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1 Proof of Private Contracts Lemma 1

Let us consider �rst a separating equilibrium. Ignoring for now the monotonicity constraint, the program of
a good bank trying to separate from a bad bank is:

max
yl2[0;y]

E
�
y � yljG

�
;

subject to the break even constraint
E
�
yljG

�
� x� c0;

and the separating constraint
E
�
y � yljB

�
� ~B;

where ~B is the outside option of the bad type. Using the density functions f (:j�), we can write the Lagrangian
as

L =
Z �

y � yl
�
f (yjG) dy + �

�Z
ylf (yjG) dy � (x� c0)

�
� �

�Z �
y � yl

�
f (yjB) dy � ~B

�
;

or

L =
Z �

1� �� �f (yjB)
f (yjG)

��
y � yl

�
f (yjG) dy + � (E [y] + x� c0) + � ~B:

Under A2, f (:jG) =f (:jB) is increasing in y, so f (:jB) =f (:jG) is decreasing, and 1 � � � �f (:jB) =f (:jG)
is increasing. When it is negative, it is optimal to set y � yl = 0. When it turns positive, it is optimal to
set yl = 0. This is the well known result of a �live or die�contract. If we know introduce the monotonicity
constraint of Inner (1990), it is easy to see that that as long as the contract is strictly increasing, the
monotonicity does not bind, and when the contract tends to decrease, the monotonicity constraint forces it
to be constant. We therefore obtain a debt contract.
Let us now consider a pooling equilibrium where all banks invest. The program then becomes

max
yl2[0;y]

E
�
y � yljG

�
;

subject to
E
�
yl
�
� x� c0;

where E
�
yl
�
denotes the unconditional expectation of yl. We can then write the Lagrangian as

L =
Z �

1� � f (y)

f (yjG)

��
y � yl

�
f (yjG) dy + � (E [y] + x� c0) :
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Again, since f , which is the unconditional distribution of y, is equal to �f (:jG) + (1� �) f (:jB), we get the
�live or die�contract if we do not impose monotonicity, and the debt contract when we impose that yl be
increasing in y. We therefore conclude that deb contract are optimal in all types of equilibria.

2 Proof of Proposition 9

2.1 Equity Injection

In a pure equity injection program, denoted by E ; the government injects cash m� in return for a fraction �
of equity. Conditional on investment, the private loan is l� = x�c0�m� and the private rate is r� consistent
with the pooling equilibrium. The total inside value of equity for type � conditional on investment is:

V (�; E (�)) = (1� �)E [y �min (y; r�l�) j�] :

The interest rate r� is pinned down by la via the zero pro�t condition

l� = E
� [min (y; r�l�)] : (1)

The initial shareholders retain a fraction 1��. The outside option for type � is V (�;O (~r)) = E [y �min (y; ~rl0) j�]
with l0 = x� c0, and the participation constraint is therefore:

V (�; E (�)) � V (�;O (~r)) : (2)

The investment constraint does not depend on � since all shareholders (the government and the old ones)
are treated equally. The investment constraint for type � is:

V (�; E (�)) � (1� �) (E [aj�] + c0 +m�) : (3)

The government chooses � and m� to minimize

	E� = m� � �E [y �min (y; r�l�)] ; (4)

subject to participation, investment constraints for all banks and to the interest rate equilibrium condition
(1).
As in the proof of Proposition 4 we can show that the participation constraint for the good type implies

the participation constraint for the bad type. Moreover, since r� (ma) � rB (ma) ; the investment constraint
for bad banks is always satis�ed. Then, the solution depends on whether (2) binds for � = G, or whether
(3) for � = G binds.
Suppose �rst that the investment constraint (3) is slack. Given any cash level m, we can make the

participation constraint bind for the good type by choosing � such that

� (m) =

R1
0
(min (y; ~rl0)�min (y; r�l�)) f (yjG) dy

E [y �min (y; r�l�) jG]
(5)

which must be non-negative. Moreover, we can make the participation constraints for both types of banks
to bind by setting yl (y; ~rl0) = yl (y; rl) which is achieved by a cash level that satis�es r�l� = ~rl0 or
r (x� c0 �m�) = ~r (x� c0) ; or

m̂ =

�
1� ~r

r

�
(x� c0) : (6)

Note that this is an implicit de�nition since r depends on m through (1). With this cash level we have
� (m̂) = 0 and the participation constraints for both types of banks bind and the cash injection reaches the
lower bound

	E� = 	
�
� = m̂:

Note, however, that this only happens when � = 0, so it can only be optimal for the government to transfer
cash without asking for equity. Moreover, with this cash level we have that r�l� = ~rl0. Assumption A6 only
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guarantees that E [y �min (y; ~rl0) jG] � E [ajG] + c0, so it is clear that the investment constraint (3) may
be violated at cash level m̂.
When the investment constraint (3) binds for the good type, it pins down m�. Since this cash level is

above the one that sets � = 0, we obtain non-negative � from (5). In this case the participation constraint
for the bad type is slack and the cost of equity injection does not reach the lower bound. The cost of this
program then is

	E� �	�� = (1� �) (V (B; E (B))� V (B;O (~r))) > 0:

2.2 Asset buybacks

The government o¤ers to buy an amount Z of legacy assets for cash mz. We denote asset buyback programs
by A: If a bank opts in the program, the face value of its legacy assets decreases by Z. The payo¤s to
the government are yg = aZA . De�ne the fraction of buyback by z � Z=A: The total value conditional on
participation and investment for type � is

V (�;A (�)) = E [y � za�min (y � za; rzlz) j�]

where lz = x� c0 �mz, and where rz is pinned down by lz via the zero pro�t condition

lz = E
� [min (y � za; rzlz)] : (7)

The non-participation payo¤ for type � is V (�;O (~r)) = E [y �min (y; ~rl0) j�] with l0 = x� c0. The partici-
pation constraint for type � is

V (�;A (�)) � V (�;O (~r)) : (8)

The investment constraint is
V (�;A (�)) � (1� z)E [aj�] + c0 +mz: (9)

The government chooses z and mz to minimize

	A� = mz � zE [a] ; (10)

subject to participation, investment constraints for all banks and to the interest rate equilibrium condition
(7).
As in the proof of Proposition 4 we can show that the participation constraint for the good type, implies

the participation constraint for the bad type. Moreover, since rz (mz) � rB (mz) ; the investment constraint
for bad banks is always satis�ed. Then, the solution depends on whether (8) binds for � = G, or whether
(9) for � = G binds.
First we look at the case where the participation constraint for good banks binds, whereas the investment

constraints are slack. In this case the government can set Z = 0 and mz = m̂ as for the equity injection
analyzed above. The program achieves the lower bound on costs

	A� = 	
�
� = m̂:

However, this program is not feasible if the investment constraint is violated at m̂. In that case, the
government sets mz so that the investment constraint is satis�ed with equality. This cash level is higher
than m̂ and the government chooses a strictly positive Z to make the participation constraint bind for the
good type. As in the case of equity, the participation constraint for the bad type is slack and the cost of
equity injection does not reach the lower bound:

	A� �	�� = (1� �) (V (B;A (B))� V (B;O (~r))) > 0:

2.3 Comparisons

We want to compare the e¢ ciency of equity injections and asset buybacks. When the outside option is very
high the required cash injection is high and the investment constraint is slack. In this case, it is optimal to
do a pure cash injection program, and the two interventions are (trivially) equivalent.
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The interesting case is when the investment constraint binds. In this case, the government always chooses
a non zero value for � and z, and the comparison of the costs 	E� and	

A
� is not trivial.

From our previous propositions, we know that since the good type participation constraint always binds,
the failure to reach the minimum cost is driven by the gap in the participation constraint of the bad type

	E� �	�� = (1� �) (V (B; E (B))� V (B;O (~r))) and
	A� �	�� = (1� �) (V (B;A (B))� V (B;O (~r))) ;

Then

	A� > 	E� , V (B;A (B)) > V (B; E (B))
, E [y � za�min (y � za; rzlz) jB] > (1� �)E [y �min (y; r�l�) jB]
, E [min (y; r�l�)�min (y � za; rzlz) jB] > zE [ajB]� �E [y �min (y; r�l�) jB]
, �E � �A

where

�E = (1� �)E [min (y; r�l�) jB] + �E [yjB]
�A = E [min (y � za; rzlz) jB] + zE [ajB]

Let V (B;O (~r)) = V outG :When V outG is high enough we know that 	A� = 	
E
�. We now show that �

E � �A
when V outG goes down, establishing for low values of V outG , we have that 	A� > 	

E
� , that is equity is cheaper.

For each program, we have 3 equations in 3 unknowns: l, z or �. and R = rl. In order to do comparative
statics with respect to V outG we need to totally di¤erentiate a 3 � 3 system in each case. For the case of
equity the system consists of (2) ; (3) and (1) : Similarly for the case of asset buybacks, the system consists
of (5) ; (9) and (7) :

For the case of equity, we solve the system and we get that

d�

dV outG

= � 1� �
V (G; E (G)) ;

dR�
dV outG

= 0 and
dl�
dV outG

= 0:

Then, since dR�

dV out
G

= 0, we get

d�E

dV outG

= (E [yjB]� E [min (y; r�l�) jB]) �
d�

dV outG

(11)

= �E [y �min (y; r�l�) jB] �
1� �

V (G; E (G)) = �
V (B; E (B))
V (G; E (G)) :

For asset buyback, we have

d�A

dV outG

=

 Z A

0

(1� Fz (a)) fa (ajB) da
!
dRz
dV outG

+

 
E [ajB]�

Z A

0

aFz (a) fa (ajB) da
!

dz

dV outG

= CB2
dRz
dV outG

+
�
E [ajB]� CB1

� dz

dV outG

where

Ci1 =

Z A

0

aFz (a) fa (aji) da; for i = B;G; � (12)

Ci2 =

Z A

0

(1� Fz (a)) fa (aji) da; for i = B;G; �
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and where

fa (aj�) = �fa (ajG) + (1� �) fa (ajG) (13)

Fz (a) = Fv (Rz � (1� z) a) =
(

0 if a > Rz

(1�z)
� Fv (Rz) for 0 � a � Rz

(1�z)
:

Since

dz

dV outG

=
�
�
CG2 � C�2

��
CG2 � C�2

� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

dRz
dV outG

=
C�1 � CG1�

CG2 � C�2
� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

dlz
dV outG

=
C�1 C

G
2 � C�2 CG1�

CG2 � C�2
� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

we get
d�A

dV outG

= �
�
CG2 � C�2

� �
E [ajB]� CB1

�
+
�
CG1 � C�1

�
CB2�

CG2 � C�2
� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

(14)

We want to show that d�A

dV out
G

> d�E

dV out
G
; which from (11) and (14) is equivalent to:

�
�
CG2 � C�2

� �
E [ajB]� CB1

�
+
�
CG1 � C�1

�
CB2�

CG2 � C�2
� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

> �V (B; E (B))
V (G; E (G))

or
V (B; E (B))
V (G; E (G)) >

�
CG2 � CB2

� �
E [ajB]� CB1

�
+
�
CG1 � CB1

�
CB2�

CG2 � CB2
� �
E [ajG]� CG1

�
+
�
CG1 � CB1

�
CG2

;

where we used the de�nition of fa (aj�) from (13) : This comparison can be shown (details can be found in
Subsection (2:6)) to be equivalent to:

E [ajG]� E [ajB]
E [ajG]� CG1 +

CG
1 �CB

1

CG
2 �CB

2
CG2

>
V (G; E (G))� V (B; E (B))

V (G; E (G))
1� �
1� �

Now, because of rents

E [ajG]� E [ajB] >
V (G; E (G))� V (B; E (B))

1� �
E [ajG]� E [ajB] > E [a+ v �min (y; r�l�) jG]� E [a+ v �min (y; r�l�) jB]

0 > E [�min (y; r�l�) jB]� E [min (y; r�l�) jG]

which simply says good types repay more. Therefore the numerator is larger on the LHS. It is also clear
that E [ajG] < V (G; E (G)) so it is enough to show that

CG1 �
CG1 � CB1
CG2 � CB2

CG2 � 0:

This is equivalent to

CG1
�
CG2 � CB2

�
� CG2

�
CG1 � CB1

�
CG2 C

B
1 � CB2 C

G
1Z A

0

(1� Fz (a)) fa (ajG) da
Z A

0

aFz (a) fa (ajB) da �
Z A

0

(1� Fz (a)) fa (ajB) da
Z A

0

aFz (a) fa (ajG) da
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which using the fact that
R A
0
fa (ajG) da =

R A
0
fa (ajB) da = 1; we get that

()
Z A

0

aFz (a) fa (ajB) da�
Z A

0

aFz (a) fa (ajG) da (15)

�
Z A

0

Fz (a) fa (ajG) da
Z A

0

aFz (a) fa (ajB) da�
Z A

0

Fz (a) fa (ajB) da
Z A

0

aFz (a) fa (ajG) da:

Now, because Fz (a) (de�ned in (13)) is decreasing, FOSD implies thatZ A

0

Fz (a) fa (ajG) da �
Z A

0

Fz (a) fa (ajB) da:

Therefore for the RHS of (15) we have thatZ A

0

Fz (a) fa (ajG) da
Z A

0

aFz (a) fa (ajB) da�
Z A

0

Fz (a) fa (ajB) da
Z A

0

aFz (a) fa (ajG) da

�
Z A

0

Fz (a) fa (ajB) da
"Z A

0

aFz (a) fa (ajB) da�
Z A

0

aFz (a) fa (ajG) da
#
;

and since Fz (a) < 1Z A

0

Fz (a) fa (ajB) da
"Z A

0

aFz (a) fa (ajB) da�
Z A

0

aFz (a) fa (ajG) da
#
�
Z A

0

aFz (a) fa (ajB) da�
Z A

0

aFz (a) fa (ajG) da

which is what we wanted to show.

2.4 Details of How to Obtain d�E

dV outG

We need to di¤erentiate the system,

V (G; E (G)) = V outG

V (G; E (G)) = (1� �) (E [ajG] + x� l�)
l� = E� [min (y; r�l�)] ;

where

V (G; E (G)) = (1� �)E [y �min (y; r�l�) jG]

= (1� �)
Z A

0

�Z 1

R��a
(a+ v �R�) fv (v) dv

�
fa (ajG) da;

where we let R� = r�l�: Since

d

�Z 1

R��a
(a+ v �R�) fv (v) dv

�
= �dR�

Z 1

R��a
fv (v) dv = �dR� (1� F� (a))

we get

dV (G; E (G)) = � (1� �)
 Z A

0

(1� F� (a)) fa (ajG) da
!
dR� �

V (G; E (G))
1� � d� (16)

where F� (a) = Fv (R� � a) :
Similarly

E� [min (y;R�)] =

Z A

0

 Z R��a

0

yfv (v) dv +

Z 1

R��a
R�fv (v) dv

!
f�a (a) da
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where f�a (a) = �fa (ajG) + (1� �) fa (ajG), implies

dE [min (y;R�)] = dR�

Z A

0

(1� F� (a)) f�a (a) da (17)

Therefore we can write the system

E� [min (y; r�l�)] = l�

V (G; E (G)) = (1� �) (E [ajG] + x� l�)
V (G; E (G)) = V outG

in di¤erential form

dE� [min (y; r�l�)]� dl� = 0

dV inE (G) + (1� �) dl� +
V inE (G)

1� � d� = 0

dV (G; E (G)) = dV outG :

Using (16) and (17) we get that

0 � d�+
Z A

0

(1� F� (a)) f�a (a) da � dR� + (�1) dl� = 0

0 � d�+
"
� (1� �)

 Z A

0

(1� F� (a)) fa (ajG) da
!#

� dR� + (1� �) � dl� = 0

�V
in
E (G)

1� � � d�+
"
� (1� �)

 Z A

0

(1� F� (a)) fa (ajG) da
!#

� dR� + 0 � dl� = dV outG ;

which can be rewritten more compactly as0@ 0 B1 �1
0 B2 1� �
B3 B2 0

1A �
0@ d�
dR�
dl�

1A =

0@ 0
0

dV outG

1A
where

B1 =

Z A

0

(1� F� (a)) f�a (a) da

B2 = � (1� �)
 Z A

0

(1� F� (a)) fa (ajG) da
!

B3 = �V
in
E (G)

1� � :

Then,

det

0@ 0 B1 �1
0 B2 1� �
B3 B2 0

1A = �B1 det
�

0 1� �
B3 0

�
� det

�
0 B2
B3 B2

�
= B1B3 (1� �) +B2B3
= [B1 (1� �) +B2]B3

We can use Cramer�s rule to solve for d�; dR�; dl�: For that we need the determinants:
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det

0@ 0 B1 �1
0 B2 1� �

dV outG B2 0

1A = �B1 � det
�

0 1� �
dV outG 0

�
� 1 � det

�
0 B2

dV outG B2

�
= [B1 (1� �) +B2] � dV outG

det

0@ 0 0 �1
0 0 1� �
B3 dV outG 0

1A = 0;det

0@ 0 B1 0
0 B2 0
B3 B2 dV outG

1A = 0

Then we get that

d� =
[B1 (1� �) +B2] � dV outG

[B1 (1� �) +B2]B3
=

dV outG

�V in
E (G)

1��

= � 1� �
V inE (G)

� dV outG

dR� = 0

dl� = 0

2.5 Details of How to Obtain d�A

dV outG

We need to di¤erentiate the system,

V (G;A (G)) = V outG

V (G;A (G)) = (1� z)E [aj�] + x� lz
lz = E� [min (y;Rz)] ;

where Rz = rzlz,

V (G;A (G)) =
Z A

0

 Z 1

Rz�(1�z)a
((1� z) a+ v �Rz) fv (v) dv

!
fa (ajG) da

Since d
hR1
Rz�(1�z)a ((1� z) a+ v � rzlz) fv (v) dv

i
= �

R1
Rz�(1�z)a (adz + dRz) fv (v) dv, we get

d fV (G;A (G))g = �
�
E [ajG]� CG1

�
dz � CG2 dRz

Now:

E� [min (y � az;Rz)] =
Z A

0

 Z Rz�(1�z)a

0

((1� z) a+ v) fv (v) dv +
Z 1

Rz�(1�z)a
Rzfv (v) dv

!
f�a (a) da

where f�a (a) = �fa (ajG) + (1� �) fa (ajB). Then we get that

d fE� [min (y � az;Rz)]g = �C�1 dz + C�2 dRz

where the C 0s and Fz are de�ned in (12) and (13) respectively.
Then, totally di¤erentiating the system

lz � E� [min (y � za; rzlz)] = 0

(1� z)E [ajG] + x� lz � V (G;A (G)) = 0

V outG � V (G;A (G)) = 0
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we get

dlz � d fE� [min (y � za; rzlz)]g = 0

�E [ajG] dz � dlz � d fV (G;A (G))g = 0

d
�
V outG

	
� d fV (G;A (G))g = 0

or

C�1 dz � C�2 + dlz = 0

�CG1 dz + CG2 dRz � dlz = 0

dV outG +
�
E [ajG]� CG1

�
dz + CG2 dRz = 00@ C�1 �C�2 1

�CG1 CG2 �1
E [ajG]� CG1 CG2 0

1A �
0@ dz
dRz
dlz

1A =

0@ 0
0

�dV outG

1A :
Again, using Cramer�s rule we get0@ dz

dRz
dlz

1A =
�dV outG�

C�2 � CG2
� �
E [ajG]� CG1

�
+
�
C�1 � CG1

�
CG2

0@ C�2 � CG2
C�1 � CG1

C�1 C
G
2 � C�2 CG1

1A
=

dV outG�
CG2 � C�2

� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

0@ C�2 � CG2
C�1 � CG1

C�1 C
G
2 � C�2 CG1

1A
which means

dz

dV outG

=
�
�
CG2 � C�2

��
CG2 � C�2

� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

:

dRz
dV outG

=
C�1 � CG1�

CG2 � C�2
� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

:

dlz
dV outG

=
C�1 C

G
2 � C�2 CG1�

CG2 � C�2
� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

:

2.6 Other Omitted Details

We want to show that

�
�
CG2 � C�2

� �
E [ajB]� CB1

�
+
�
CG1 � C�1

�
CB2�

CG2 � C�2
� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

> �V (B; E (B))
V (G; E (G))

or

V (B; E (B))
V (G; E (G)) >

�
CG2 � C�2

� �
E [ajB]� CB1

�
+
�
CG1 � C�1

�
CB2�

CG2 � C�2
� �
E [ajG]� CG1

�
+
�
CG1 � C�1

�
CG2

or

V (B; E (B))
V (G; E (G)) >

�
CG2 � CB2

� �
E [ajB]� CB1

�
+
�
CG1 � CB1

�
CB2�

CG2 � CB2
� �
E [ajG]� CG1

�
+
�
CG1 � CB1

�
CG2

Then�
CG2 � CB2

� �
E [ajB]� CB1

�
+
�
CG1 � CB1

�
CB2�

CG2 � CB2
� �
E [ajG]� CG1

�
+
�
CG1 � CB1

�
CG2

� 1 =
�
CG2 � CB2

�
(E [ajB]� E [ajG])�

CG2 � CB2
� �
E [ajG]� CG1

�
+
�
CG1 � CB1

�
CG2
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�
CG2 � CB2

� �
E [ajB]� CB1

�
+
�
CG1 � CB1

�
CB2�

CG2 � CB2
� �
E [ajG]� CG1

�
+
�
CG1 � CB1

�
CG2

= 1�
�
CG2 � CB2

�
(E [ajG]� E [ajB])�

CG2 � CB2
� �
E [ajG]� CG1

�
+
�
CG1 � CB1

�
CG2

= 1� (E [ajG]� E [ajB])

E [ajG]� CG1 +
(CG

1 �CB
1 )

(CG
2 �CB

2 )
CG2

V (B; E (B))
V (G; E (G)) � 1 =

V (B; E (B))� V (G; E (G))
V (G; E (G))

V (B; E (B))
V (G; E (G)) = 1� V (G; E (G))� V (B; E (B))

V (G; E (G))
Then

V (B; E (B))
V (G; E (G)) >

�
CG2 � CB2

� �
E [ajB]� CB1

�
+
�
CG1 � CB1

�
CB2�

CG2 � CB2
� �
E [ajG]� CG1

�
+
�
CG1 � CB1

�
CG2

is equivalent to

1� V (G; E (G))� V (B; E (B))
V (G; E (G)) > 1� (E [ajG]� E [ajB])

E [ajG]� CG1 +
(CG

1 �CB
1 )

(CG
2 �CB

2 )
CG2

or
E [ajG]� E [ajB]

E [ajG]� CG1 +
CG
1 �CB

1

CG
2 �CB

2
CG2

>
V (G; E (G))� V (B; E (B))

V (G; E (G)) :

3 Optimal Menus: Missing Parts of Proof of Proposition 10

3.1 Asset-Buyback Menus

Again, the revelation principle implies that without loss we can assume that each program consists of an
option for good banks and an option for bad banks:

mG; zG and mB ; zB :

The government o¤ers cash m against z assets. Then, the participation payo¤ for type � bank is V (�;P�) =
E
�
y � yl (y; r�lm�

)� yg (a; z�) j�
�
, where lm�

= x � c0 �m�; whereas the non-participation payo¤ for type
� is V (�;O (~r)) = E

�
y � yl (y; ~rl0) j�

�
; where l0 = x� c0:

The constraints are

ICB : E
�
a+ v � yl (y; rBlmB

)� yg (a; zB) jB
�
� E

�
a+ v � yl (y; rGlmG

)� yg (a; zG) jB
�

ICG : E
�
a+ v � yl (y; rGlmG

)� yg (a; zG) jG
�
� E

�
a+ v � yl (y; rBlmB

)� yg (a; zB) jG
�

PCG : E
�
a+ v � yl (y; rGlmG

)� yg (a; zG) jG
�
� E

�
y � yl (y; ~rl0) jG

�
PCB : E

�
a+ v � yl (y; rBlmB

)� yg (a; zB) jB
�
� E

�
y � yl (y; ~rl0) jB

�
zG : zG � 0
zB : zB � 0

From the IC we get that

E
��
yl (y; rBlmB

) + yg (a; zB)
�
jG
�
� E

�
yl (y; rGlmG

) + yg (a; zG) jG
�

E
�
yl (y; rGlmG

) + yg (a; zG) jB
�
� E

��
yl (y; rBlmB

) + yg (a; zB)
�
jB
�
:

Consider the following menu: zG = zB = 0 and mG and mB be such that yl (y; rGlmG
) = yl (y; rBlmB

) =
yl (y; ~rl0) : Notice again, that in this menu mG 6= mB which is necessary in order to achieve separation. With
such a menu we have the incentive and the participation constraints of both types hold with equality. Hence
this menu is feasible and it achieves the minimal cost for the government. Notice also that in deriving this
program we have assumed that good banks invest when they choose the option for the bad banks. This is
indeed the case, which follows from the fact that yl (y; rBlmB

) = yl (y; ~rl0) and from Assumption A6.
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3.2 Debt Guarantee Menus

Now we turn to examine debt guarantee programs. Here the two menus are

�G; SG and �B ; SB :

In such a program the government guarantees new loans up to S� in exchange for a fee ��S�: Given such a
program we have that

yu (y; r�l
u) = min(y; r�l

u); ys (y; S) = min(y � yu; S) and yg = 0:

Then, the participation payo¤ for type � bank is V (�;P�) = E [y � yu (y; r�lu� )� ys (y; S�) j�] ; where lu� =
l0� (1� ��)S�; whereas the non-participation payo¤ for type � is V (�;O (~r)) = E

�
y � yl (y; ~rl0) j�

�
; where

l0 = x� c0:
The constraints are

ICB : E [a+ v � yu (y; rBlu)� ys (y; SB) jB] � E [a+ v � yu (y; rGlu)� ys (y; SG) jB]
ICG : E [a+ v � yu (y; rGlu)� ys (y; SG) jG] � E [a+ v � yu (y; rBlu)� ys (y; SB) jG]
PCG : E [a+ v � yu (y; rGlu)� ys (y; SG) jG] � E

�
y � yl (y; ~rl0) jG

�
PCB : E [a+ v � yu (y; rBlu)� ys (y; SB) jB] � E

�
y � yl (y; ~rl0) jB

�
Combining the two incentive constraints we get that

E [yu (y; rGl
u) + ys (y; SG) jB] � E [yu (y; rBl

u) + ys (y; SB) jB]
E [yu (y; rBl

u) + ys (y; SB) jG] � E [yu (y; rGl
u) + ys (y; SG) jG] :

Consider a program where yu (y; rBlu) + ys (y; SB) = yu (y; rGl
u) + ys (y; SG) = yl (y; ~rl0) : This program

is feasible as it makes all constraints hold with equality, which, in turn, also implies that it is optimal.
Moreover, good banks do want to invest when choosing the option for bad banks, exactly for the same
reasons we explained in the case of asset buybacks.
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