
APPENDIX E

This Appendix contains the CARA-based foundation of our model, and a complete proof of

Proposition 4. Because this material is not as important as the other proofs, it is written as a

separate supplement.

E.1 The CARA Setting

Agents can invest in a riskless asset with return r and in two risky assets paying the same cash

flow. Cash flow is described by the cumulative dividend process

dDt = δdt+ σdBt,

where δ and σ are positive constants, and Bt is a standard Brownian motion. Agents derive utility

from the consumption of a numéraire good, and have a CARA utility function

−E

[
∫ ∞

0
exp (−αct − βt) dt

]

. (E.1)

Each agent receives a cumulative endowment process

det = σe

[

ρtdBt +
√

1− ρ2
tdZt

]

,

where σe is a positive constant, Zt a standard Brownian motion independent of Bt, and ρt the

instantaneous correlation between the dividend process and the endowment process. The process

ρt can take three values: ρt = −ρ < 0 for high-valuation agents, ρt = ρ > 0 for low-valuation

agents, and ρt = 0 for average-valuation agents. The processes (ρt, Zt) are pairwise independent

across agents. We set A ≡ rα, y ≡ Aσ2/2, x ≡ Aρσσe, and x ≡ Aρσσe.

E.1.1 Walrasian Equilibrium

Under Assumptions 1 and 2, the Walrasian equilibrium is identical to that in Proposition 3. This

is true even when agents are allowed to invest in integer multiples of one share and in both assets

simultaneously, provided that we make the additional assumption

Assumption 3. 4y > x+ x.
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Proposition 13. Suppose that agents have CARA preferences and can hold any position (q1, q2) ∈

Z
2 in the two assets. In a Walrasian equilibrium both assets trade at the same price

p =
δ + x− y

r

and the lending fee w is zero. Moreover, high-valuation agents buy one share or stay out of the

market, low-valuation agents short one share, and average-valuation agents stay out of the market.

Proof: The lending fee is zero by the same argument as in Proposition 3. An agent maximizes

(E.1) subject to the budget constraint

dWt =

[

rWt − ct +

2
∑

i=1

(δ − rpi)qit

]

dt+

[

σ

2
∑

i=1

qit + ρtσe

]

dBt + σe

√

1− ρ2
tdZt

and the transversality condition

lim
T→∞

E [exp(−AWT − βT )] = 0, (E.2)

where Wt is the wealth and qit is the number of shares invested in asset i ∈ {1, 2}. The agent’s

controls are the consumption c ∈ R and the investments (q1, q2) ∈ Z
2. Obviously, if p1 6= p2

the agent can achieve infinite utility by demanding an infinite amount of assets, contradicting

equilibrium. Thus, in equilibrium p1 and p2 must be equal. Denoting their common value by p and

the aggregate investment in the risky assets by q ≡ q1 + q2, we can write the budget constraint as

dWt = [rWt − ct + (δ − rp)qt] dt+ [σqt + ρtσe] dBt + σe

√

1− ρ2
tdZt.

The agent’s value function J(Wt, ρt) satisfies the Hamilton-Jacobi-Bellman (HJB) equation

0 = sup
(c,q)∈R×Z

{

− exp(−αc) + D
(c,q)J(W,ρ)− βJ(W,ρ)

}

, (E.3)

where

D
(c,q)J(W,ρ) ≡ JW (W,ρ) [rW − c+ (δ − rp)q] +

1

2
JWW (W,ρ)

[

σ2q2 + 2ρσσeq + σ2
e

]

+κ(ρ) [J(W, 0)− J(W,ρ)] ,
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and where the transition intensity κ(ρ) is zero for ρ = 0, κ for ρ = ρ, and κ for ρ = ρ. We guess

that J(W,ρ) takes the form

J(W,ρ) = −
1

r
exp

[

−A[W + V (ρ)] +
r − β + A2σ2

e

2

r

]

,

for some function V (ρ). Replacing into (E.3), we find that the optimal consumption is

c(ρ) = r[W + V (ρ)]−
r − β + A2σ2

e

2

A

and the optimal investment satisfies

q(ρ) ∈ argmaxq∈Z{C(ρ, q)− rpq} ≡ Q(ρ),

where C(ρ, q) is the incremental certainty equivalent of holding q shares relative to holding none.

Using the definitions of y, x, x, we can write the certainty equivalent as C(ρ, z) = (δ + x)q − yq2

for high-valuation agents, C(ρ, z) = (δ− x)q− yq2 for low-valuation agents, and C(0, z) ≡ δq− yq2

for average-valuation agents.

Plugging c(ρ) back into (E.3), we find that (E.3) is satisfied iff

0 = −rV (ρ) + max
q∈Z

{C(ρ, q)− rpq}+ κ(ρ)
1− e−A(V (0)−V (ρ))

A
. (E.4)

Equation (E.4) implies that V (0) = maxq{C(0, q) − rpq}/r. Moreover, given V (0), the equations

for V (ρ) and V (ρ) are in only one unknown, and it is easy to check that they have a unique solution.

We next determine the equilibrium value of p. Because each type-ρ agent holds a position

q(ρ) ∈ Q(ρ), the average position qm(ρ) of these agents is in the convex hull of Q(ρ). Market

clearing requires that qm(0) = 0 because average-valuation agents are in infinite measure. It also

requires that

F

κ
qm(ρ) +

F

κ
qm(ρ) = 2S. (E.5)

Because the function q → C(ρ, q) − rpq is strictly concave, the set Q(ρ) consists of either one or

two elements. If there exists a q such that

C(ρ, q)− rpq > max {C(ρ, q + 1)− rp(q + 1), C(ρ, q − 1)− rp(q − 1)} , (E.6)
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then this q is unique and Q(ρ) = {q}. Otherwise, there exists a unique q such that

C(ρ, q)− rpq = C(ρ, q + 1)− rp(q + 1), (E.7)

and Q(ρ) = {q, q + 1}. Using Assumptions 1 and 3 and the first-order conditions (E.6) and (E.7),

it is easy to check that for p = (δ+x−y)/r, we have Q(ρ) = {0, 1}, Q(ρ) = {−1}, and Q(0) = {0}.

Equation (E.5) then follows from Assumption 2, implying that p = (δ + x− y)/r is an equilibrium

price. It is the unique equilibrium price because if p > (δ + x− y)/r, then no agent would choose

q > 0, and if p < (δ + x− y)/r then high-valuation agents would choose q ≥ 1, while other agents

would choose at least as much as for p = (δ + x− y)/r.

E.1.2 Search Equilibrium

Proposition 14 studies agents’ optimization problem in a general Poisson setting, and shows that

the value function is of the form

J(W, τ) = −
1

r
exp

[

−A[W + V (τ)] +
r − β + A2σ2

e

2

r

]

, (E.8)

where V (τ) is a function characterized by (E.9). Using (E.9), it is easy to check that when α con-

verges to zero, holding (y, x, x) constant, V (τ) satisfies the flow-value equations derived under the

utility specification of Section 2. Therefore, if the trading strategies in the equilibria of Propositions

5 and 7 involve strict preferences (which is the case generically), they are also optimal under CARA

preferences for small α. This means that the equilibria of Propositions 5 and 7 are also equilibria

under CARA preferences.

Proposition 14. Suppose that

(i) An agent can be of finitely many types τ ∈ T.

(ii) While being of type τ , the agent receives a payoff described by the cumulative process

dX(τ, t) = m(τ)dt+
√

σ(τt)2 + σ2
edB̃t,

where B̃t is a standard Brownian motion.

(iii) Transitions across types occur at the arrival times of a K-dimensional counting process Nt,

with intensity associated to dimension k equal to a constant γ(k). At the arrival times asso-

ciated to dimension k, the agent can choose between types τ ′ ∈ T′(τ, k) ⊆ T.
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(iv) Transition to type τ ′ brings an instant payoff P (τ, τ ′).

Then, the value function is given by (E.8) with

rV (τ) = m(τ)−
A

2
σ(τ)2 +

K
∑

k=1

γ(k) max
τ ′∈T′(τ,k)

1− e−A
[

V (τ ′)−V (τ)+P (τ,τ ′)
]

A
. (E.9)

Proof: The agent’s wealth evolves according to the SDE

dWt = [rWt +m(τt)− ct]dt+
√

σ(τt)2 + σ2
edB̃t +

K
∑

k=1

P (τt−, τt) dNt(k).

The agent chooses a transition and consumption policy to maximize (E.1) subject to the transver-

sality condition (E.2). We also impose the boundedness condition

E

[
∫ T

0
exp(−zWt) dt

]

<∞

for all T ≥ 0 and z ∈ {rα, 2rα}, because it is needed for the verification argument. The HJB

equation is

0 = sup
c∈R,τ ′∈T′(τ,k)

{

− exp
[

−α c(τ)
]

+ D
(c,τ ′)J(W, τ)− βJ(W, τ)

}

, (E.10)

where

D
(c,τ ′)J(W, τ) ≡ JW (W, τ)

[

rW − c(τ) +m(τ)
]

+
1

2

[

σ(τ)2 + σ2
e

]

JWW (W, τ)

+
K
∑

k=1

γ(k)

[

J
[

W + P (τ, τ ′), τ ′
]

− J(W, τ)

]

.

Substituting (E.8) in (E.10) and maximizing with respect to consumption, we find that (E.8) is a

solution iff V (τ) solves (E.9).
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E.2 Complete Proof of Proposition 4

When pi < Vni, (A.11) and (A.12) are replaced by

rVni = δ + x− y + wi + κ (Vni − Vni) + κ
(

V`i − Vni
)

, (E.11)

rVni = −δ + x− y − wi + κ
(

−pi − Vni
)

. (E.12)

The counterpart of (A.14) is

(r + κ)Σi = x+ x− 2y − (1− θ)
2
∑

j=1

νjµ`jΣj + κ(Vni − Vni). (E.13)

Subtracting (A.9) from (E.11), we find

Vni − Vni =
x

r + κ+ κ
, (E.14)

and can rewrite (E.13) as

(r + κ)Σi = x+ x− 2y − (1− θ)
2
∑

j=1

νjµ`jΣj −
κx

r + κ+ κ
. (E.15)

Suppose that Σ1,Σ2 ≤ 0. Then, a borrower and a lender of asset i are better off agreeing on a

repo contract with a fee wi ≈ 0. Indeed, since rpi = δ+x−y from (A.8), we have δ−y+wi−rpi ≈

−x < 0 and thus Vni < pi. Therefore, the surplus Σi under this contract is given by (A.14) and is

positive. The lender is better off because of the fee, and if the fee is small the borrower is better

off because Σi > 0. Therefore, Σ1,Σ2 ≤ 0 cannot be part of an equilibrium.

Suppose that Σ1 > 0 and Σ2 ≤ 0. Then, a borrower and a lender of asset 2 are better off

agreeing on a repo contract with a fee w2 ≈ 0. Indeed, the surplus Σ2 under this contract is

given by (A.14). If Σ1 is given by (A.14), then Σ2 = Σ1 > 0. If Σ1 is given by (E.13), then

Σ2 = x/(r + κ+ κ) > 0. Therefore, Σ1 > 0 and Σ2 ≤ 0 cannot be part of an equilibrium, and the

only possible outcome is Σ1,Σ2 > 0 and ν1 = ν2 = ν.

Since ν1 = ν2 = ν, the Law of One Price holds if pi ≥ Vni for both assets or pi < Vni for both

assets. Consider an equilibrium in which p1 ≥ Vn1 and p2 < Vn2. Then (A.8) and (A.13) imply
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that

rpi = δ + x− y + νµboθΣi, (E.16)

(A.8), (A.11) and (A.13) imply that

w1 = (r + κ+ κ+ νµbo)θΣ1, (E.17)

(A.8), (A.13), (E.11) and (E.14) imply that

w2 = (r + κ+ νµbo)θΣ2 +
κx

r + κ+ κ
, (E.18)

(E.16), (E.17) and δ − y + w1 − rp1 ≤ 0 imply that

(r + κ+ κ)θΣ1 − x ≤ 0, (E.19)

and (E.16), (E.18) and δ − y + w2 − rp2 > 0 imply that

(r + κ+ κ)θΣ2 − x > 0. (E.20)

Equations (E.19) and (E.20) imply that Σ2 > Σ1. But then, a borrower and a lender of asset 1

can be made better off agreeing to a contract with a fee w̃1 > w1 such that δ − y + w̃1 − rp1 is

slightly positive. Using (A.9), this implies that Ṽn1 > p1, so that the lender finds it optimal not

to terminate when he reverts to an average valuation. Hence, this contract generates surplus Σ2.

Because δ − y + w̃1 − rp1 is slightly positive, we also have that Ṽn1 ≈ p1, meaning that a lender is

nearly indifferent between terminating or not. This means that the change in the lender’s utility is

∆Vni ≈
w̃1 − w1

r + κ+ κ
> 0,

the PV of the lending fee difference assuming that the lender follows the same termination strategy

than with w1. The change in the borrower’s utility is Σ2−Σ1−∆Vni. Factoring out 1/(r+κ+κ),

we can write this as

(r + κ+ κ)(Σ2 − Σ1)− (w̃1 − w1)

≈ (r + κ+ κ)(Σ2 − Σ1)−
[

rp1 − δ + y − (r + κ+ κ+ νµbo)θΣ1

]

= (r + κ+ κ)(Σ2 − Σ1)−
[

δ + x− y + νµboθΣ1 − δ + y − (r + κ+ κ+ νµbo)θΣ1

]

= (r + κ+ κ)(Σ2 − Σ1)− [x− (r + κ+ κ)θΣ1]

= (1− θ)(r + κ+ κ)(Σ2 − Σ1) + [(r + κ+ κ)θΣ2 − x] > 0.

Therefore, the conjectured equilibrium is not possible.
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