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A Relation of Proposition 2.1 to Pricing Kernel Formulations

By definition, given the dividend procegs, the price of the stock is given by:

P, =E, { / A,D, ds} , (A-1)
t

under the pricing kernel proceds, together with a transversality assumption. We assume that
the pricing kernel follows:

dA,

58 = () dt = &) ABY — €a(w)dB. (A-2)

wherer(-) is the risk-free rate process, afidand¢, are prices of risk corresponding to shocks
to the state variable; and dividend growth, respectively. Using equation (A-1), we can express
the price-dividend ratio as:

% =E, {/tooexp (_ /ts(rf—l—%(£§+§§))du+§rd33+§dd33>

X exp </ Hadu + addBZ> ds] ,
t

assuming that ., = 0 for simplicity. This can be equivalently written as:

% = EtQ {/too exp (— /ts(rf — g — %(O‘d — &)%) du) ds] , (A-3)

where the Radon-Nikodym derivative defining the risk-neutral meagusayiven by:

j—g = exp (— /t %(gi + (04— &)?) du — £, dBE — (04 — gd)ng) . (A-4)
Note that equation (A-3) is a functiofy-) of x.

We describe how a particular choice of a return proegss together with assumptions on
dividends, places restrictions on the underlying pricing kernel pratestirough the following
proposition:

Proposition A.1 Suppose the state of the economy is described byhich follows equation

(1), and a stock is a claim to the dividenfs that are described by equation (2) witl), = 0.

If the stock return follows equation (8) and the pricing kernel process follows equation (A-2),
then the price-dividend rati®,/ D, = f(x;) satisfies the following relation:

(:uz - gzo'x)f/ + %U:%f” - (Tf — Hd — %0-3 + gdo-d)f = _17 (A'S)
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which determines the price-dividend ratfo This implies that the expected retugn(-) and
volatility o...(-) of the return are given by:

Ky = Ty + gxo'x(ln f)l + fd0d7
Orgy = Og (hl f)/ (A_6)

Proof: Equation (A-5) is the standard Feynman-Kac pricing equation. Once the price-dividend
ratio f is obtained from solving equation (A-5), we can derive equation (A-6) by equating terms
from the drift term ofd R, and the diffusion term od By in equation (8) &

Proposition A.1 states that, given the dividend stream, the pricing kernel completely deter-
mines the price-dividend rati@, the expected return of the stopk, and the volatility of the
stocko,,.. However, if we specify the price of the stock, the expected return, or the volatility of
the stock (each one being sufficient to determine the other two from Proposition 2.1), the short
rater’, the prices of risk, and¢,, or the pricing kernel\, are not uniquely determined. For ex-
ample, suppose we specify. There are potentially infinitely many pairsidfand¢ = (&, &)
that can produce the same. For example, one (trivial) choice ¢fis ¢ = (0, 0) corresponding
to risk neutrality, and the stock return is the same as the risk-free rate. Whereas Proposition 2.1
shows that specifying.,., 0., or f completely determines the return process, the result from
Proposition A.1 implies that a single choiceof, o,., or f does not necessarily determine the
pricing kernel.

B Multivariate State Variables

Suppose that there afé state variables, so that= (z1,..., )" represents & x 1 vector of
diffusion processes. We letfollow the diffusion process in equation (1), wherg-) is a vector
function ofz ando,(-) is a matrix function ofc. Similarly, dividend growth satisfies equation
(2) where the scalans,(-), o4(-) are potentially functions of. For expositional simplicity, we
assume that,, = 0 and denote the scalar price-dividend ratio®yD = f(x).

Suppose that the retur®, satisfies the following diffusion equation:

th = /M'(xt)dt + O'rm(xt)dBf + O-Td(xt)dBf

K
= pe(@)dt+ > 0, (2)dB] + 0va(20)dBY, (B-1)
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wherey,.(-) is a scalar function af, o,..(-) is a matrix function ofz, o,.,, represents théh row
of 0,., and the vector of Brownian motior&3¢ is partitioned as/B? = (dB}* ... dB;*)".
From the definition of the returdR, = df,/f, + dD,/D, + 1/ f,dt, the diffusion term of the
return is given by:

1 T
(a nf ) 0w dB® + 04dBL. (B-2)
ox
Thus, in order fow ., to represent the diffusion coefficients of a return, we must have:
1 T
Orz = (a nf) O, (B'S)
ox
or, equivalently:
K
Oln f
Org; = Z a—%(%)ji,
7j=1

where(o,);; is the element o&, in the jth row andith column. From equation (B-3), there

must be a functiorf such that:
Oln f

ox
The necessary and sufficient condition for this is:

= (Ur:vag;l)T- (B-4)

Assumption B.1 The diffusion coefficients, ando,.. satisfy the integrability condition:

0 0
a_(o-rxggl)i = Or (Urxo-;l)j' (B_S)

L
Note that unlike the univariate case, we cannot arbitrarily specify the diffusion coefficients
0., Of the return. Ifo,, does not satisfy the integrability condition, then equation (B-1) cannot
represent a return implied from a pricing function. The multivariate version of equations (8)
and (11) in Proposition 2.1 are:

Proposition B.1 Suppose that the returR, follows the diffusion equation (B-1) and that diffu-
sion ratios,,0, ! satisfies the integrability condition Assumption B.1. Then, the price-dividend
ratio and the expected return are determined up to integration constant.

Proof: From the integrability condition (B-5), it follows from elementary calculus that there
exists a functiory that satisfies:
dln f = 0,,0,  dz. (B-6)



Equation (B-6) is the multivariate version of equation (11). The funcfias the dividend
yield, and it is unique up to a multiplicative constant (sihc¢ is determined up to an additive
constant). The expected return is then determined by:

/+l HTUxO'; ”‘l—l 1
2/ 7 / + ptg + =05 (B-7)

-
Hy
ILLT(‘I) = 2

Equation (B-7) is the multivariate version of equation ().

The integrability condition in Assumption B.1 imposes strong restrictions on multivariate
stochastic volatility processes. For example, the diffusion process

VU1dB} + v1\/v2d B},

wherev; andv, are stochastic processes, cannot represent the return diffusion process of a valid
pricing function because it violates the condition (B-5).



