done in Step 2. This requirement is important

20 Why is ε̄ the largest possible value of ε? To see the reason, suppose ε > mint p
RCT
it . Then, for any

t ∈ argmint p
RCT
it , whenever p∗it ≤ pRCT

it , I have

(1− q′)p∗it + q′pRCT
it 6∈ [ε, 1− ε]

for any q′ ∈ [0, 1]. Similarly, if ε > 1−maxt p
RCT
it , then for any t ∈ argmaxt p

RCT
it , whenever p∗it ≥ pRCT

it ,

(1− q′)p∗it + q′pRCT
it 6∈ [ε, 1− ε]

for any q′ ∈ [0, 1]. Thus ε cannot exceed ε̄ ≡ min{mint p
RCT
it , 1−maxt p

RCT
it }.

21The first step of Definition 2 raises two questions, whether such an equilibrium exists and how to find
such an equilibrium. After positively solving the first existence question in Proposition 2 below, I develop
and implement a script to find an equilibrium in the empirical application in Section 7. See Budish et al.
(2016) for a related algorithmic development on a different problem (MBA course allocation).
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for EXaM to produce non-degenerate random assignment and unbiasedly estimate causal

treatment effects.22

EXaM is an enrichment of RCT. To see this, note that EXaM allows the experimenter to

turn off welfare considerations. For instance, if the experimenter does not know or care about

predicted effects, she would let eti = etj for all subjects i and j and treatment t. Similarly,

let wit = wjt if WTP is unknown or irrelevant. The following fact shows that EXaM is

equivalent to RCT when the experimenter ignores both WTP and predicted effects.

Proposition 1 (EXaM nests RCT). Suppose that WTP and predicted effects are unknown

or irrelevant so that wit = wjt and eti = etj for all subjects i and j and treatment t. Then

EXaM reduces to RCT, i.e., for every ε ∈ [0, ε̄), subject i, and treatment t, I have

p∗it(ε) = pRCT
it .

4 Welfare and Incentive: Theory of EXaM

4.1 Welfare

As opposed to the special case in Proposition 1, the experimenter is often concerned about

WTP and predicted effects (as in studies reviewed in Section 2). In such cases, EXaM

differs from RCT. Specifically, EXaM respects subject welfare by optimally assigning each

treatment to subjects with higher WTP for the treatment, or to subjects predicted to benefit

more from the treatment.

Proposition 2 (Existence and Welfare). EXaM p∗it(ε) exists for any experimental design

problem and any ε ∈ [0, ε̄). Moreover, there is no other experimental design (pit) ∈ P n with

pit ∈ [ε, 1− ε] for all subject i and treatment t and the following better welfare property:

Σtpitwit ≥ Σtp
∗
it(ε)wit and Σtpiteti ≥ Σtp

∗
it(ε)eti

for all i with at least one strict inequality.23

22The definition leaves unspecified how to draw a final treatment assignment from p∗it(ε). It is known to
be always possible to draw a treatment assignment in a way consistent with p∗it(ε) (Budish et al. (2013)’s
Theorem 1, the generalized Birkhoff-von Neumann Theorem). For the moment, my analysis applies to any
method to draw a treatment assignment. I impose more structures in Section 5 and implement an algorithm
to draw an assignment in the empirical application in Section 7.

23Another version of the welfare result is also true: There is no other experimental design (pit) ∈ Pn

with pit ∈ [ε, 1 − ε] for all subject i and treatment t and the following better welfare property: Σtpitwit ≥
Σtp

∗
it(ε)wit for all i and Σipiteti ≥ Σip

∗
it(ε)eti for all t with at least one strict inequality.
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Proposition 2 says that no other experimental design ex ante Pareto dominates EXaM in

terms of WTP or predicted effects (while satisfying the random assignment condition). This

ex ante Pareto optimality is known to imply ex post Pareto optimality and “ordinal” ex ante

optimality (Bogomolnaia and Moulin, 2001).24 In contrast, RCT fails to satisfy the welfare

property as it ignores WTP and predicted effects. I empirically quantify the welfare gap

between RCT and EXaM in Section 7.3.

Proposition 2 uses eti and wit as two joint welfare measures, one outcome- or treatment-

effect-based and one WTP-based. Each of them has an established role in economic welfare

analysis. The medical literature more frequently studies treatment effects but also empha-

sizes that patients often have preferences for treatments (even conditional on treatment

effects). This is especially the case for psychologically sensitive treatments like abortion

methods (Henshaw et al., 1993) and depression treatments (Chilvers et al., 2001). In re-

sponse to these intuitive findings, a US-government-endorsed movement tries to bridge the

gap between evidence-based medicine and patient-preference-centered medicine (Food and

Drug Administration, 2016). According to advocates, “patient-centered care (...) promotes

respect and patient autonomy; it is considered an end in itself, not merely a means to achieve

other health outcomes” (Epstein and Peters, 2009). My welfare criterion echoes this trend

and accommodates both outcome- and preference-based approaches.

4.2 Incentive

So far I take WTP wit as given and assume it to represent true WTP. In practice, the

experimenter often needs to elicit the WTP information from subjects, raising an incentive

compatibility concern. EXaM turns out to allow the experimenter to extract WTP in an

almost incentive compatible way. My analysis of incentive compatibility builds up on the

literature on incentive compatibility of competitive equilibria (Roberts and Postlewaite, 1976;

Jackson, 1992; Azevedo and Budish, 2017; He et al., 2017)

Unfortunately, it is known that no experimental design satisfies the welfare property in

Proposition 2 and exact incentive compatibility for general problems. This compels me to

investigate approximate incentive compatibility in large experimental design problems. Con-

sider any sequence of experimental design problems (i1, ..., in, t0, t1, ..., tm, (c
n
t ), (w

n
it), (e

n
ti))n∈N

indexed by the number of subjects, n. The set of treatments t0, t1, ..., tm is fixed, but ev-

24Here ex post optimality means that no other (pit) with the ε bound condition has the following property:
witi ≥ wit∗i

and etii ≥ et∗i i for all i always hold with at least one strict inequality, where ti and t∗i are
treatments ex post assigned to i under the alternative design (pit) and EXaM, respectively. Ordinal ex ante
optimality is a stronger property that no other (pit) satisfies the ε bound condition and that for all affine
transformations f and g such that Σtpitf(wit) ≥ Σtp

∗
it(ε)f(wit) and Σtpitg(eti) ≥ Σtp

∗
it(ε)g(eti) for all i with

at least one strict inequality.
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erything else (cnt , w
n
it, e

n
ti) may change as n increases. This modeling with a fixed number of

treatments and an increasing number of subjects is consistent with real-world experiments

with only a few treatments but with hundreds or thousands of subjects. Only for this sec-

tion, for simplicity, I restrict wn
it and enti to belong to finite sets W and E, respectively, in

any problem along the sequence. Let εn ∈ [0, ε̄n] (where ε̄n is ε̄ for the n-th problem) be the

value of the bound parameter ε the experimenter picks for the n-th problem in the sequence.

To investigate the incentive structure in EXaM, imagine that subjects report their WTP

to EXaM. EXaM then uses the reported WTP to compute treatment assignment proba-

bilities. For the n-th problem in the sequence, let p∗ni (wi, w−i; ε
n) be EXaM’s treatment

assignment probability vector for subject i when subjects report WTP (wi, w−i) where

w−i ≡ (wj)j 6=i. I extend this notation to the case where other subjects’ WTP reports

are random:

p∗ni (wi, Fw; ε
n) ≡

∫
w−i∈Wn−1

p∗ni (wi, w−i; ε
n)× Pr(w−i|w−i ∼iid Fw)dw−i.

Here Pr(w−i|w−i ∼iid Fw) denotes the probability that the reported WTP vector w−i is

realized from n − 1 iid draws from the distribution Fw ∈ ∆W where ∆W is the set of full

support distributions over the WTP space W . This concept allows me to define and state

an asymptotic incentive compatibility property for EXaM.

Proposition 3 (Incentive). EXaM with WTP reporting is asymptotically incentive com-

patible, i.e., for any sequence of experimental design problems with any εn’s in [0, ε̄n], any

Fw ∈ ∆W , any δ > 0, there exists n0 such that, for any n ≥ n0, any subject i, any true and

manipulated WTP values wi, w
′
i ∈ W , I have

Σtp
∗n
it (wi, Fw; ε

n)× wit ≥ Σtp
∗n
it (w

′
i, Fw; ε

n)× wit − δ.

Proposition 3 says that for large enough experimental design problems, EXaM approx-

imately incentivizes every subject to report her true WTP. It is an asymptotic theoretical

result assuming the number of subjects growing to infinity. As additional support for in-

centive compatibility, Section 7.3 shows that EXaM is close to incentive compatible in my

empirical application only with a modest finite number of subjects. This suggests asymptotic

Proposition 3 is relevant even for real-scale problems.
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5 Information: Econometrics of EXaM

Despite the welfare and incentive properties, the experimenter can extract as much infor-

mation with EXaM as with RCT. To spell it out, take any experimental design problem as

given. Suppose the experimenter is interested in the causal effect of each treatment on an

outcome Y . Following the standard potential outcome framework for causal inference (Im-

bens and Rubin, 2015), let Yi(t) denote subject i’s potential outcome that would be observed

if subject i receives treatment t. Let Dit be the binary indicator that subject i is ex post

assigned to treatment t. The observed outcome is written as Yi ≡ ΣtDitYi(t). While Yi(t)

is assumed to be fixed, Dit and Yi are random variables the distributions of which depend

on the experimenter’s choice of an experimental design. Let Y ≡ (Yi), Di ≡ (Dit)t, and

D ≡ (Di).

To compare EXaM and RCT in terms of their causal inference performance, I need to

specify how each design draws a deterministic treatment assignment Dit from its assignment

probabilities. For notational simplicity, assume that ptnp is an integer for every t and p,

where np ≡ Σn
i=11{p∗i (ε) = p} and pt is the element of p corresponding to treatment t.

Appendix A.1.1 generalizes the definition and argument below to a general setting where

ptnp is any real number. Consider the following method of drawing a deterministic treatment

assignment.

Definition 2 (EXaM Continued).

(3) Starting from the end of Definition 2 in Section 3.2, draw a treatment assignment from

p∗it(ε) as follows. For each propensity vector p,

• Step 1: Uniformly randomly pick pt0np subjects from {i|p∗i (ε) = p} and assign

them to t0.

For each subsequent step k = 1, ...,m,

• Step k: From the remaining np − Σ
tk−1

t=t0ptnp subjects, uniformly randomly pick

ptknp subjects and assign them to tk.

I also assume RCT to draw a deterministic treatment assignment by a special case of the

above method, i.e., uniformly drawing any Dit satisfying ΣiDit = ct for each t and ΣtDit = 1

for each i.

With these preliminaries at hand, let θ be any parameter of interest of the distribution

of potential outcomes Yi(t)’s. Formally, θ is any mapping θ : Rn×(m+1) → R that maps each

possible value of (Yi(t))it into the corresponding value of the parameter. For example, θ

13



may be the average treatment effect of treatment t1 over control t0,
Σn

i=1(Yi(t1)− Yi(t0))

n
.

I say parameter θ is unbiasedly estimable with experimental design p ≡ (pit)it and a simple

estimator if there exists an estimator θ̂(Y,D) such that

E(θ̂(Y,D)|p) = θ

and θ̂(Y,D) can be written as

θ̂(Y,D) = Σif(Yi, Di) + ΣtΣpΣp′gtpp′µ̂p(t)µ̂p′(t)

where µ̂p(t) =
Σi:pi=pDitYi

ptnp

. Here E(·|p) is expectation with respect to the distribution of Dit

induced by experimental design p.25 A measure of the informativeness of an experimental

design is the set of parameters unbiasedly estimable with the experimental design and a

simple estimator. In terms of this measure, EXaM turns out to be at least as informative as

RCT.

Proposition 4 (Information). Parameter θ is unbiasedly estimable with EXaM p∗it(ε) with

any ε > 0 and a simple estimator if θ is unbiasedly estimable with RCT pRCT
it and a simple

estimator.26

Many parameters, such as the average treatment effect (ATE) and the mean and variance of

potential outcomes, are known to be unbiasedly estimable with RCT and a simple estimator.

Proposition 4 implies all of such parameters are also unbiasedly estimable with EXaM.

I use ATE to illustrate the intuition for and implementation of Proposition 4. EXaM

makes all subjects share the same budget constraint and tie-breaking rule. As a result,

if subjects share the same predicted effects and WTP, these subjects solve the same util-

ity maximization problem and get the same vector of treatment assignment probabilities.

EXaM therefore produces treatment assignment that is independent from (unconfounded

by) potential outcomes conditional on predicted effects and WTP, which are observable to

25Since Yi(t) is constant and Yi = ΣtDitYi(t), the only source of randomness in θ̂(Y,D) is randomness in

Dit. Also, I allow estimator θ̂(Y,D) to implicitly use known elements of the experimental design problem

such as WTP wit, predicted effects eti, and treatment assignment probabilities pit. I do not allow θ̂(Y,D)
to use unknown elements, especially potential outcomes.

26This measure of informativeness induces an order over experimental designs. A design p is more informa-
tive than another design q if the set of parameters unbiasedly estimable with design p and a simple estimator
includes the set of parameters unbiasedly estimable with design q and a simple estimator. This order is a
relaxation of Blackwell’s order (Blackwell and Girshick, 1954). That is, if p is more informative than q in
Blackwell’s sense, p is also more informative than q in my sense (but not vice versa). As a consequence,
my order allows me to compare more experimental designs than Blackwell’s does. For example, EXaM and
RCT are comparable in my sense but incomparable in Blackwell’s sense.
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the experimenter:

(Yi(t))t ⊥⊥ Di|(eti, wit)t. (1)

With this conditional independence, EXaM fits into causal inference with stratified ex-

periments, selection-on-observables, and the propensity score, i.e., treatment assignment

probabilities conditional on observables (see Imbens and Rubin (2015) for an overview). In

particular, conditional independence (1) and Rosenbaum and Rubin (1983)’s result imply

that the same conditional independence holds conditional on the propensity score, which

EXaM computes as p∗i (ε) ≡ (p∗it(ε))t and again known to the econometrician:

(Yi(t))t ⊥⊥ Di|p∗i (ε) (2)

This conditionally independent treatment assignment allows the experimenter to unbiasedly

estimate the conditional average treatment effects of each t over t0 conditional on observable

propensity scores p∗i (ε),

Σn
i=11{p∗i (ε) = p}(Yi(t)− Yi(t0))

Σn
i=11{p∗i (ε) = p}

for each p,

which I denote by CATEpt. These conditional-on-the-propensity-score effects are a version

of Marginal Treatment Effects (Björklund and Moffitt, 1987; Heckman and Vytlacil, 2005).

Marginal Treatment Effects are therefore identifiable with EXaM’s data.27 By summing up

such marginal or conditional effects, the experimenter can also back out the (unconditional)

ATE, the single most important causal object identified and estimated by RCT. That is,

with weights δp ≡
Σn

i=11{p∗i (ε) = p}
n

, I use CATEpt’s to get ATE as follows:

ΣpδpCATEpt =
Σn

i=1(Yi(t1)− Yi(t0))

n
.

Importantly, the key conditional independence properties (1) and (2) hold regardless

of whether eti and wit coincide with the true treatment effects and WTP. In this sense,

like RCT, EXaM’s informational virtue is robust to the experimenter’s any misspecification

27To see this, as in Heckman and Vytlacil (2005), focus on an experimental design problem with only one
treatment t1 compared to the control t0. Given EXaM’s assignment probability p∗it1(ε), let ri ∼ U [0, 1] with
ri ⊥⊥ (Yi(t0), Yi(t1)), Zi = 1− ri, and Vi = 1− p∗it1(ε). Write the treatment assignment as

Dit1 = 1{ri ≤ p∗it1(ε)} = 1{1− ri ≥ 1− p∗it1(ε)} = 1{Zi ≥ Vi}.

Note that E(1{Zi ≥ Vi}) = p∗it1(ε) as desired. This model is a special case of Heckman-Vytlacil’s model with
local instrumental variable Zi because Zi is independent of (Yi(t0), Yi(t1), Vi) by construction while Vi can be
correlated with (Yi(t0), Yi(t1)). As a result, Heckman and Vytlacil (2005)’s method allows the experimenter
to identify Marginal Treatment Effects with EXaM’s data.
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about predicted effects and WTP.

The above estimability argument motivates a regression strategy to estimate ATE with

EXaM’s data. As a warm-up, focus on {i|p∗i (ε) = p}, the subpopulation of subjects with

propensity vector p, and consider this regression on the subpopulation:

Yi = αp + Σtm
t=t1

βptDit + εi, (3)

By conditional independence property (2), for each treatment t 6= t0, OLS estimate β̂pt from

this regression is unbiased for CATEpt. I then aggregate the resulting estimates β̂pt’s into

Σpδpβ̂pt, which I denote by β̂t. This estimator unbiasedly estimates the average treatment

effect with a variance characterized below.

Proposition 5 (Bias and Variance). Suppose that the data-generating process is EXaM

p∗(ε) ≡ (p∗it(ε))it with any ε > 0. β̂t is an unbiased estimator of the average treatment effect.

In particular,

E(β̂t|p∗(ε)) =
Σn

i=1(Yi(t1)− Yi(t0))

n
(4)

Var(β̂t|p∗(ε)) =
∑
p

δ2p

( S2
pt

ptnp

+
S2
pt0

pt0np

−
S2
ptt0

np

)
. (5)

where Ȳp(t) ≡
∑

i:p∗i (ε)=p Yi(t)

np

is the mean of Yi(t) in the subpopulation with propensity p,

S2
pt ≡

∑
i:p∗i (ε)=p(Yi(t)− Ȳp(t))

2

np − 1
is the variance of Yi(t) in the subpopulation, and S2

ptt′ ≡∑
i:p∗i (ε)=p(Yi(t)− Yi(t

′)− (Ȳp(t)− Ȳp(t
′)))2

np − 1
is the variance of Yi(t)− Yi(t

′) in the same sub-

population.

Alternatively, empirical researchers may prefer a single regression controlling for propen-

sity vectors:

Yi = Σtm
t=t1

btDit + Σtm
t=t1

ctp
∗
it(ε) + ei, (6)

producing an alternative estimator b̂t. As shown in the appendix, b̂t is an unbiased estimator

of a differently weighted treatment effects:

E(b̂t|p∗(ε)) =
ΣpλpCATEpt

Σpλp

with weights λp ≡ δppt(1− pt). (7)
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5.1 Comparison of EXaM and RCT

Proposition 5 implies EXaM’s ATE estimation is not only unbiased but also as precise as

RCT’s. With RCT’s data, the most standard estimator of ATE of treatment t over control

t0 is the difference in the average outcome between subjects assigned to treatment t and

those assigned to control t0:

β̂RCT
t ≡

∑
i YiDit∑
i Dit

−
∑

i YiDit0∑
i Dit0

.

This β̂RCT
t is a special case of β̂t when p∗it(ε) = pRCT

it and so unbiased by Proposition 5 or

Imbens and Rubin (2015)’s Theorem 6.2. Proposition 5 also implies the variance of β̂RCT
t .28

Corollary 1 (Imbens and Rubin (2015)’s Theorem 6.2).

E(β̂RCT
t |pRCT ) =

Σn
i=1(Yi(t1)− Yi(t0))

n
(8)

V (β̂RCT
t |pRCT ) =

S2
t

ct
+

S2
t0

ct0
−

S2
tt0

n
, (9)

where S2
t ≡

∑
i(Yi(t)− Ȳ (t))2

n− 1
and S2

tt′ ≡
∑

i(Yi(t)− Yi(t
′)− (Ȳ (t)− Ȳ (t′)))2

n− 1
.

How do the two variances, V (β̂t|p∗(ε)) and V (β̂RCT
t |pRCT ), compare to each other? It

depends on the distribution of potential outcomes and treatment assignment probabilities. In

particular, EXaM may produce more precise ATE estimates (V (β̂t|p∗(ε)) < V (β̂RCT
t |pRCT ))

if heterogeneous potential outcomes are well correlated with EXaM’s treatment assignment

probabilities. The following example illustrates this possibility.

Example 1. Suppose there is only one treatment t1, n = 50, and ct0 = ct1 = 25. The

subjects are divided into two groups A and B of the same size based on their potential

outcomes Yi(t1) and Yi(t0). For anybody in group A, I have Yi(t1) = 1 and Yi(t0) = 1. For

anybody in group B, I have Yi(t1) = 5 and Yi(t0) = 3. Assume the experimenter correctly

predicts treatment effects: et1i = 0 for every i in group A while et1i = 2 for group B.

Let wit1 > 0 for all subjects. EXaM with ε = 0 gives the following treatment assignment

probabilities29: p∗it1(ε) = 0.2 for every i in group A while p∗it1(ε) = 0.8 for group B. Under

28This application of Proposition 5 assumes that under RCT, every treatment assignment satisfying the
capacity constraint (ct) occurs equally likely.

29EXaM outputs these treatment assignment probabilities if I set α = −15b

8
, βt1 = 5b, and βt0 = 0 given

an arbitrary b.

17



RCT, pRCT
it1

= 0.5 for all subjects. Applying Proposition 5 and Corollary 1 to this example,

I have

V (β̂t|p∗(ε)) = 0 <
9

49
= V (β̂RCT

t |pRCT ).

This section demonstrates how the experimenter should use EXaM to estimate key treat-

ment effects along with the fact that EXaM can estimate ATE with potentially smaller

standard errors than RCT. To execute, verify, and quantify these observations, I implement

EXaM in a particular empirical context and analyze its data with estimators like b̂t and β̂t.

Before doing so, I relate EXaM to existing experimental designs.

6 Comparison with Existing Designs

Classical Experimental Design

The traditional experimental design literature (Cox and Cochran (1992), Athey and Imbens

(2017) Section 7) is as old as the very concept of randomized experiments. This literature

focuses on how to design experiments for maximizing information measured by the power

of testing the null hypothesis of no treatment effect, the mean squared error in treatment

effect estimation, and so on. This focus on information continues in the modern literature

on sequential and adaptive experimental design (Hahn et al., 2011). My interest is more in

ethics and welfare.

Preference- and Response-adaptive Designs

With its interest in subject well-being measured by WTP and predicted effects, EXaM is

closer to younger and smaller strands of the literature on preference- and response-adaptive

experimental designs. Preference-adaptive designs reflect subject preferences into treatment

assignment probabilities. For example, Randomized Consent Trials (originally proposed

by Zelen (1979) and further advocated by Angrist and Imbens (1991)) randomize subjects

into two groups. In one group, subjects are allowed to choose the treatment or the control

based on their preferences. All subjects in the other group are assigned to the control.30

Selective Trials by Chassang et al. (2012, 2015), where the treatment assignment probability

30In Randomized Consent Trial, treatment assignment is chosen by subjects and not by chance. Yet
data from Randomized Consent Trial identifies causal effects since the initial random grouping works as
a random instrumental variable for the non-random treatment assignment. Randomized Consent Trial is
mathematically equivalent to the instrumental variable setting with one-sided noncompliance (Bloom, 1984).
Crucially, Zelen (1979) proposed to intentionally introduce such noncompliance (choice) to improve subject
well-being. See also Angrist and Imbens (1991)’s section 3.1 for a more refined discussion.
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is increasing in the WTP for the treatment, can also be thought of as a preference-adaptive

design.31

In complementary response-adaptive designs (reviewed by Hu and Rosenberger (2006)

and Food and Drug Administration (2010)), the experimenter incorporates predicted treat-

ment effects into treatment assignment probabilities. For example, the Randomized Play-

the-Winner Rule (Zelen, 1969; Wei and Durham, 1978) more likely assigns a treatment to

patients predicted to have better treatment effects.32

EXaM attempts to integrate preference- and response-adaptive designs into a unified

design. With help from economic theory and causal inference, EXaM is formally shown to

strike a best balance between WTP and predicted effects (Proposition 2) without hurting

incentive compatibility (Proposition 3) and experimental information (Propositions 4 and

5).

Multi-Armed Bandit Algorithms

EXaM shares much of its spirit with Multi-Armed Bandit (MAB) algorithms in computer

science, machine learning, and statistics (Gittins et al., 2011): Both MAB and EXaM at-

tempt to strike a balance between exploration (information) and exploitation (subject or

experimenter welfare). MAB algorithms are popular in the web industry, especially for on-

line ads and recommendations (White, 2012). Among many differences between MAB and

EXaM, MAB mostly ignores incentive issues. In contrast, EXaM is formally and empirically

shown to be nearly incentive compatible.33

31Chassang et al. (2012) proposed Selective Trials not for respecting subject welfare but for obtaining
more information about the effect of subjects’ treatment usage intensity on outcomes. Here I reinterpret
Selective Trials from my well-being perspective. Also, other examples of preference-adaptive designs are
recent RCTs in development economics that elicit subject preferences for treatment (Ashraf et al., 2006;
Cohen and Dupas, 2010; Ashraf et al., 2010; Kremer et al., 2011; Devoto et al., 2012; Dupas, 2014). Many
of their experimental designs are implicitly preference-adaptive.

32The treatment assignment literature in econometrics (Manski, 2008) and medicine (Chakraborty and
Moodie, 2013) attempts a related but distinct task of using experimental data to optimally assign treatment
to maximize welfare alone. The treatment assignment literature also largely ignores incentive issues.

33There are a small number of recent studies on incentive-compatible multi-armed bandit mechanisms
(Babaioff et al., 2014). It’s hard to apply any of them to the experimental design problem because of
particular structures they impose (like the focus on deterministic mechanisms and the availability of real
monetary transfers).
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7 Empirical Application

7.1 Background

My empirical test bed for EXaM is an application to a spring protection experiment in

Kenya. Waterborne diseases, especially diarrhea, remain the second leading cause of death

among children. Almost 20% of child deaths under age five (about 1.5 million each year) is

due to diarrhea.34 Indeed, the only quantitative United Nations Millennium Development

Goal is in terms of “the proportion of the population without sustainable access to safe

drinking water and basic sanitation,” such as protected springs.35 Yet there is controversy

about the health impacts of indirect improvements like spring protection that may fall short

of piping better water into the home. Experts argued that improving source water quality

may have only limited effects since, for example, water is likely recontaminated in transport

and storage. These arguments were made in the absence of any randomized experiment.

This controversy motivated Kremer et al. (2011) to analyze randomized spring protection

conducted by an NGO (International Children Support) in Kenya in the mid 2000s. This

experiment randomly selected springs to receive protection from the universe of 200 local

unprotected springs (after some eligibility screening). As experimental subjects, the NGO

selected at baseline and followed afterward a representative sample of about 1500 households

that regularly used some of the 200 springs. Kremer et al. (2011) find that spring protec-

tion substantially improves source water quality and is moderately effective at improving

household water quality after some recontamination. Diarrhea among children in treatment

households falls by about a quarter of the baseline level. I call this real experiment “Kremer

et al. (2011)’s experiment” and distinguish it from EXaM and RCT as formal concepts in

my model.

I consolidate Kremer et al. (2011)’s experimental data and my methodological framework

to empirically evaluate EXaM. With the language and notation of my model, experimental

subjects are households in Kremer et al. (2011)’s survey sample. The protection of the

spring each household uses and no protection are a single treatment t1 and a control t0,

respectively. Each household i’s WTP for better water access t1 is denoted by wit1 , which

I estimate below. I also estimate the predicted treatment effect et1i of spring protection t1

on household i’s child diarrhea outcome. Using this embedding, I implement EXaM and

compare it with RCT in terms of welfare, information, and incentive.

34See UNICEF and WHO’s joint document “Diarrhoea: Why Children Are Still Dying and What Can
be Done,” at http://apps.who.int/iris/bitstream/10665/44174/1/9789241598415_eng.pdf, retrieved
October 2017.

35See http://www.un.org/millenniumgoals/, retrieved in October 2017
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7.2 Heterogeneous Treatment Effects and WTP

Treatment Effects

For executing EXaM, I need to know wit1 and et1i to be substituted into EXaM. I estimate

heterogeneous treatment effects et1i of access to better water in the same way as Kremer et

al. (2011). To describe it, it is useful to provide additional details of Kremer et al. (2011)’s

experiment. The experimenter NGO aspired to eventually protect all the 200 springs but

planned for the protection intervention to be phased in over four years due to financial and

administrative constraints. In each round, a subset of springs were randomly picked to be

protected. Figure I in Kremer et al. (2011) details the timeline of the experiment.

This experimental scheme legitimizes the following OLS regression at the (child i, spring

j, survey round t)-level:

Yijt = (φ1 + φ2Xi)Tjt + αi + αt + uij + εijt, (10)

where Yijt is the binary outcome indicating that child i in a household drawing water from

spring j at baseline has diarrhea in survey round t. Xi contains covariates of child i’s house-

hold (baseline latrine or sanitation density, diarrhea prevention knowledge score, mother’s

years of education, child gender). Tjt is the binary treatment indicating that spring j is

treated in survey round t. αi, αt, and uij are fixed effects. The treatment effect is φ1 + φ2Xi

and is heterogeneous across subjects with different covariates Xi.

Estimates from the OLS regression (10) are in Table 3. The average treatment effect is

about 5% absolute reduction or about 25% relative reduction in the diarrhea outcome Yijt.

Households with better diarrhea prevention knowledge scores or mother education tend to

have better treatment effects. This heterogeneity may be because such households more

sensitively change their drinking and washing water in response to the availability of a clean

water source.

I then use the OLS estimates to predict the treatment effect for each household i with

êt1i ≡ φ̂1 + φ̂2Xi, where φ̂1 and φ̂2 are OLS estimates of φ1 and φ2, respectively. Kremer

et al. (2011)’s experiment randomized Tjt and gives its coefficient êt1i an interpretation as a

causal effect.36

Estimated treatment effects êt1i exhibit significant heterogeneity, as illustrated in Figure

1a. In Figure 1a, I simulate êt1i with parametric bootstrap from N(êt1i, SE(êt1i)) and show

36Xi contains only household-level covariates except for child gender. When computing household-level
êt1i, I code a household-level indicator for whether each household has a boy and substitute the indicator
into Xi. This way, it is justifiable to interpret êt1i as household-level predicted effects.
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the histogram of the simulated values. The standard deviation is about 3.5% (shown in

Appendix Table A.8).37

WTP

I estimate heterogeneous WTP wit1 for better water as follows. In the experimental target

area, each household draws water from a water source the household chooses among multiple

sources in the neighborhood. This fact motivates a discrete choice model of households’ water

source choices, in which households trade off water quality against other source characteristics

such as proximity. This model, combined with exogenous variation in water quality generated

by Kremer et al. (2011)’s experiment, produces revealed preference estimates of household

valuations of the spring protection treatment.

Specifically, I use the following mixed or random-coefficient logit model (Train (2003),

chapter 6):

Uijt = (βi + γ1Xi)Tjt − ciDij + δj + εijt, (11)

where Uijt is household i’s utility from source j in survey round t and Dij is household

i’s roundtrip distance to spring j. βi and ci are random preference coefficients assumed to

be distributed according to normal and triangular distributions, respectively. I impose the

triangular assumption for ci in order to make sure every household prefers proximity. δj are

spring-type fixed effects in the spirit of Berry et al. (1995) and attempt to capture the average

preference for potentially unobserved spring type characteristics other than treatment Tjt and

distance Dij. εijt is logit utility shocks iid according to the type I extreme value distribution

with usual variance normalization to π2/6. I estimate the model with data on households’

spring choices (in the final survey round) and a standard maximum simulated likelihood

method (Train (2003), chapter 10), which I detail in Appendix A.2.3.

The mixed logit preference estimates are in Table 4. Households have significant distaste

for distance and significant preferences for protected treatment springs (other characteristics

being equal). Not surprisingly, households with better diarrhea prevention knowledge scores

or mother education tend to have stronger revealed preferences for the spring protection

treatment. This heterogeneity is expected if such households are more conscious of water

quality.

I then exploit the mixed logit estimates to estimate household i’s WTP for treatment t1

as ŵ′
it1
≡ β̂i+ γ̂1Xi, where β̂i and γ̂1 are mixed logit estimates of βi and γ1, respectively. For

the random coefficient β̂i, I bootstrap it from its estimated distribution. The identification

of ŵ′
it1

is helped by Kremer et al. (2011)’s experimental variation in protection treatment Tjt

37More details about each estimation or simulation procedure in this section are in Appendix A.2.3.
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since otherwise Tjt is likely correlated with unobserved spring characteristics εijt, making it

impossible to identify the WTP for water quality alone.

Since ŵ′
it1

is in an elusive utility unit, I convert it into a more easily-interpreted measure

in terms of time cost of water collection. To do that, I first compute ŵ′
it1
/ĉi, where ĉi is

the mixed logit estimate of ci (the distaste coefficient on distance). Again, I bootstrap the

random coefficient ĉi from its estimated distribution. I then multiply it by each household’s

self-reported time cost of traveling for a unit of distance. This procedure gives me a time

cost measure of WTP for the treatment, ŵit1 . This ŵit1 is measured by workdays utility-

equivalent to ŵ′
it1
.

Estimated WTP ŵit1 is in Figure 1b, showing the histogram of simulated values of ŵit1 .

The median WTP is about 25 workday-equivalent with substantial heterogeneity (shown in

Appendix Table A.8).

While both WTP ŵit1 and treatment effects êt1i show sizable heterogeneity, there turns

out to be only limited correlation between the two. See the joint density plot in Figure 1c,

where there is a positive correlation between WTP ŵit1 and treatment effects êt1i, but the

magnitude of the correlation is small (the OLS coefficient is about 0.005). This means that

WTP ŵit1 and treatment effects êt1i contain different types of information about subject

welfare, suggesting the importance of respecting both WTP and predicted effects separately.

It is what EXaM attempts to do, as I explain next.

7.3 EXaM vs RCT

Now imagine somebody is planning a new experiment for further investigating the same

spring protection treatment. What experimental design should she use? Specifically, which is

better between RCT and EXaM? A full-fledged comparison of experimental designs requires

a meta experiment that randomly assigns different designs to many experimental studies. To

circumvent the difficulty with such a meta experiment, I resort to an alternative approach

exploiting the above WTP and treatment effect estimates. My approach is to bootstrap

WTP and predicted effects from the estimated distributions of ŵit1 and êt1i, then use the

bootstrapped data to simulate EXaM, and finally compare EXaM with RCT in terms of

welfare, information, and incentive properties.

Throughout, I fix the set of subjects and treatments as in Kremer et al. (2011)’s exper-

iment. That is, there are 1540 households as subjects to be assigned either to the single

water source protection treatment t1 or the control t0. Set the treatment capacity ct1 to be

the number of households assigned to the treatment t1 in Kremer et al.’s experiment (663).

The control capacity ct0 is the number of the remaining households, 877(=1540-663). I set
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the bound parameter ε to be 0.1.

To run EXaM, the remaining pieces of necessary information are WTP wit1 and pre-

dicted effects et1i. I simulate WTP and predicted effects with parametric bootstrap from the

estimated distribution of ŵit1 and êt1i, i.e., the estimated statistical models (10) and (11).

Each bootstrap sample is of the same size (n = 1540) as the original sample in Kremer et

al. (2011)’s experiment. I have to resort to this model-based, parametric bootstrap instead

of a nonparametric bootstrap since WTP and predicted effects are model-based objects not

directly observed in the data.

I quantify the difference between EXaM and RCT mixing the above bootstrap with

counterfactual experimental design simulations. In particular, after simulating (et1i, wit1), I

compute treatment assignment probabilities p∗it(ε) by running EXaM on the bootstrapped

data along with other fixed parameters like the treatment capacity. The algorithm I use

for executing EXaM is described in Appendix A.2.4. Appendix Figure A.1 shows that

the resulting treatment assignment probabilities p∗it1(ε) with EXaM are often different from

RCT’s constant probability pRCT
it1

.

Welfare

I then calculate two welfare measures for each household i:

w∗
i ≡ Σtp

∗
it(ε)wit and e∗i ≡ Σtp

∗
it(ε)eti.

w∗
i and e∗i are two ex ante welfare measures in terms of WTP and predicted effects, respec-

tively, in my theoretical welfare analysis (Proposition 2). The simulation process for RCT

is analogous except that the treatment assignment probability is fixed at pRCT
it ≡ ct/n =

877/1540 = .56. Note that this RCT is a hypothetical experimental design in lines with

my Definition 1 and different from Kremer et al. (2011)’s experiment involving additional

real-world complications. More details about simulation procedures in this section are in

Appendix A.2.4.

I find EXaM to improve on RCT in terms of the welfare measures w∗
i and e∗i , as Figure 2

shows. The figure draws the distribution of w∗
i and e∗i over households and 1000 bootstrap

samples. Among other things, the median of average WTP w∗
i for assigned treatments

increases by about 5.7 workday-equivalent utilities or 60% under EXaM than under RCT.

Another interpretation of this WTP improvement is about 23% of the average WTP for the

treatment (about 25 workdays, as shown in Appendix Table A.8). Similarly, EXaM improves

the median of e∗i by about .6% absolute reduction or 30% reduction relative to RCT’s level.

This predicted effect benefit amounts to about 13% of the average treatment effect of the
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spring protection found by Kremer et al. (2011). This suggests EXaM’s welfare optimality

(Proposition 2) is quantitatively and empirically relevant.

Information

Data from EXaM also allows me to obtain more or less the same econometric conclusion

about treatment effects as RCT. I do the following procedure many times:

(1) Simulate (et1i, wit1), run EXaM to get treatment assignment probabilities p∗it(ε), and

use p∗it(ε) to draw a final deterministic treatment assignment, denoted by Di ≡ 1{i is
ex post assigned to t1}.

(2) Simulate counterfactual or predicted outcome Yi under Di simulating the OLS model

I estimate in the last section:

Yi ≡ (φ̂1 + φ̂2Xi)Di + α̂i + (average of α̂t across all t) + (average of ûij across all j),

where objects with a hat mean estimates of the corresponding parameters in regression

(10). I take the average of α̂t’s and ûij’s to adapt regression (10) at the (i, j, t)-level

to my counterfactual simulation setting at the household-i-level. Note that the above

expression is not a regression but the definition of Yi.

(3) Use the above simulated Yi and Di to estimate treatment effects with b̂OLS from this

OLS regression:

Yi = a+ bDi + cp∗it1(ε) + ei,

where I control for propensity score p∗it1(ε) to make treatment assignment Di condi-

tionally random, as suggested by the discussion in Section 5. This regression is a

stripped-down version of the regression strategy (6) in Section 5.

The procedure for RCT is analogous except that the treatment assignment probability is

fixed at pRCT
it ≡ ct/n.

Causal inference with EXaM turns out to be as unbiased and precise as that with RCT.

Figure 3 plots the distribution of the resulting treatment effect estimates b̂OLS and its p

values (both robust and non-robust) over 1000 simulations for each experimental design.

Panel 3a shows that consistent with Propositions 4 and 5, the median and mean of b̂OLS for

EXaM are indistinguishable from that under RCT. Both experimental designs successfully

recover Kremer et al. (2011)’s average treatment effect estimate (4.5% reduction in diarrhea;

recall column 1 in Table 3).
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Perhaps more importantly, the randomization distribution of b̂OLS for EXaM has a similar

standard deviation as that for RCT. This means that the two experimental designs produce

similar exact, finite-sample standard errors in their ATE estimates. Variations of this obser-

vation are Panels 3b and 3c, which show the randomization distribution of the p values for

their ATE estimates (robust and non-robust, respectively). RCT is slightly more likely to

produce smaller p values than EXaM, but their median p values are .015 for RCT and .021

for EXaM, meaning that both EXaM and RCT detect a significant average treatment effect

for a majority of cases. Overall, EXaM appears to succeed in its informational mission of

eliminating selection bias and recovering the average treatment effect precisely enough.

Incentive

Finally, EXaM’s WTP benefits can be regarded as welfare-relevant only if EXaM provides

subjects with incentives to reveal their true WTP. I conclude my empirical analysis with an

investigation of the incentive compatibility of EXaM. I repeat the following procedure many

times.

(1) As before, simulate (et1i, wit1) and run EXaM to get treatment assignment probabilities

p∗it(ε).

(2) Randomly pick one subject j as a WTP manipulator and one potential WTP manip-

ulation w′
jt1

by j. I choose the manipulator j uniformly randomly among all subjects

while w′
jt1

is from N(wjt1 , 100). Run EXaM on the simulated data in step (1) but with

the WTP manipulation w′
jt1

to get treatment assignment probabilities p′it(ε)

(3) Compute the trueWTP gain from the manipulation w′
jt1
: ∆w ≡ Σtp

′
it(ε)wjt−Σtp

∗
it(ε)wjt.

As desired and consistent with Proposition 3, EXaM is found to give subjects little incentive

for WTP misreporting. Figure 4 shows this by drawing the distribution of ∆w over 1000

simulations. The WTP gain ∆w from misreporting is mostly negative and well below zero

on average. This suggests that EXaM may provide subjects with stronger average incentives

for truthful WTP reporting than RCT does (because subjects in RCT are indifferent among

all possible WTP reports). EXaM may therefore be better at eliciting reliable WTP data.
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8 Discussion

8.1 Uncertainty in Predicted Effects and Preferences

The experimenter’s information about preferences and predicted effects may be uncertain

and probabilistic. What experimental design should the experimenter use with uncertain

preferences and predicted effects? An uncertain experimental design problem consists of

experimental subjects, treatments, treatment capacities, and the following objects.

• Each subject i’s preference or WTP w̃it for treatment t where w̃it is a random variable.

• Each treatment t’s predicted treatment effect ẽti for subject i where ẽti is a random

variable.

w̃it and ẽti are the experimenter’s statistical perceptions about WTP and predicted treatment

effect, respectively. I normalize ẽti and w̃it by assuming ẽt0i = w̃it0 = 0 with probability 1

for every subject i. Denote wit ≡ E(w̃it) and eti ≡ E(ẽti) where each expectation is with

respect to the distribution of w̃it and ẽti, respectively.

When I apply EXaM to (wit, eti), the resulting EXaM nests RCT, is efficient with respect

to (wit, eti), is approximately incentive compatible, and is as informative as RCT in the same

senses as in Propositions 1-4, respectively.

8.2 Ordinal Predicted Effects and Preferences

The experimenter’s information about preferences and predicted effects may be ordinal.

What experimental design should the experimenter use with ordinal preferences and pre-

dicted effects? An ordinal experimental design problem consists of experimental subjects,

treatments, treatment capacities, and the following objects.

• Each subject i’s ordinal preference %i for treatment t where t %i t
′ means subject i

weakly prefers treatment t over t′. %i may involve ties and indifferences.

• Each treatment t’s ordinal predicted treatment effect %t for subject i where i %t i′

means treatment t is predicted weakly more effective for subject i than for subject i′.

Again, %t may involve ties and indifferences.

I consider the following adaptation of EXaM to this ordinal experimental design problem.

Definition 3 (Ordinal EXaM). (1) Create any cardinal WTP w′
it of each subject i for

each treatment t so that w′
it > w′

it′ if and only if t �i t
′.
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(2) Create any cardinal predicted effect of each treatment t for each subject i so that

e′ti > e′t′i if and only if i �t i
′.

(3) Run EXaM (as defined in Definition 2) on (w′
it, e

′
ti) to get treatment assignment prob-

abilities p∗oit (ε)

Ordinal EXaM nests RCT, is approximately incentive compatible, and is as informative as

RCT in the same senses as in Propositions 1, 3, and 4, respectively. Moreover, ordinal EXaM

has the following nice welfare property with respect to ordinal preferences and predicted

effects.

Proposition 6. p∗oit (ε) is ordinally efficient in the following sense. There is no other exper-

imental design (pit) with pit ∈ [ε, 1− ε] for all subject i and treatment t and such that for all

cardinal WTP wit consistent with ordinal %i and all cardinal predicted effects eti consistent

with ordinal %t, I have

Σtpitwit ≥ Σtp
∗o
it (ε)wit and Σtpiteti ≥ Σtp

∗o
it (ε)eti

for all i with at least one strict inequality.

9 Takeaway and Future Directions

Motivated by the high-stakes nature of many RCTs, I propose an experimental design dubbed

as Experiment-as-Market (EXaM). EXaM is a solution to a hybrid experimental-design-as-

market-design problem of maximizing subjects’ welfare subject to the constraint that the

experimenter must produce as much information and incentives as RCT (Propositions 2-4).

These properties are then verified and quantified in an application to a water source protec-

tion experiment. Taken together, the body of evidence suggests empirical support for the

idea that EXaM improves subject well-being with little or no information and incentive costs.

The demonstrated benefits are conservative in that it does not incorporate potential addi-

tional benefits from EXaM for improving recruitment, compliance with assigned treatment,

and attrition (recall the discussion in Section 2).

This paper takes a step toward introducing welfare and ethics into the randomized exper-

iment landscape. This opens the door to several open questions. For example, practically,

the most crucial step is to implement EXaM in the field. In order to make EXaM and other

designs workable in practice, it is also important to empirically understand the size and inner

working of the clinical trial industry. A brief analysis in Section 2 is such an effort.
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Econometrically and theoretically, this paper’s analysis is simplistic in many respects, and

a variety of extensions are in order. Key extensions include analyzing EXaM in an instrumen-

tal variable setting where subjects may not comply with treatment assignment; analyzing

experimental designs with endogenous subject participation and dropout; introducing mone-

tary compensation and other contracts like informed consent; analyzing EXaM’s dynamic or

sequential properties; optimally choosing sample size and treatment definitions (in addition

to designing treatment assignment probabilities given the sample size and treatment defi-

nition); considering information frictions and psychological elements in patient preferences;

and analyzing games among experimenters with experimental design as an action or strat-

egy. It is also intriguing to use the EXaM framework to analyze external validity of causal

inference with different experimental designs. I leave these challenging directions for future

research.
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Table 1: Magnitude of a Part of the Clinical Trial Industry

(a) Registered Clinical Trials & Sample Sizes

Sample Period 2007-2017 May

Total Number of Clinical Trials Registered 296,597
Sum of Sample Sizes 367,902,580

(b) Time Evolution

Notes: This table provides summary statistics of clinical trials registered in the WHO International Clinical
Trials Registry Platform (ICTRP, http://www.who.int/ictrp/en/, retrieved in October 2017). The sample
consists of clinical trials registered there between January 1st 2007 to May 30th 2017. I exclude trials with
registered sample size larger than five millions. See Section 2 for discussions about this exhibit and Appendix
A.2.1 for the detailed computational procedure. Additional results are in Appendix Tables A.1-A.3.
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Table 3: OLS Regression Estimates of Heterogeneous Treatment Effects

Notes: This table shows OLS regression estimates of heterogeneous treatment effects of spring protection.
Data from all four survey rounds (2004, 2005, 2006, 2007), sample restricted to children under age three at
baseline (in 2004) and children born since 2004 in sample households. Diarrhea defined as three or more
“looser than normal” stools within 24 hours at any time in the past week. Different columns differ in the
set of baseline household characteristics interacted with the treatment indicator. The gender-age controls
include linear and quadratic current age (by month), and these terms interacted with a gender indicator. I
use specifications without additional controls. Stars *, **, and *** mean significance at 90%, 95%, and 99%,
respectively, based on Huber-White robust standard errors clustered at the spring level. See Section 7.2 for
the model description and discussions about this table.
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Table 4: Maximum Simulated Likelihood Estimates of Mixed Logit Model of Spring Choice

Notes: This table shows mixed logit estimates used for estimating heterogeneous WTP for the treatment.
Each observation is a unique household-water source pair in one water collection trip recorded in the final
round of household surveys (2007). The dependent variable is a multinomial indicator equaling 1 if the
household chose the water source represented in the household-source pair. The omitted water source
category is non-program springs outside the target area of the experiment. Different columns differ in the
set of baseline household characteristics interacted with the treatment indicator. The indicator for the spring
that each household used at baseline is in the models, but its coefficient estimate is not shown in the table.
Stars *, **, and *** mean significance at 90%, 95%, and 99%, respectively. See Section 7.2 for the model
description and discussions about this table. See Appendix A.2.3 for the estimation procedure to produce
these estimates.
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Figure 1: Treatment Effects and WTP for the Treatment

(a) Heterogeneity in Treatment Effects êt1i (b) Heterogeneity in WTP ŵit1

(c) Limited Correlation between Treatment Effects & WTP

Notes: This figure shows the pattern of heterogeneity in estimated WTP ŵit1 and predicted treatment effects
êt1i. Panel 1a is about the predicted treatment effects êt1i measured in percentage reduction in the incidence
of child diarrhea in the past week, while Panel 1b is about WTP for the spring protection treatment ŵit1 ,
measured by time cost of water collection in the unit of workdays. I simulate values of ŵit1 and êt1i with
parametric bootstrap from the main statistical specifications including all of the interactions between the
treatment indicator and household characteristics (baseline latrine density, diarrhea prevention knowledge
score, mother’s years of education, and having a boy in the household). Panel 1c demonstrates the correlation
between WTP ŵit1 and predicted treatment effects êt1i. In order to emphasize visibility, I focus on the three
standard deviations around the mean. See Section 7.2 for discussions about this figure. See Appendix A.2.3
for the detailed computational procedure.
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Figure 2: EXaM vs RCT: Welfare

(a) Average WTP for Assigned Treatments w∗
i

(b) Avg Predicted Effects of Assigned Treatments e∗i

Notes: To compare EXaM and RCT’s welfare performance, this figure shows the distribution of average
subject welfare over 1000 bootstrap simulations under each experimental design. Panel 2a measures welfare
with respect to average WTP w∗

i of assigned treatments while Panel 2b with respect to average predicted
effects e∗i of assigned treatments. A dotted line indicates the distribution of each welfare measure for RCT
while a solid line indicates that for EXaM. Each vertical line represents median. I simulate values of WTP
ŵit1 and predicted effects êt1i with the main statistical specification including all of the interactions between
the treatment indicator and household characteristics (baseline latrine density, diarrhea prevention knowledge
score, mother’s years of education, and having a boy in the household). See Section 7.3 for discussions about
this figure. See Appendix A.2.4 for the detailed computational procedure.
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Figure 3: EXaM vs RCT: Information

(a) Distribution of Average Treatment Effect Estimates

(b) Associated p Values (Robust) (c) Associated p Values (Non-robust)

Notes: This figure compares EXaM and RCT’s causal inference performance by showing the randomization
distribution of average treatment effect estimates and accompanying p values under each experimental
design. Grey bins indicate average treatment effect estimates for RCT while transparent bins with black
outlines indicate those for EXaM. The solid vertical line indicates median for EXaM while the dashed
vertical line indicates that for RCT. See Section 7.3 for discussions about this figure. See Appendix A.2.4
for the detailed computational procedure.
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Figure 4: EXaM vs RCT: Incentive

Notes: To quantify the incentive compatibility of EXaM, this figure shows the histogram of true WTP gains
from potential WTP misreports to EXaM. The solid vertical line represents median. The dash vertical line
is for RCT, where the true WTP gain from any WTP misreport is zero. See Section 7.3 for discussions about
this figure. See Appendix A.2.4 for the detailed computational procedure.
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A Appendix

A.1 Methodological Appendix

A.1.1 Proposition 5: Generalization

This section extends Proposition 5 to a general case where ptnp may not be an integer. Let

Npt ≡
∑

i 1{p∗i (ε) = p}Dit be a random variable that stands for the number of subjects

with propensity vector p and assigned to treatment t. Denote the realization of Npt by

npt ≡
∑

i 1{p∗i (ε) = p}dit. Let npt be the greatest integer less than or equal to ptnp, the

expected number of subjects with propensity vector p and assigned to treatment t. I first

extend Definition 2 as follows.

Definition 2 (EXaM Continued; Generalization).

(3) Draw a treatment assignment from pit as follows. I first use Budish et al. (2013)’s

network-flow algorithm (in their Appendix B) to draw (npt) that satisfy the following

properties:38

• npt = npt for all p and t such that ptnp ∈ N.

• npt ∈ {npt, npt + 1} for all p and t such that ptnp /∈ N.

•
∑

t npt = np for all p.

•
∑

p npt = ct for all t.

Given the drawn values of (npt), for each propensity vector p,

• Step 1: I uniformly randomly pick pt0np subjects from {i|p∗i (ε) = p} and assign

them to t0.

38 To do so, I embed my setting into their notation as follows:

• N = {p|there exists some subject i such that p∗i (ε) = p}.
• O = {t0, t1, ..., tm}.
• H = {H0,H1,H2} where H0 = {(p, t)|p ∈ N, t ∈ O},H1 = {(p, t)|t ∈ O}p∈N , and H2 = {(p, t)|p ∈

N}t∈O.

• q̄s = 1 and q
s
= 0 if s ∈ H0.

• q̄s = q
s
= np − Σtnpt if s ∈ H1.

• q̄s = q
s
= ct − Σpnpt if s ∈ H2.

The above specification of H satisfies the “bihierarchy” condition in Budish et al. (2013)’s Theorem 1. Their
Theorem 1 and Appendix B therefore imply that the output of their network-flow algorithm for this problem
satisfies the properties above.
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For each subsequent step k = 1, ...,m,

• Step k: From the remaining np − Σ
tk−1

t=t0ptnp subjects, I uniformly randomly pick

ptknp subjects and assign them to tk.

For this general setting and extended Definition 2, I obtain the following characterization of

the variance of β̂t, which nests Proposition 5 in Section 5.

Proposition 5 (Generalization).

V (β̂t|p∗(ε)) =
∑
p

δ2p

{ ∑
t′∈{t0,t}

[(S2
pt′

npt′

)
(1− pt′np + npt′) +

( S2
pt′

npt′ + 1

)
(pt′np − npt′)

]
−
S2
ptt0

np

}
.

(12)

A.1.2 Proofs

Proof of Proposition 1

Suppose to the contrary that there exist some ε ∈ [0, ε̄), i, and t such that p∗it(ε) 6= pRCT
it .

Since eti = et′j for all subjects i and j and treatments t and t′, I have πteti ≡ αeti + βt =

αetj + βt ≡ πtetj for all subjects i and j and treatment t. Combined with wit = wjt′ for all

subjects i and j and treatments t and t′, this implies that any subjects i and j face the same

utility maximization problem:

argmaxpi∈P (Σtpitwit s.t. Σtpitπteti ≤ b) = argmaxpj∈P (Σtpjtwjt s.t. Σtpjtπtetj ≤ b).

This implies p∗jt(ε) = p∗it(ε) 6= pRCT
it ≡ ct/n by the assumption that all subjects use the

common tie-breaking rule (uniformly mixing among cheapest utility-maximizing pi’s). If

p∗jt(ε) = p∗it(ε) > ct/n, then Σn
j=1p

∗
jt(ε) = np∗it(ε) > nct/n = ct, contradicting the capacity

constraint in the definition of p∗it(ε). If p
∗
jt(ε) = p∗it(ε) < ct/n, then there is another treatment

t′ for which p∗jt′(ε) = p∗it′(ε) > ct/n since Σtct/n = Σtp
∗
jt(ε) = 1 for any subject j. This implies

that Σn
j=1p

∗
jt′(ε) = np∗it′(ε) > nct′/n = ct′ , again contradicting the capacity constraint. Thus,

for every ε ∈ [0, ε̄), i, and t, it must be the case that p∗it(ε) = pRCT
it .

Proof of Proposition 2

EXaM always exists: For every treatment t, fix αt at any negative constant α∗ < 0. Define

a space of possible values of β ≡ (βt)t by B ≡ [0, nb−α∗ē1{ē > 0}]m+1 where ē = max{eti}.
Define the demand correspondence for each subject i by p∗i (β) ≡argmaxpi∈P (Σtpitwit s.t.
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Σtpit(α
∗eti + βt) ≤ b). Define the excess demand correspondence z(·) : B → Rm+1 by

z(β) = {Σipi − c|pi ∈ p∗i (β) for every i} ≡ Σip
∗
i (β)− c where c ≡ (ct). This correspondence

z(·) is upper hemicontinuous and convex-valued because it is a linear finite sum of p∗i (β)’s,

which are upper hemicontinuous and convex-valued as shown below.

Lemma 1. For every subject i, her demand correspondence p∗i (β) is nonempty, convex-valued

for every β ∈ B, and upper hemicontinuous in β.

Proof of Lemma 1. p∗i (β) is convex-valued since the utility function is linear and for

any pi, p
′
i ∈ p∗i (β) ⊂ P and δ ∈ [0, 1], it holds that δpi + (1 − δ)p′i is in P (since P

is convex) and satisfies the budget constraint (since Σt[δpit + (1 − δ)p′it](α
∗eti + βt) =

δΣtpit(α
∗eti+βt)+(1−δ)Σtp

′
it(α

∗eti+βt) ≤ δb+(1−δ)b = b). p∗i (β) is non-empty and upper-

hemicontinuous by the maximum theorem. To see this, note that (1) the utility function is

linear and (2) the correspondence from β to the choice set {pi ∈ P |Σtpit(α
∗eti + βt) ≤ b} is

both upper-hemicontinuous and lower-hemicontinuous as well as compact-valued. Thus the

maximum theorem implies that p∗i (β) is non-empty and upper-hemicontinuous, completing

the proof of Lemma 1.

Let c̄ ≡ maxt=t0,t1,...,tm ct and B̃ = [−c̄, n(b + c̄) − α∗ē1{ē > 0}]m+1. Define a truncation

function f : B̃ → B by f(β) ≡ (max{0,min{βt, nb − α∗ē1{ē > 0}}})t=t0,t1,...,tm . Define

correspondence g : B̃ → B by g(β) ≡ f(β) + z(f(β)).

Lemma 2. g has a fixed point β∗ ∈ g(β∗).

Proof of Lemma 2. z(f(β)) is upper hemicontinuous and convex-valued as a function of

β ∈ B̃ because f(·) is continuous and z(·) is an upper hemicontinuous and convex-valued

correspondence, as explained above. This implies that g(β) is upper hemicontinuous and

convex-valued as well. The range of g(β) lies in B̃, i.e., g : B̃ → B̃. It is because

• f(β) ≡ (max{0,min{βt, nb − α∗ē1{ē > 0}}})t=t0,t1,...,tm ∈ [0, nb − α∗ē1{ē > 0}]m+1,

which is by nb− α∗ē1{ē > 0} ≥ 0

• c̄ ≡ maxt=t0,t1,...,tm ct ≥ 1

• z(f(β)) ∈ [−c̄, n]m+1 because, for any β ∈ B̃ and t, the excess demand zt(β) is at least

−c̄ (since the supply of any treatment t is ct ≤ c̄ by definition) and at most n (since

there are n subjects the demand of any treatment t by any subject i is at most 1)

Finally, B̃ is nonempty by −c̄ < 0 < n(b+ c̄) ≤ n(b+ c̄)−α∗ē1{ē > 0}. g(β) ≡ f(β)+z(f(β))

is therefore an upper hemicontinuous, nonempty, and convex-valued correspondence defined
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on the non-empty, compact, and convex set B̃. By Kakutani’s fixed point theorem, there

exists a fixed point β∗ ∈ g(β∗), proving Lemma 2.

Lemma 3. For any fixed point β∗ of g(·), the associated price function vector (πte ≡ α∗e+

ft(β
∗))t, where ft(β

∗) is the t-th element of f(β∗), satisfies the conditions of EXaM.

Proof of Lemma 3. By the definition of a fixed point and correspondence g(·), there exists

z∗ ≡ (z∗t ) ∈ z(f(β∗)) such that β∗
t = ft(β

∗)+ z∗t for all t. Fix any such z∗ and the associated

β∗. It is enough to show that the associated equilibrium treatment assignment probability

vector (p∗it)i,t ∈argmaxpi∈P (Σtpitwit s.t. Σtpit(α
∗eti + ft(β

∗)) ≤ b) satisfies the capacity con-

straint for every treatment t. For each treatment t, there are three cases to consider:

Case 1: β∗
t < 0. Then ft(β

∗) ≡ max{0,min{β∗
t , nb − α∗ē1{ē > 0}}} = 0 and hence

β∗
t = ft(β

∗) + z∗t implies β∗
t = z∗t ≡

∑
i p

∗
it − ct < 0, implying

∑
i p

∗
it < ct, i.e., the capacity

constraint holds.

Case 2: β∗
t ∈ [0, nb − α∗ē1{ē > 0}]. By the definition of f , I have ft(β

∗) = β∗
t . Then

β∗
t = ft(β

∗) + z∗t implies z∗t = 0, i.e., the capacity constraint holds with equality.

Case 3: β∗
t > nb − α∗ē1{ē > 0}. Then ft(β

∗) = nb − α∗ē1{ē > 0} and hence β∗
t =

ft(β
∗)+z∗t implies that z∗t = β∗

t −nb−α∗ē1{ē > 0} > 0, i.e., treatment t is in excess demand

at price πte ≡ α∗e+ ft(β
∗). However, for any possible predicted effect level e ≤ ē, we have

πte ≡ α∗e+ ft(β
∗) = α∗e+ nb− α∗ē1{ē > 0} =

nb+ α∗(e− ē) ≥ nb if ē > 0

nb+ α∗ē ≥ nb otherwise,

where the last inequality is by α∗ < 0 and e ≤ ē ≤ 0. Therefore, for each subject i,

p∗it ≤ b/πteti ≤ 1/n. This implies that Σip
∗
it ≤ 1 ≤ ct. This completes the proof of Lemma

3.

EXaM is ex ante Pareto efficient subject to the randomization constraint: Suppose to the

contrary that there exists ε ∈ [0, ε̄) such that p∗it(ε) is ex ante Pareto dominated by another

feasible treatment assignment probabilities (pit(ε))i,t ∈ P n with pit(ε) ∈ [ε, 1− ε] for all i and

t, i.e.,

• Σtpit(ε)eti ≥ Σtp
∗
it(ε)eti for all i and

• Σtpit(ε)wit ≥ Σtp
∗
it(ε)wit for all i
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with at least one strict inequality. Let me use pit(ε) to define the following treatment assign-

ment probabilities:

pit ≡ [pit(ε)− qpRCT
it ]/(1− q)

where q ≡ inf{q′ ∈ [0, 1]|(1− q′)p∗it + q′pRCT
it ∈ [ε, 1− ε] for all i and t} is the mixing weight

used for defining and computing p∗it(ε) in Definition 2. In other words, pit are the treatment

assignment probabilities such that the following holds:

pit(ε) ≡ (1− q)pit + qpRCT
it .

Since both pit(ε) and pRCT
it are feasible treatment assignment probabilities in P n, pit is

also feasible and in P n (note that Σtpit = Σt[pit(ε)− qpRCT
it ]/(1− q)) = (1− q)/(1− q) = 1

for every i). For each i, I have

Σtpit(ε)eti ≥ Σtp
∗
it(ε)eti

⇔ Σt((1− q)pit + qpRCT
it )eti ≥ Σt((1− q)p∗it + qpRCT

it )eti

⇔ Σt(1− q)piteti ≥ Σt(1− q)p∗iteti

⇔ Σtpiteti ≥ Σtp
∗
iteti.

Similarly, for each i, I have

Σtpit(ε)wit ≥ Σtp
∗
it(ε)wit

⇔ Σt((1− q)pit + qpRCT
it )wit ≥ Σt((1− q)p∗it + qpRCT

it )wit

⇔ Σt(1− q)pitwit ≥ Σt(1− q)p∗itwit

⇔ Σtpitwit ≥ Σtp
∗
itwit.

Therefore, the assumption that pit(ε) ex ante Pareto dominates p∗it(ε) implies that pit ex

ante Pareto dominates p∗it, i.e.,

• Σtpiteti ≥ Σtp
∗
iteti for all i and

• Σtpitwit ≥ Σtp
∗
itwit for all i

with at least one strict inequality. There are two cases to consider.

Case 1: Σtpĩtet̃i > Σtp
∗
ĩt
et̃i for some ĩ. This implies

ΣtΣipiteti > ΣtΣip
∗
iteti
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⇔ ΣtΣipit(πteti − βt)/α > ΣtΣip
∗
it(πteti − βt)/α

(by the definition of πte ≡ αe+ βt with α 6= 0)

⇔ ΣtΣipitπteti/α > ΣtΣip
∗
itπteti/α

(since Σipit = Σip
∗
it = ct)

⇔ ΣtΣipitπteti < ΣtΣip
∗
itπteti .

(since α < 0 by Definition 2)

I thus have

ΣtΣipitπteti < ΣtΣip
∗
itπteti . (13)

However, it has also to be the case that Σtpitπteti ≥ Σtp
∗
itπteti for any i since (a) Σtpitwit ≥

Σtp
∗
itwit by assumption and (b) (p∗it)t is (a mixture of) the cheapest among all feasible as-

signment probability vectors that i most prefers under prices (πte)t,e and budget b. Thus

ΣtΣipitπteti ≥ ΣtΣip
∗
itπteti , a contradiction to inequality (13).

Case 2: Σtpĩtwĩt > Σtp
∗
ĩt
wĩt for some ĩ. Since ĩ most prefers (p∗

ĩt
)t among all feasible

assignment probability vectors that satisfies the budget constraint under prices (πte)t,e, the

strictly more preferred treatment assignment probability vector (pĩt)t must violate the bud-

get constraint, i.e., Σtpĩtπtet̃i
> b ≥ Σtp

∗
ĩt
πtet̃i

, where the second weak inequality comes from

the assumption that (p∗
ĩt
)t satisfies the budget constraint under prices (πte). Moreover, for

any other subject i 6= ĩ, Σtpitπteti ≥ Σtp
∗
itπteti since (p∗it)t is (a mixture of) the cheapest

among all assignment probability vectors in P n that i most prefers under prices (πte)t,e and

budget b. I thus have

Σtpĩtπtet̃i
+ Σi 6=ĩΣtpitπteti > Σtp

∗
ĩt
πtet̃i

+ Σi 6=ĩΣtp
∗
itπteti

⇔ ΣiΣtpitπteti > ΣiΣtp
∗
itπteti .

However, by the logic described in Case 1, the assumption (Σipiteti ≥ Σip
∗
iteti for all t) im-

plies that ΣiΣtpitπteti ≤ ΣiΣtp
∗
itπteti , a contradiction.

Therefore, p∗it(ε) with any ε ∈ [0, ε̄) is never ex ante Pareto dominated by another feasible

treatment assignment probabilities (pit(ε))i,t ∈ P n with pit(ε) ∈ [ε, 1− ε] for all i and t.

Proof of Proposition 3

The proof uses intermediate observations.
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Lemma 4. EXaM is “envy-free,” i.e., for any experimental design problem, any ε ∈ [0, ε̄],

any subjects i and j with eti = etj for all t,

Σtp
∗
it(ε)wit ≥ Σtp

∗
jt(ε)wit

Proof of Lemma 4. In Definition 2, all subjects have the same budget and any subjects i and

j with eti = etj face the same price πte of treatment t. For any subjects i and j with eti = etj

for all t, therefore, (p∗jt)t satisfies i’s budget constraint and Σtp
∗
itwit ≥ Σtp

∗
jtwit. This implies

the desired conclusion since

Σtp
∗
itwit ≥ Σtp

∗
jtwit

⇔ (1− q)Σtp
∗
itwit + qΣtp

RCT
it wit ≥ (1− q)Σtp

∗
jtwit + qΣtp

RCT
jt wit

⇔ Σtp
∗
it(ε)wit ≥ Σtp

∗
jt(ε)wit,

where the first equivalence is by pRCT
it = pRCT

jt ≡ ct/n.

Lemma 5. EXaM with WTP reporting is “semi-anonymous.” That is, for any sequence of

experimental design problems, any n with any εn ∈ [0, ε̄], any subjects i and j with eti = etj

for all t, let (wi, wj, w−{i,j}) be a permutation of (wj, wi, w−{i,j}) obtained by permuting i and

j’s WTP reports wi and wj. Semi-anonymity means that

p∗ni (wi, wj, w−{i,j}; ε
n) = p∗nj (wj, wi, w−{i,j}; ε

n) and

p∗nj (wi, wj, w−{i,j}; ε
n) = p∗ni (wj, wi, w−{i,j}; ε

n)

Proof of Lemma 5. In Definition 2 of EXaM, all subjects have the same budget and any

subjects i and j with eti = etj face the same price πte of treatment t. For any subjects i

and j with eti = etj for all t, therefore, given any w−{i,j}, subject i with WTP report wj

solves the same constrained utility maximization problem as subject j with WTP report wj

does. Therefore, p∗ni (wi, wj, w−{i,j}; 0) = p∗nj (wj, wi, w−{i,j}; 0) and p∗nj (wi, wj, w−{i,j}; 0) =

p∗ni (wj, wi, w−{i,j}; 0). This implies semi-anonymity since

p∗ni (wi, wj, w−{i,j}; ε
n)

≡ (1− qn)p∗ni (wi, wj, w−{i,j}; 0) + qnpRCTn
i

= (1− qn)p∗nj (wj, wi, w−{i,j}; 0) + qnpRCTn
j

≡ p∗nj (wj, wi, w−{i,j}; ε
n),
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where qn is the mixing probability q for the n-th problem in the sequence of experimental

design problems while pRCTn
i = pRCTn

j ≡ cnt /n.

Lemmas 4 and 5 imply Proposition 3 by using Theorem 1 of Azevedo and Budish (2017)

(precisely, a generalization of their Theorem 1 in their Supplementary Appendix B).

A Statistical Lemma

Lemma 6. Assume a sample of m subjects is randomly drawn (i.e., every combination of

m subjects occurs with equal probability) from the fixed finite population of n subjects with a

fixed vector of a variable (X1, ...Xn). Denote the random sample by I. Let µ =
1

n

∑n
i=1Xi,

σ2 =
1

n− 1

∑n
i=1(Xi − µ)2, µ̂ =

1

m

∑
i∈I Xi and σ̂2 =

1

m− 1

∑
i∈I(Xi − µ̂)2. Then,

V (µ̂) =
n−m

nm
σ2 and E(σ̂2) = σ2.

Proof of Lemma 6. Let Wi = 1{i ∈ I} so that µ̂ =
1

m

∑n
i=1 XiWi and σ̂2 =

1

m− 1

∑n
i=1(Xi−

µ̂)2Wi. Then E(Wi) = E(W 2
i ) =

m

n
for all i, implying V (Wi) =

m

n
− (

m

n
)2 =

m(n−m)

n2
for

all i. Since E(WiWj) =
m(m− 1)

n(n− 1)
for any i 6= j, it is the case that for any i 6= j,

Cov(Wi,Wj)

= E[(Wi −
m

n
)(Wj −

m

n
)]

= E(WiWj)−
m

n
E(Wj)−

m

n
E(Wi) + (

m

n
)2

=
m(m− 1)

n(n− 1)
− (

m

n
)2

= −m(n−m)

n2(n− 1)

It follows that

V (µ̂)

=
1

m2
V (

∑n
i=1XiWi)

=
1

m2
(
∑n

i=1X
2
i V (Wi) +

∑n
i=1

∑
j 6=i XiXjCov(Wi,Wj))

=
1

m2
(
m(n−m)

n2

∑n
i=1X

2
i −

m(n−m)

n2(n− 1)

∑n
i=1

∑
j 6=i XiXj)
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=
n−m

n2m
(
∑n

i=1X
2
i −

1

n− 1

∑n
i=1

∑
j 6=i XiXj)

=
n−m

n2m
(
∑n

i=1X
2
i −

1

n− 1

∑n
i=1

∑n
j=1XiXj +

1

n− 1

∑n
i=1 X

2
i )

=
n−m

n2m
(

n

n− 1

∑n
i=1X

2
i −

1

n− 1

∑n
i=1

∑n
j=1XiXj)

=
n−m

nm(n− 1)
(
∑n

i=1 X
2
i −

1

n

∑n
i=1

∑n
j=1XiXj)

=
n−m

nm(n− 1)
(
∑n

i=1 X
2
i −

2

n

∑n
i=1 Xi

∑n
j=1Xj +

1

n
(
∑n

i=1 Xi)
2)

=
n−m

nm(n− 1)

∑n
i=1(X

2
i −

2

n
Xi

∑n
j=1Xj +

1

n2
(
∑n

j=1Xj)
2)

=
n−m

nm(n− 1)

∑n
i=1(Xi −

1

n

∑n
j=1 Xj)

2

=
n−m

nm
σ2.

For the other part,

E(σ̂2)

=
1

m− 1
E(

∑n
i=1(Xi − µ̂)2Wi)

=
1

m− 1
E(

∑n
i=1(X

2
i Wi − 2XiWiµ̂+ µ̂2Wi))

=
1

m− 1
E(

∑n
i=1X

2
i Wi − 2mµ̂2 +mµ̂2)

=
1

m− 1
(
m

n

∑n
i=1X

2
i −m(V (µ̂) + [E(µ̂)]2))

=
1

m− 1
(
m

n

∑n
i=1X

2
i −

n−m

n
σ2 −mµ2)

=
1

m− 1
(
m(n− 1)

n
σ2 − n−m

n
σ2)

= σ2.

Proof of Proposition 4

The proof uses the following lemma.
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Lemma 7. There exists estimator θ̂EXaM,t such that E(θ̂EXaM,t|p∗(ε)) = E(µ̂(t)2|pRCT ).

Proof of Lemma 7. Let µ̂RCT,t = µ̂(t), µt =
1

n

∑n
i=1 Yi(t) and S2

t =
1

n− 1

∑n
i=1(Yi(t)− µt)

2.

We have

E(µ̂2
RCT,t|pRCT ) = V ar(µ̂RCT,t|pRCT ) + E(µ̂RCT,t|pRCT )2

=
n− ct
nct

S2
t + µ2

t

=
n− ct
nct

1

n− 1
(

n∑
i=1

Yi(t)
2 − nµ2

t ) + µ2
t

=
n− ct

(n− 1)ct

1

n

n∑
i=1

Yi(t)
2 +

n(ct − 1)

(n− 1)ct
µ2
t , (14)

where the second equality holds by the first part of Lemma 6 and the fact that E(µ̂RCT,t|pRCT ) =

µt. Under EXaM p∗(ε), θ̂1t =
1

n

∑
p

1

pt

∑
i:p∗i (ε)=p Y

2
i Dit unbiasedly estimates

1

n

∑n
i=1 Yi(t)

2

because

E(θ̂1t|p∗(ε)) =
1

n

∑
p

1

pt

∑
i:p∗i (ε)=p

Yi(t)
2E(Dit|p∗(ε))

=
1

n

∑
p

1

pt

∑
i:p∗i (ε)=p

Yi(t)
2pt

=
1

n

∑
p

∑
i:p∗i (ε)=p

Yi(t)
2

=
1

n

n∑
i=1

Yi(t)
2.

Next I obtain an unbiased estimator for µ2
t under EXaM p∗(ε). Let µpt =

1

np

∑
i:p∗i (ε)=p Yi(t),

µ̂EXaM,pt =
1

ptnp

∑
i:p∗i (ε)=p YiDit and µ̂EXaM,t =

∑
p

np

n
µ̂EXaM,pt. Note that E(µ̂EXaM,pt|p∗(ε)) =

µpt and µt =
∑

p

np

n
µpt. Note also that, by Definition 2 (3), treatment assignments are inde-

pendent across subpopulations with different propensities. Hence, µ̂EXaM,pt is independent

across p. With S2
pt =

1

np − 1

∑
i:p∗i (ε)=p(Yi(t)− µpt)

2, I have
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E(µ̂2
EXaM,t|p∗(ε)) = E((

∑
p

np

n
µ̂EXaM,pt)

2|p∗(ε))

=
∑
p

∑
p′ 6=p

npnp′

n2
E(µ̂EXaM,pt|p∗(ε))E(µ̂EXaM,p′t|p∗(ε)) +

∑
p

n2
p

n2
E(µ̂2

EXaM,pt|p∗(ε))

=
∑
p

∑
p′ 6=p

npnp′

n2
µptµp′t +

∑
p

n2
p

n2
(V ar(µ̂EXaM,pt|p∗(ε)) + E(µ̂EXaM,pt|p∗(ε))2)

=
∑
p

∑
p′ 6=p

npnp′

n2
µptµp′t +

∑
p

n2
p

n2
(
np − ptnp

npptnp

S2
pt + µ2

pt)

= (
∑
p

np

n
µpt)

2 +
∑
p

np − ptnp

n2pt
S2
pt

= µ2
t +

∑
p

np − ptnp

n2pt
S2
pt, (15)

where I use the independence of µ̂EXaM,pt across p for the second equality, the fact that

E(µ̂EXaM,pt|p∗(ε)) = µpt for the third and the fourth equalities and the first part of Lemma

6 for the fourth equality. Let Ŝ2
pt =

1

ptnp − 1

∑
i:p∗i (ε)=p(Yi − µ̂EXaM,pt)

2Dit. By the second

part of Lemma 6, Ŝ2
pt is an unbiased estimator for S2

pt under EXaM. Combining this with

equation (15), I obtain an unbiased estimator for µ2
t : θ̂2t = µ̂2

EXaM,t −
∑

p

np − ptnp

n2pt
Ŝ2
pt.

Then, by equation (14), θ̂EXaM,t =
n− ct

(n− 1)ct
θ̂1t +

n(ct − 1)

(n− 1)ct
θ̂2t is an unbiased estimator for

E(µ̂2
RCT,t|pRCT ).

Let Di be the set of all feasible deterministic treatment assignments for subject i, i.e.,

Di ≡ {di ≡ (dit)t ∈ {0, 1}m+1|Σtdit = 1}.

Let D
EXaM(ε)
i and DRCT

i be the sets of deterministic treatment assignments that happen

with a positive probability under EXaM and RCT, respectively. That is, D
EXaM(ε)
i ≡ {di ∈

Di|Pr(di|p∗(ε)) > 0} and DRCT
i ≡ {di ∈ Di|Pr(di|pRCT ) > 0}, where Pr(di|p) is the proba-

bility that di occurs under experimental design p. For every ε ∈ [0, ε̄), I have

DRCT
i = D

EXaM(ε)
i = Di. (16)

This is because with Definition 2, for every t, with a positive probability, Dit = 1 holds both

under EXaM and RCT.
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With the support equivalence property (16), I am ready to show the proposition. Sup-

pose that parameter θ is unbiasedly estimable with RCT pRCT and a simple estimator

θ̂RCT (Y,D) = Σif(Yi, Di) + Σtgtµ̂
2
RCT,t:

E(θ̂RCT (Y,D)|pRCT ) = θ. (17)

Consider another estimator θ̂EXaM(ε)(Y,D) ≡ Σi
Pr(Di|pRCT )

Pr(Di|p∗(ε))
f(Yi, Di) + Σtgtθ̂EXaM,t. With

the knowledge of the original estimator θ̂RCT (Y,D), it is possible to compute θ̂EXaM(ε)(Y,D)

since Pr(Di|pRCT ) and Pr(Di|p∗(ε)) are known to the experimenter. I have:

E(θ̂EXaM(Y,D)|p∗(ε))

= E(Σi
Pr(Di|pRCT )

Pr(Di|p∗(ε))
f(Yi, Di) + Σtgtθ̂EXaM,t|p∗(ε))

= ΣiΣdi∈D
EXaM(ε)
i

Pr(di|p∗(ε))
Pr(di|pRCT )

Pr(di|p∗(ε))
f(Yi(di), di) + ΣtgtE(µ̂2

RCT,t|pRCT )

= ΣiΣdi∈DRCT
i

Pr(di|pRCT )f(Yi(di), di) + ΣtgtE(µ̂2
RCT,t|pRCT )

= E(θ̂RCT (Y,D)|pRCT )

= θ,

where Yi(di) is the value of observed outcome Yi when Di = di, the second equality is

by Lemma 7, the third equality is by the support equivalence property (16), and the last

equality is by the unbiasedness assumption (17). This means that θ̂EXaM(Y,D) is an unbiased

estimator for θ under EXaM p∗(ε). The following lemma therefore completes the proof.

Lemma 8. θ̂EXaM(Y,D) is a simple estimator under EXaM p∗(ε).

Proof of Lemma 8. Since µ̂EXaM,t =
∑

p

np

n
µ̂EXaM,pt and

Ŝ2
pt

=
1

ptnp − 1
(
∑

i:p∗i (ε)=p Y
2
i Dit − 2

∑
i:p∗i (ε)=p YiDitµ̂EXaM,pt +

∑
i:p∗i (ε)=p µ̂

2
EXaM,ptDit)

=
1

ptnp − 1
(
∑

i:p∗i (ε)=p Y
2
i Dit − 2ptnpµ̂

2
EXaM,pt + ptnpµ̂

2
EXaM,pt)

=
1

ptnp − 1
(
∑

i:p∗i (ε)=p Y
2
i Dit − ptnpµ̂

2
EXaM,pt),

I have

θ̂EXaM,t
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=
n− ct

(n− 1)ct
θ̂1t +

n(ct − 1)

(n− 1)ct
θ̂2t

=
n− ct

(n− 1)ct

1

n

∑
p

1

pt

∑
i:p∗i (ε)=p Y

2
i Dit +

n(ct − 1)

(n− 1)ct
(µ̂2

EXaM,t −
∑

p

np − ptnp

n2pt
Ŝ2
pt)

=
∑

p

∑
i:p∗i (ε)=p

n− ct
(n− 1)ctnpt

Y 2
i Dit

+
n(ct − 1)

(n− 1)ct

{
(
∑

p

np

n
µ̂EXaM,pt)

2−
∑

p

np − ptnp

n2pt

1

ptnp − 1
(
∑

i:p∗i (ε)=p Y
2
i Dit−ptnpµ̂

2
EXaM,pt)

}
=

∑
p

∑
i:p∗i (ε)=p(

n− ct
(n− 1)ctnpt

− (ct − 1)(np − ptnp)

(n− 1)ctnpt(ptnp − 1)
)Y 2

i Dit

+
n(ct − 1)

(n− 1)ct
(
∑

p

∑
p′
npnp′

n2
µ̂EXaM,ptµ̂EXaM,p′t +

∑
p

(np − ptnp)np

n2(ptnp − 1)
µ̂2
EXaM,pt)

=
∑

p

∑
i:p∗i (ε)=p a1ptY

2
i Dit +

∑
p

∑
p′ 6=p

(ct − 1)npnp′

(n− 1)ctn
µ̂EXaM,ptµ̂EXaM,p′t

+
∑

p

n(ct − 1)

(n− 1)ct
(
n2
p

n2
+

(np − ptnp)np

n2(ptnp − 1)
)µ̂2

EXaM,pt

=
∑

i a1p∗i (ε)tY
2
i Dit +

∑
p

∑
p′ a2pp′tµ̂EXaM,ptµ̂EXaM,p′t,

where

a1pt =
(n− 1)ptnp − (ct − 1)np − n+ ct

(n− 1)ctnpt(ptnp − 1)

a2pp′t =


(ct − 1)npnp′

(n− 1)ctn
if p 6= p′

(ct − 1)n2
p(ptnp − pt)

(n− 1)ctn(ptnp − 1)
if p = p′.

It follows that

θ̂EXaM(Y,D)

=
∑

i

Pr(Di|pRCT )

Pr(Di|p∗(ε))
f(Yi, Di) +

∑
t gtθ̂EXaM,t

=
∑

i[
Pr(Di|pRCT )

Pr(Di|p∗(ε))
f(Yi, Di) +

∑
t gta1p∗i (ε)tY

2
i Dit] +

∑
t gt

∑
p

∑
p′ a2pp′tµ̂EXaM,ptµ̂EXaM,p′t

=
∑

i f
∗(Yi, Di) +

∑
t

∑
p

∑
p′ gtpp′µ̂EXaM,ptµ̂EXaM,p′t,

where f ∗(Yi, Di) =
Pr(Di|pRCT )

Pr(Di|p∗(ε))
f(Yi, Di)+

∑
t gta1p∗i (ε)tY

2
i Dit and gtpp′ = gta2pp′t. Therefore,
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θ̂EXaM(Y,D) is a simple estimator under EXaM p∗(ε).

Proof of Proposition 5

To show the mean part, recall I define Npt ≡
∑

i 1{p∗i (ε) = p}Dit as a random variable that

stands for the number of subjects with propensity vector p and assigned to treatment t.

Denote the realization of Npt by npt ≡
∑

i 1{p∗i (ε) = p}dit. By Lemma 10, every feasible

treatment assignment occurs equally likely conditional on (Npt) so that that for every p, t

and i with p∗i (ε) = p,

E(Dit|(Npt) = (npt), p
∗(ε) = p) =

npt

np

. (18)

I therefore have

E(β̂t|(Npt) = (npt), p
∗(ε) = p)

= E(Σpδpβ̂pt|(Npt) = (npt), p
∗(ε) = p)

= ΣpδpE(β̂pt|(Npt) = (npt), p
∗(ε) = p)

= ΣpδpE
[
Σi1{p∗i (ε) = p}

(DitYi(t)

Npt

− Dit0Yi(t0)

Npt0

)
|(Npt) = (npt), p

∗(ε) = p
]

= ΣpδpΣi1{p∗i (ε) = p}
(E(Dit|(Npt) = (npt), p

∗(ε) = p)Yi(t)

npt

−E(Dit0|(Npt) = (npt), p
∗(ε) = p)Yi(t0)

npt0

)
= ΣpδpΣi1{p∗i (ε) = p}

((npt/np)Yi(t)

npt

− (npt0/np)Yi(t0)

npt0

)
= Σpδp

1

np

Σi1{p∗i (ε) = p}(Yi(t)− Yi(t0))

= ΣpδpCATEpt,

where I use equation (18) for the fifth equality. By the law of iterated expectations, I conclude

E(β̂t|p∗(ε))
= E[E(β̂t|(Npt) = (npt), p

∗(ε) = p)|p∗(ε) = p]

= E[ΣpδpCATEpt|p∗(ε) = p]

= ΣpδpCATEpt.

For the variance part, I prove the general version given in Appendix A.1.1. Define N as

the set of all (npt) that satisfy the following:

• npt = npt for all p and t such that ptnp ∈ N.

• npt ∈ {npt, npt + 1} for all p and t such that ptnp /∈ N.
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•
∑

t npt = np for all p.

•
∑

p npt = ct for all t.

I also define D(npt) as the set of deterministic treatment assignments where the realization

of (Npt) is (npt):

D(npt) ≡ {d ∈ {0, 1}n×m|
∑
t

dit = 1 for every i and
∑
i

1{p∗i (ε) = p}dit = npt for every p and t}.

The way of drawing deterministic treatment assignments in Definition 2 in Appendix A.1.1

satisfies the following properties.

Lemma 9 (Small Support). The support of (Npt) is included by N .

Lemma 10 (Conditional Uniformity). For all (npt) in the support of (Npt),

Pr(D = d|(Npt) = (npt), p
∗(ε)) =

|D(npt)|−1 if d ∈ D(npt)

0 otherwise,

where |D(npt)| =
∏

p

∏m−1
j=0

(∑j+1
j′=0 nptj′∑j
j′=0 nptj′

)
.

For notational simplicity, I make conditioning on p∗(ε) implicit. By the law of total

variance, V (β̂t) can be written as:

V (β̂t) = E(V (β̂t|(Npt))) + V (E(β̂t|(Npt))).

As I show above, E(β̂t|(Npt)) =
∑

p δpCATEpt, implying V (E(β̂t|(Npt))) = 0. Thus

V (β̂t) = E(V (β̂t|(Npt))). (19)

To show that E(V (β̂t|(Npt))) is equal to the right-hand side of equation (12), I introduce a

lemma.

Lemma 11. Under Lemma 10, for all (npt) in the support of (Npt),

V (β̂t|(Npt) = (npt)) =
∑
p

δ2p

(S2
pt

npt

+
S2
pt0

npt0

−
S2
ptt0

np

)
.

Proof of Lemma 11. By Lemma 10, treatment assignments are independent across subpop-

ulations with different propensities conditional on (Npt). Then, β̂pt is independent across p
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conditional on (Npt). Hence,

V (β̂t|(Npt) = (npt)) = V (
∑
p

δpβ̂pt|(Npt) = (npt))

=
∑
p

δ2pV (β̂pt|(Npt) = (npt)).

It is therefore enough to show that V (β̂pt|(Npt) = (npt)) =
S2
pt

npt

+
S2
pt0

npt0

−
S2
ptt0

np

. For notational

simplicity, I make conditioning on (Npt) = (npt) implicit. Let Iptt0 be a random set of

subjects with propensity vector p and assigned to either treatment t or t0, i.e.,

Iptt0 ≡ {i|p∗i (ε) = p and Dit +Dit0 = 1}.

Iptt0 takes on

(
np

npt + npt0

)
values equally likely by Lemma 10. By the law of total variance,

V (β̂pt) can be written as:

V (β̂pt) = E(V (β̂pt|Iptt0)) + V (E(β̂pt|Iptt0)). (20)

Conditional on Iptt0 = I, the randomness in β̂pt comes from the randomness in choosing npt

subjects assigned to treatment t and npt0 subjects assigned to treatment t0 from the set I of

npt+npt0 subjects. Every combination occurs with equal probability, so the standard results

of binary-treatment RCT (Theorems 6.1 and 6.2 in Imbens and Rubin (2015)) apply:

E(β̂pt|Iptt0 = I) =
1

npt + npt0

∑
i∈I

(Yi(t)− Yi(t0)),

V (β̂pt|Iptt0 = I) =
S2
pt|I

npt

+
S2
pt0|I

npt0

−
S2
ptt0|I

npt + npt0

,

where S2
pt|I , S

2
pt0|I and S2

ptt0|I are the variances of Yi(t), Yi(t0) and Yi(t)− Yi(t0), respectively,

in the set of subjects I. Regarding np, npt + npt0 , and Yi(t)− Yi(t0) as performing the roles

of n,m, and Xi, respectively, I use Lemma 6 to get

V (E(β̂pt|Iptt0 = I))

= V (
1

npt + npt0

∑
i∈I(Yi(t)− Yi(t0)))

=
np − npt − npt0

np(npt + npt0)
S2
ptt0

,
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E(V (β̂pt|Iptt0 = I))

=
E(S2

pt|I)

npt

+
E(S2

pt0|I)

npt0

−
E(S2

ptt0|I)

npt + npt0

=
S2
pt

npt

+
S2
pt0

npt0

−
S2
ptt0

npt + npt0

.

Combining these with equation (20), we have V (β̂pt) =
S2
pt

npt

+
S2
pt0

npt0

−
S2
ptt0

np

.

By Lemma 9, Npt can take on either npt or npt + 1. Since Npt has expectation ptnp, the

marginal distribution for each Npt must be

Pr(Npt = npt) =


1− ptnp + npt if npt = npt

ptnp − npt if npt = npt + 1

0 otherwise.

(21)

Using equation (19), Lemma 11, and equation (21), we have

V (β̂t)

= E
{∑

p δ
2
p

( S2
pt

Npt

+
S2
pt0

Npt0

−
S2
ptt0

np

)}
=

∑
p δ

2
p

{∑
t′∈{t0,t}E

( S2
pt′

Npt′

)
−

S2
ptt0

np

}
=

∑
p δ

2
p

{∑
t′∈{t0,t}

[(S2
pt′

npt′

)
(1− pt′np + npt′) +

( S2
pt′

npt′ + 1

)
(pt′np − npt′)

]
−
S2
ptt0

np

}
.

Proof of Equation (7)

I prove equation (7) with two lemmas below.

Lemma 12. E(B̂t|p∗(ε)) = ΣpλpCATEpt for all t where B̂t is the OLS estimate of Bt in

this regression:

Yi = Σtm
t=t1

BtDit + ΣpCp1{(p∗i (ε) = p}+ Ei. (22)

Proof of Lemma 12. I reparametrize the regression as follows with (Bt, Dp), where Dp ≡
Cp + Σtm

t=t1Btpt.

Yi = Σtm
t=t1

Bt(Dit − p∗it(ε)) + ΣpDp1{(p∗i (ε) = p}+ Ei. (23)
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This reparametrization does not change B̂t. Note also that Yi can be written as follows.

Yi = Σp1{(p∗i (ε) = p}Yp(0) + ΣpΣ
tm
t=t1

1{(p∗i (ε) = p}CATEptDit + µi, (24)

where Yp(0) ≡
Σi1{(p∗i (ε) = p}Yi(0)

Σi1{(p∗i (ε) = p}
, and where Σi1{(p∗i (ε) = p}µi = 0 for every p. There-

fore, the OLS estimates (B̂t, D̂p) of (Bt, Dp) in regression (23) can be written as follows.

(B̂t, D̂p) = argmin
(Bt,Dp)

Σi[Σp1{(p∗i (ε) = p}Yp(0) + ΣpΣ
tm
t=t1

1{(p∗i (ε) = p}CATEptDit

− Σtm
t=t1

Bt(Dit − p∗it(ε))− ΣpDp1{(p∗i (ε) = p}]2

= argmin
(Bt,Dp)

Σi[Σp1{(p∗i (ε) = p}(Yp(0)−Dp + Σtm
t=t1

CATEptDit)− Σtm
t=t1

Bt(Dit − p∗it(ε)]
2

= argmin
(Bt,Dp)

Σi[{Σp1{(p∗i (ε) = p}(Yp(0)−Dp + Σtm
t=t1

CATEptDit}2

− 2Σp1{(p∗i (ε) = p}(Yp(0)−Dp + Σtm
t=t1

CATEptDit)Σ
tm
t=t1

Bt(Dit − p∗it(ε))

+ {Σtm
t=t1

Bt(Dit − p∗it(ε)}2]

= argmin
(Bt,Dp)

Σi[{Σp1{(p∗i (ε) = p}(Yp(0)−Dp + Σtm
t=t1

CATEptDit)}2

− 2Σp1{(p∗i (ε) = p}Σtm
t=t1

CATEptDitΣ
tm
t=t1

Bt(Dit − p∗it(ε)) + {Σtm
t=t1

Bt(Dit − p∗it(ε))}2]

because Σi(Dit − p∗it(ε)) = 0. Minimizing this over Bt leads to

B̂t =
ΣiΣp1{(p∗i (ε) = p}CATEptDit(Dit − p∗it(ε))

Σi(Dit − p∗it(ε))
2

Because P (Dit = 1) =
ΣpΣi1{(p∗i (ε) = p}p∗it(ε)

n
and

P (p∗i (ε) = p|Dit = 1) =
Σi1{(p∗i (ε) = p}p∗it(ε)

ΣqΣi1{(p∗i (ε) = q}p∗it(ε)
,

it follows that the numerator is equal to Σppt(1− pt)δpCATEpt and that the denominator is

equal to Σppt(1− pt)δp. This implies that E(B̂t|p∗(ε)) = ΣpλpCATEpt.

Lemma 13. B̂t = b̂t for any t and any realization of treatment assignment Dit.

Proof of Lemma 13. The OLS estimates of (22) can be obtained by regressing each of Yi and

Dit on the propensity score controls and then using the residuals from these regressions as
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the dependent and independent variables for a bivariate regression that omits the propensity

score controls. Consider the auxiliary regressions that produce these residualized variables:

they have Dit on the left hand side, with a saturated model for p∗i (ε) on the right. By the law

of iterated expectations, the conditional expectation function associated with this auxiliary

regression is therefore

E[Dit|p∗i (ε)] = p∗it(ε).

In other words, the conditional expectation function depends only on p∗it(ε). Moreover,

because I use a saturated model for the own-score p∗i (ε), the conditional expectation function

E[Dit|p∗i (ε)] is linear in regressors, so it and the associated auxiliary regression function

coincide. Therefore, regression (6), which additively separably and linearly controls for

p∗it(ε)’s, produces the same estimate as regression (22).

Proof of Proposition 6

By Proposition 2, there is no other experimental design (pit) with pit ∈ [ε, 1−ε] for all subject
i and treatment t and such that Σtpitw

′
it ≥ Σtp

∗o
it (ε)w

′
it for all i and Σtpite

′
ti ≥ Σtp

∗o
it (ε)e

′
ti for

all i with at least one strict inequality. w′
it and e′ti are consistent with ordinal %i and %t,

respectively. Therefore, there is no other experimental design (pit) such that for all cardinal

WTP wit consistent with ordinal %i and all cardinal predicted effects eti consistent with

ordinal %t, I have Σtpitwit ≥ Σtp
∗o
it (ε)wit for all i and Σtpiteti ≥ Σtp

∗o
it (ε)eti for all i with at

least one strict inequality.

A.2 Empirical Appendix

A.2.1 Why Subject Welfare: Data

Table 1 and Appendix Tables A.1-A.3 are based on data I assemble from the WHO In-

ternational Clinical Trials Registry Platform (ICTRP) at http://www.who.int/ictrp/en/,

retrieved in October 2017. I first use the “date of registration” to define the year associated

with each trial. Starting from the universe of trials registered between January 1st 2007 to

May 31st 2017, I exclude outlier trials with registered sample size greater than 5 millions.

Some trials come with sample size classified as “Not Specified.” I set their sample size as zero.

This makes my total sample size calculation conservative. For a trial that does not have a

well-defined trial phase, I classify its trial phase as “Not Specified.” Finally, for each trial,

I define its “Geographical Region” according to which country runs the registry including

that trial. Many registries like ClinicalTrial.gov recruit subjects in multiple countries under

the same trial ID, making it challenging to pin down the physical location of each trial.
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Appendix Tables A.4, A.5, A.6 are based on data I assemble from the American Eco-

nomic Association’s registry (AEA registry) for randomized controlled trials at https:

//www.socialscienceregistry.org, retrieved on May 27th, 2017. From the AEA reg-

istry, I obtain information about each experiment such as the sample size, the year when

the experiment is conducted, the country where the experiment is conducted, registered key-

words, and the randomization unit. When some information is missing, I manually enter it

by referring to accompanying documents such as experimental design descriptions and ab-

stracts. I classify an item as “Not specified” when I cannot specify it even after the manual

procedure. When the sample size of an experiment is unspecified, I set the sample size as

zero. This makes my total sample size calculation conservative. I use the “starting date of

experiment” to define the year associated with each trial. Finally, for each trial, I define its

“Geographical Region” according to in which country the experiment is conducted. I include

all registered experiments conducted during 2007-2017 period.

A.2.2 Empirical Application: Data

For the OLS regressions in Table 3, I impose the same sample restriction as Kremer et

al. and exclude the following children: children not at Intent-to-Treat springs, i.e., springs

found to be nonviable after treatment random assignment, children in households that receive

water guards in 2007, children not in representative households (defined as households that

are named at least twice by all users of a given spring, every time survey enumerators

ask spring users at a spring to name households that also use the same spring and when

enumerators ask three or four households located nearest to a spring to name spring users),

children above age 3 at baseline and children above age 3 when they join the sample in later

rounds, children whose anthropometric (weight, height, BMI) and age data are flagged as

having serious error, and children in households with missing data on whether they use the

identified spring exclusively or use multiple springs.

A.2.3 Treatment Effects and Preferences: Details

Estimation of Mixed Logit WTP Model (Table 4)

With the random utility function (11), choice likelihoods take the following form (Train

(2003), chapter 6):

P (oijt = 1|θ, γ1, δj) =
∫
(βi,ci)

exp (βi + γ1Xi)Tjt − ciDij + δj∑
h∈H exp (βi + γ1Xi)Tht − ciDih + δh

f(βi, ci|θ)d(βi, ci) (25)

62

https://www.socialscienceregistry.org
https://www.socialscienceregistry.org


where oijt ∈ {0, 1} is the indicator that household i chooses source j among alternatives

h ∈ H in trip t; f(βi, ci|θ) is the mixing distribution parametrized by θ. f(βi, ci|θ) is

taken to be the normal distribution for the spring protection treatment coefficient βi and

the triangular distribution (restricted to be nonnegative) for the distance coefficient ci. I

maximize a simulation approximation of the joint likelihood ΣijtP (oijt = 1|X) with respect

to θ, γ1, and δj, producing maximum simulated likelihood estimates θ̂, γ̂1, and δ̂j.

Simulation of Heterogeneous WTP (Figure 1b)

I create Figure 1b with parametric bootstrap below.

(1) Simulate µT ∼ N(µ̂T , SE(µ̂T )) and σT ∼ N(σ̂T , SE(σ̂T )) for treatment coefficient

parameters across household groups.

(2) Simulate θD ∼ Triangular(θ̂D) for distance coefficient across household group.39

(3) For each simulated value of µT and σT , draw the treatment coefficient for each house-

hold group from N(µT , σT ). Call this θT . The θD from step 2 is the distance coefficient

because the distribution relies on only one parameter. Find the ratio of θT to θD. Mul-

tiplying the figure by -1/0.38 generates the ratio of treatment to distance coefficients,

where -1 is the non-negative correction multiplier and 0.38 is the correlation across

survey rounds in the reported walking distance to the reference spring and is taken

to be the size of measurement error from recall error. I do this coefficient inflation

following Kremer et al.

(4) I multiply the ratio of step 3 by 32 × 52/(60 × 8) in order to get the WTP measure,

with total number of working days taken to walk to the spring in a year as the unit.

A.2.4 EXaM vs RCT: Details

Implementing EXaM

EXaM assigns subject i to treatment t with probability p∗it(ε), which I define as probabilities

obeying the equilibrium conditions in Definition 2. To implement random assignment with

39The mixed logit result of the distance coefficient is constrained to be nonnegative, because the utility
function assumes uijt to be a function of −CiDij with the minus sign already reflected. But the distribution
from which the distance is drawn is not constrained in terms of values. It is only constrained in terms of
the mean and the spread being the same: a + a ∗ t where t is between -1 and 1, and a is the mean and
the spread. The results of these logit regressions could therefore be negative. (Kremer et al. also reports
negative distance coefficients for all regressions in Table VI.) Presumably Kremer et al. then took the liberty
to constrain these negative distance coefficients to be multiplied by -1 in their code in order to make them
nonnegative, which results in positive valuation of workdays and dollar time values.
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p∗it(ε), I need to compute p∗it(ε) with a constructive algorithm. In this section, I describe the

details of the algorithm I use for the empirical execution of EXaM in Section 7.3. I first

define subroutines and then call them together at the end to perform the main computation.
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Algorithm 1 Experimental Design as Market Design (EXaM)

Input: n the number of subjects, m the number of treatments, (ct)t ∈ N treatment t’s
capacity with

∑
t ct = n, (wit)i,t subject i’s WTP for treatment t, (eti)i,t treatment t’s

predicted treatment effect for subject i, b the budget constraint, 0 < ε the lower bound
on treatment probabilities.

Output: (p∗it)i,t treatment t’s assignment probability for subject i, (α∗
t , β

∗
t )t parameters de-

termining treatment t’s equilibrium price of the form π∗
te = α∗

t e+ β∗
t .

1: function InitialAlpha( )
2: for each t do
3: αt ← generate random number ∼ Uniform(−b, 0) . set the initial value of αt

4: return (αt)t . return an mt-dimensional vector

5: function InitBeta( )
6: for each t do
7: βt ← generate random number ∼ Uniform(−b, b) . set the initial value of βt

8: return (βt)t . return an m-dimensional vector

9: function Price((αt)t, (βt)t) . get the price of treatment t
10: for each i, t do
11: πteti = αteti + βt

12: return (πteti)it . return the n×m price matrix)

13: function Demand(ε, (πteti)it) . get the subject i’s demand for treatment t
14: for Each i do . perform linear programming utility maximization for each subject i
15: (pit)t ← argmax

(pit)t

∑
twitpit

s.t.
∑

t πtetipit ≤ b,
∑

t pit = 1, ε ≤ pit ≤ 1− ε

16: return (pit)it . return the n×m demand matrix)

17: function ExcessDemand((pit)it) . get the excess demand for treatment t
18: for each t do
19: dt ←

∑
i pit − ct

20: return (dt)t . return the m-dimensional excess demand vector)

21: function ClearingError((dt)t) . get the market clearing error
22: if dt < 0 for all t then
23: return 0
24: else
25: error←

√∑
t d

2
t/

∑
t ct

26: return error . return the market clearing error
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27: δα ← 0.75 . scaling factor for αt’s to set new prices
28: δβ ← b/50 . scaling factor for βt’s to set new prices

29: function BetaNew((αt)t, (dt)t) . recalibrate βt’s to set new prices
30: for each t do
31: βnew

t ← βt + dtδβ

32: return (βnew
t )t

33: function ClearMarket( ) . the main function
34: (αt)t ← InitialAlpha( )
35: (βt)t ← InitBeta( )
36: (πteti)it ← Price((αt)t , (βt)t)
37: (pit)it ← Demand((πit)it)
38: (dt)t ← ExcessDemand((pit)it)
39: error← ClearingError((dt)t)
40: errormin ← error . initialize the min of clearing error
41: ClearingThreshold← 0.01 . threshold for market clearing error
42: IterationThreshold← 10 . threshold for iteration times
43: iterations← 0 . initialize iteration time count
44: while True do
45: if iterations > IterationThreshold then
46: (αt)t ← InitialAlpha( ) . start new equilibrium research
47: (βt)t ← InitBeta( )
48: Iterations← 0
49: else
50: (βt)t ← BetaNew((βt)t , (dt)t)

51: (πteti)it ← Price((αt)t , (βt)t)
52: (pit)it ← Demand(ε, (πteti)it)
53: (dt)t ← ExcessDemand((pit)it)
54: error← ClearingError((dt)t)
55: if error < errormin then
56: errormin ← error
57: (α∗

t )t ← (αt)t . the new prices reduce the error
58: (β∗

t )t ← (βt)t
59: (p∗it)it ← (pit)it
60: if errormin < ClearingThreshold then
61: break
62: iterations += 1
63: return ((p∗it)it, (α

∗
t )t, (β

∗
t )t, errormin) . return the outputs
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Information (Figure 3)

After simulating treatment effects and WTP (eit1 , wit1) following the procedure in Appendix

A.2.3 and running the EXaM algorithm to get treatment assignment probability p∗it1(ε),

I use p∗it1(ε) to draw a final deterministic treatment assignment under EXaM, i.e., Di ≡
1{i is assigned to t1}, using the following rules. Within each sampling step s ∈ [1, 1540],

randomly pick household is and draw Dis = 1 with its treatment assignment probability

p∗ist1(ε). Continue until I reach treatment and control capacities. That is, if
∑s

s′=1Dis′
<

ct1 , then move on to step s + 1. I stop the simulation if I exhaust any of the capacity

constraints, i.e., if
∑s

s′=1 Dis′
= ct1 , then stop simulation and Dj = 0 for j 6= i1, i2, i3, ..., is,

or if
∑s

s′=1Dis′
= ct0 , then stop simulation and Dj = 1 for j 6= i1, i2, i3, ..., is, whichever

comes first. Computationally, I achieve the above rules utilizing the random permutation

algorithm:

(1) Create a random sequence of subject-picking. Specifically, I draw a number from

Ri ∼iid U [0, 1] for each household i and sort the random number in ascending order.

(2) Assign each household i to the treatment t1 if Ri ≤ p∗it1(ε)

(3) By the random sequence of step 1, calculate the cumulative sum of treatment assign-

ment and control assignment.

(4) If the cumulative sum of treatment assignment reaches its capacity of 663, assign the

control t0 to subjects in the remaining part of the sequence, regardless of the assignment

in step 2. If the cumulative sum of control assignment reaches its capacity of 887, assign

the treatment t1 to subjects in the remaining part of the sequence, regardless of the

assignment in step 2.

The treatment assignment procedure for RCT is the same except that the treatment

assignment probability is pRCT
it1

= .56(= 877/1540) and the same for everybody.
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Table A.4: Magnitude of a Part of Economic RCTs

(a) Registered Economic RCTs & Sample Sizes

Sample Period 2007-2017 May

Total Number of Economic RCTs Registered 1055
Sum of Sample Sizes 22,190,304

(b) Time Evolution

Notes: This table provides summary statistics of economic RCTs registered in the American Economic
Association RCT Registry (https://www.socialscienceregistry.org, retrieved in October 2017). The
sample consists of RCTs registered there between January 1st 2007 to May 30th 2017 and where the unit
of outcome measurement is an individual or a household. I focus on RCTs with individual or household
subjects in order to make it possible to sum up sample sizes. See Section 2 for discussions about this exhibit
and Appendix A.2.1 for the detailed computational procedure.
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Table A.7: A Selection of High-stakes RCTs (Continued from Table 2)

(a) Medical Clinical Trials

Subjects Sample Size

i Coronary Heart Disease Patients 4444 Individuals
ii Hypertensive Patients with Diabetes 1148 Individuals
iii Patients with Elevated Intraocular Pressure 1636 Individuals
iv HIV Negative Gay Men and Transgender Women 2499 Individuals
v Serodiscordant Couples 1763 Couples
vi Postmenopausal Women 16608 Individuals

(b) Social and Economic Experiments

Subjects Sample Size

I Poor Households in Kenya 940 Households
II Crime Hot Spots in Minneapolis 110 Spots
III Unmarried Women in Malawi 1007 Individuals
IV Uninsured Individuals in Oregon 12229 Individuals
V Public Sector Job Applicants in Mexico 350 Job Vacancies

Notes: This is a continuation of Table 2. See Table 2’s notes about how to read this table.

Table A.8: Summary Statistics of Treatment Effects and WTP

(1) (2) (3) (4) (5)
Mean 25 Percentile Median 75 Percentile SD

% Reduction in Child diarrhea 4.89 3.49 5.00 6.66 3.52
WTP measured by time cost 24.99 -6.20 19.22 46.49 137.4
of water collection (unit: workdays)

Notes: This table shows summary statistics of estimated treatment effects êt1i and WTP ŵit1 . I bootstrap
êt1i and ŵit1 from their estimated models (10) and (11), respectively. See Section 7.2 for discussions about
this table.

74



Figure A.1: EXaM’s Treatment Assignment Probabilities

Notes: This figure shows the distribution of EXaM’s treatment assignment probabilities p∗it1(ε) over 1000
bootstrap simulations and households. The vertical dash line is RCT’s constant assignment probability
pRCT
it1

. See Section 7.3 for discussions about this table.
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