
A Price Setting in the frictionless case

We consider two simple static problems for a monopolist firm. The first has a linear system,
the second is a log approximation to a general case.

A.1 Linear Demand

Let the demand for a product be q(p) = a − b p where q are quantities and p is the price,
a the intercept, b is the slope. Assume that the marginal cost is constant at the value of c.
Thus profits are Π(p) = (a− b p)(p− c), and the static monopoly price is given by

p∗ =
a + c b

2b
,

and the maximized profits can be written as Π∗ = b (p∗)2 − c a, or

Π(p) = Π∗ +
1

2
(−2 b)(p− p∗)2 = b (p∗)2 − c a− b (p− p∗)2 .

A.2 Log approximation of monopolist profit function

Let Π(P ) be the profit function of the monopolist as a function of the price P . Let P ∗ be
the optimal price, satisfying ΠP (P ∗) = 0. Consider a second order approximation of the log
of Π around P = P ∗ obtaining:

log Π(P ) = log Π(P ∗) +
1

2

∂2 log Π(P )

∂(log P )2

∣∣∣∣
P=P ∗

(log P − log P ∗)2 + o
(
(log P − log P ∗)2) .

A useful example for this approximation is the case with a constant elasticity of demand
equal to η > 1 where: q(P ) = E P−η where E is a demand shifter and where the monopolist
faces a constant marginal cost C, where:

P ∗ =
η

η − 1
C and

∂2 log Π(P )

∂(log P )2

∣∣∣∣
P=P ∗

= −η (η − 1)

So, letting B = −η (η− 1), p = log P and p∗ = log P ∗ we obtain the problem in the body
of the paper.

A.3 Non-linear Price Setting Model

In this section we describe a fully non-linear price setting model. Let the instantaneous profit
of a monopolist be as in Appendix A, where the cost C and the relative price is P . We solve
this model numerically and compare its predictions with the simple tracking problem of the
paper. [TO BE REPORTED IN FUTURE DRAFTS]. This model also helps to interpret ψ
and φ in the tracking problem as cost in proportion to the period profit.

At the time of the observation we let the general price level be one. This price level
increases at the rate π per unit of time. The log of constant margnal cost in real terms
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evolve as a random walk with innovation variance σ2 and with drift µ. The demand has
constant elasticity η with respect to the price P relative to the general price level. Thus the

real demand t periods afger observing a real cost C with a price P is given by A
(
P̂ e−πt

)−η

where A is a constant the determined the level of demand. The nominal mark-up t period

after is then
(
P̂ − Ceπt+µt+s(t)σ

√
t
)
, where s(t) is a standard normal random variable. Thus

the real profitst are given by A
(
P̂ e−πt

)−η (
P̂ e−πt − Ceµt+s(t)σ

√
t
)
. The profit level, if prices

are chosen to maximize the instantaneous profit when real cost are C and the general price
level is one are given by Π∗(C) ≡ A C1−η (η/(η − 1))−η (1/(η − 1)). The corresponding
Bellman equation is:

v(P, C) = max {v̂(C) , v̄(P,C)}
v̂(C) = −(φ + ψ)Π∗(C) +

max
τ̂ ,P̂

∫ τ̂

0

e−ρt

∫ ∞

−∞
A

(
P̂ e−πt

)−η (
P̂ e−πt − Ceµt+s(t)σ

√
t
)

dN(s(t)) dt +

+ e−ρτ̂

∫ ∞

−∞
v

(
P̂ e−πτ̂ , Ceµτ̂+sσ

√
τ̂
)

dN(s)

v̄(P, C) = −φΠ∗(C) + max
τ

∫ τ

0

e−ρt

∫ ∞

−∞
A

(
Pe−πt

)−η
(
Pe−πt − Ceµt+s(t)σ

√
t
)

dN(s(t)) dt +

+ e−ρτ

∫ ∞

−∞
v

(
Pe−πτ , Ceµτ+sσ

√
τ
)

dN(s)

This Bellman equation is very similar to the one we solve numerically in Alvarez et al. (2009)
for a saving and portfolio problem for households. As in the problem of that paper, it is
easy to show that the value function is homogenous of degree 1 − η. In this case we can
simplfy the problem considering only one state, say P/C. We can develop the expectations
and collect terms to obtain:

v̂(C) = −(φ + ψ)Π∗(C) +

max
τ̂ ,P̂

∫ τ̂

0

e−ρt+(1−η)(µ+σ2/2)tA C1−η

(
P̂ e−πt

Ce(µ+σ2/2) t

)−η (
P̂ e−πt

Ce(µ+σ2/2) t
− 1

)
dt

+ e−ρτ̂+(1−η)(µ+σ2/2)τ̂

∫ ∞

−∞
e−(1−η)(µ+σ2/2)τ̂v

(
P̂ e−πτ̂ , Ceµτ̂+sσ

√
τ̂
)

dN(s)

and likewise for v̄. Letting a modified discount factor to be ρ̃ ≡ ρ − (1 − η)(µ + σ2/2) and

54



using that v is homogeneous of degree 1− η:

v̂(1)

Π∗(1)
= −(φ + ψ) + max

τ̂ ,P̂ /C

∫ τ̂

0

e−ρ̃t A

Π∗(1)

(
(P̂ /C) e−πt

e(µ+σ2/2) t

)−η (
(P̂ /C)e−πt

e(µ+σ2/2) t
− 1

)
dt

+ e−ρ̃τ̂

∫ ∞

−∞
e(1−η)(sσ

√
τ̂−(σ2/2)τ̂) v

(
(P̂ /C)e−πτ̂

eµτ̂+sσ
√

τ̂
, 1

)
1

Π∗(1)
dN(s)

v̄(P/C, 1)

Π∗(1)
= −(φ + ψ) + max

τ

∫ τ

0

e−ρ̃t A

Π∗(1)

(
(P/C)e−πt

e(µ+σ2/2) t

)−η (
(P/C)e−πt

e(µ+σ2/2) t
− 1

)
dt

+ e−ρ̃τ̂

∫ ∞

−∞
e(1−η)(sσ

√
τ̂−(σ2/2)τ̂) v

(
(P/C)e−πτ̂

eµτ̂+sσ
√

τ̂
, 1

)
1

Π∗(1)
dN(s)

v(P/C, 1) = max {v̂(1) , v̄(P/C, 1)} .

B Hazard Rate of Menu Cost Model

In this appendix we described the details for the characterization of the hazard rate of price
adjustments of the menu cost model of Section 4.2. Section 2.8.C formula (8.24) of Karatzas
and Shreve (1991) displays the density of the distribution for the first time that a brownian
motion hit either of two barriers, starting from an arbitrary point inside the barriers. In our
case, the initial value is the price gap after adjustment, namely zero, and the barriers are
symmetric, given by −p̄ and p̄. We found more useful for the characterization of the hazard
rate to use a transformation of this density, obtained in Kolkiewicz (2002), section 3.3, as
the sum of expressions (15) and (16). In our case we set the initial condition x0 = 0 and the
barriers a < x0 < b are thus given by a = −p̄ and b = p̄, thus obtaining the density f(t):

f(t) =
π

2 (p̄/σ)2

∞∑
j=0

(2j + 1)(−1)j exp

(
−(2j + 1)2π2

8 (p̄/σ)2
t

)
. (A-1)

The hazard rate h(t) is then defined as:

h(t) =
f(t)∫∞

t
f(s)ds

. (A-2)

Notice that since equation (A-1) is a sum of exponentials evaluated at the product of −t
times a positive quantity, each of them larger. Thus, for large values of t the first term in
the sum dominates, and hence the expression for f(t) becomes

f(t) ≈ π

2 (p̄/σ)2
exp

(
− π2

8 (p̄/σ)2
t

)
for large t . (A-3)

and hence limt→∞ h(t) = π2

8 (p̄/σ)2
. Indeed, the shape of this hazard rate is independent of

p̄/σ, this value only scales it up and down. Moreover, as Figure A-1 shows, the asymptote is
approximately attained well before the expected value of the time.
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Figure A-1: Hazard Rate of Menu Cost Model
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C Proofs

C.1 Proof of Proposition 1.

Proof. We let x∗ = p̂/π. Note that as ρ → 0 we have:

ρe−ρt

1− e−ρτ
→ 1

τ
so x∗ → 1

τ

∫ τ

0

t dt =
τ

2
, and

∫ τ

0

e−ρt t dt → τ

∫ τ

0

t
1

τ
dt =

τ 2

2
.

v(τ) →
∫ τ

0

(τ

2
− t

)2

dt = τ

∫ τ

0

(τ

2
− t

)2 1

τ
dt = τ

τ 2

12
=

τ 3

12
.

Thus

lim
ρ→0

ρV (τ) = lim
ρ→0

(
π2

σ2

ρτ 3

12 (1− e−ρτ )
+

ρ τ 2

2 (1− e−ρτ )
+

φ̃ρ

(1− e−ρτ )

)
=

π2

σ2

τ 2

12
+

τ

2
+

φ̃

τ

The f.o.c. for τ is:
φ̃

(τ ∗)2
=

π2

σ2

τ ∗

6
+

1

2
or φ̃ =

π2

σ2

(τ ∗)3

6
+

(τ ∗)2

2

From here we see that the optimal inaction interval τ ∗ is a function of 2 arguments, it is
increasing in the normalized cost φ̃, and decreasing in the normalized drift (π/σ)2. Keeping
the parameters B, φ and π constant we can write:

φ

B
= π2 (τ ∗)3

6
+ σ2 (τ ∗)2

2

which implies that τ is decreasing in σ.
Note that for π = 0 we obtain a square root formula on the cost φ and with elasticity

minus one on σ:

τ ∗ =

√
2 φ̃ =

√
2

φ

B σ2
=

√
2

B
φ1/2 1

σ
.

The total differential of the foc for τ gives:

τ ∗(φ̃)

(
π2

σ2

τ ∗(φ̃)

2
+ 1

) (
∂τ ∗(φ̃)

∂φ̃

)
= 1

since limφ̃→0 τ ∗(φ̃) = 0, then one obtains the same expression than in the case of π = 0, and

thus the elasticity is 1/2, or: limφ̃→0
φ̃

τ∗(φ̃)

∂τ∗(φ̃)

∂φ̃
= 1

2
. To see the result for σ = 0, let us write:

φ̃ σ2 ≡ φ

B
= π2 (τ ∗)3

6
+ σ

(τ ∗)2

2
,

then we let σ2 → 0 to get φ
B

= π2 τ3

6
which implies a cubic root formula on the cost φ and
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with elasticity −2/3 on π:

τ ∗ =

(
6 φ

B π2

)1/3

=

(
6

B

)1/3

φ1/3 π−2/3.

That ∂τ ∗/∂π = 0 evaluated at π = 0 follows from totally differentiating φ
B

= π2 (τ∗)3
6

+σ2 (τ∗)2
2

.
Now consider the case when ρ > 0 and π = 0 then ρV (τ) equals

ρV (τ) =
ρφ̃

1− e−ρτ
− τe−ρτ

1− e−ρτ
+

1

ρ
.

The first order condition with respect to τ implies that the optimal choice satisfies:

φ̃ =
ρτ ∗ − 1 + e−ρτ∗

ρ2
. (A-4)

A third order expansion of the right hand side of equation (A-4), gives:

φ̃ =
1

2
τ 2 − 1

6
ρτ 3 + o(ρ2τ 3).

The expression shows that if ρ = 0 we obtain a square root formula: τ ∗ =

√
2 φ̃ , and that

the optimal τ ∗ is increasing in ρ provided ρ or φ̃ are small enough.

C.2 Proof of Proposition 2.

Proof. Differentiating the Bellman equation and evaluating it at zero we obtain:

ρV ′′(0) = 2B + σ2/2V ′′′′(0) (A-5)

and evaluating this expression for ρ = 0 we have

V ′′′′(0) = − 2B

σ2/2
. (A-6)

Differentiating the quartic approximation equation (11), evaluating at p̄ and imposing the
smooth pasting equation (9) we obtain:

0 = V ′′(0)p̄ +
1

3 2
V ′′′′(0) p̄3 . (A-7)

Replacing into this equation the expression for V ′′′′(0) in equation (A-6) and solving for V ′′(0)
we obtain

V ′′(0) = − 1

3 2
V ′′′′(0)p̄2 =

1

3 2

2B

σ2/2
p̄2 . (A-8)
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Using the quartic approximation into the (levels) of equation (9) we obtain:

ψ =
1

2
V ′′(0)p̄2 +

1

4!
V ′′′′(0)p̄4 , (A-9)

replacing into this equation V ′′(0) from equation (A-8) and V ′′′′(0) from equation (A-6) we
obtain

ψ =

(
1

2 3 2
− 1

4 3 2

)
2B

σ2/2
p̄4 =

B

6 σ2
p̄4 , (A-10)

thus solving for p̄ we obtain the desired expression.

C.3 Proof of Proposition 3.

Proof. We start with a simple preliminary result to set up the analysis showing that the
fixed point of V coincides with the solution of the sequence problem. Denote by Vinfo,φ+ψ the
solution of the problem with observation cost only of Section 4.1, but where the observation
cost has been set to φ + ψ, and denote the optimal value of the time between observations
and price changes as τi. We interpret this as the value of following the feasible policy of
observing and adjusting (χTi

= 1 all Ti) every τ periods, and hence V (p̃) ≤ Vinfo,φ+ψ. Also
denote by Vmenu,ψ(·) the solution of the problem with menu cost ψ and no observation cost
analyzed in Section 4.2. Since the observation cost is set to zero, this provides a lower bound
for the value function: V (p̃) ≥ Vmenu,ψ(p̃). Letting T the operator defined by the right side
of equation (16), equation (17) and equation (18), and by TnV0 the outcome of n successive
applications of T to an initial function V0, we have that for each p̃:

Vmenu,ψ(p̃) ≤ TnVmenu,ψ(p̃) ≤ TnVinfo,φ+ψ(p̃) ≤ Vinfo,φ+ψ(p̃) ,

and the two sequence of functions converge pointwise. Since they converge to a finite value,
their limit must be the same, by an adaptation of Theorem 4.14 in Stokey and Lucas (1989).
Thus:

V (p̃) = lim
n→∞

TnVinfo,φ+ψ(p̃) = lim
n→∞

TnVmenu,ψ(p̃) .

pointwise. Furthermore, since Vinfo,φ+ψ(p̃) is a constant function, i.e. independent of p̃, and
since Vmenu,ψ(p̃) > 0 for all p̃, then we have that the value function V (p̃) is uniformly bounded.

We sketch the argument to show that the value function V is continuous on p̃. Suppose
not, that there is jump down at p̄ so that V (p̄) > limp↓p̄ V (p̄). Then, fixed the policies that
correspond to a value of p > p̄ in terms of stopping times and prices p̂(·) as defined in the
sequence formulation of equation (14). Thus, the agent will observe, starting with p̄, after the
same cumulated value of the innovations on p∗, and it will adjust to the value Let ε = p−p̄ the
difference between these two prices at time zero, and denote by {p(t)}, {p̄(t)} the stochastic
process for the price that follow from the two initial prices. Notice that p̄(t) − p(t) = ε for
all t > 0. By following that policy when the initial price is p̄, the expected discounted value
of fixed cost paid are exactly the same for the two initial prices. Thus, the difference of the
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value function at p(0) and at p̄(0) is given by the

ε2

ρ
+ ε E0

[ ∫ ∞

0

e−ρt (p(Ti)− p∗(t)) dt
]

.

Since this difference is clearly continuous on ε and goes to zero as ε ↓ 0, then the value
function is continuous.

Now we use the fact that V is bounded above uniformly and continuous to show that for
φ > 0, then the optimal policy for τ(p̃), is uniformly bounded away from zero. Here is a
sketch of the argument. Suppose, as a way of contradiction, that for any ε > 0, we can find
a p̃ for which τ(p̃ε) < ε. We will argue that for small enough ε it is cheaper to double τ(p̃ε).
The main idea is that this decreases the fixed by e−ρεφ, and increases the cost due to different
information gathering in a quantity that is a continuous function of ε. The reason why the
second part is continuous as function of ε is that the distribution of value of p∗(t + ε) and
p∗(t + 2ε) have most of the mass concentrated in a neighborhood of p∗(t). The effect due to
the increase in cost due to evaluation of the period return objective function is small, since
it is the expected value of the integral of a bounded function between 0 and ε or between
0 and 2ε. Thus, for small ε this difference is small. The effect on the value function of the
mass p∗(t) is small, because the value function is uniformly bounded and this probability is
small, i.e. goest to zero as ε ↓ 0. For the mass that is in the neighborhood of p∗(t), the effect
in the value function is small because the value function is continuous.

Using that inf τ(p̃) ≡ τ > 0, by Blackwell’s sufficient conditions, we obtain that T is a
contraction of modulus exp (−τρ) in the space of continuous and bounded functions.

C.4 Proof of Proposition 4.

Proof. Under the conjecture that p̂ = 0 and that V (·) is symmetric around zero, and by the
symmetry of the normal density, we can rewrite the Bellman equations (17) and (18) using
only the positive range for p̃ ∈ [0 , ∞) as:38

V̄ (p̃) = φ + min
τ

B

∫ τ

0

e−ρt
[
p̃2 + σ2t

]
dt +

e−ρτ

∫ ∞

−p̃/(σ
√

τ)

V
(
p̃ + sσ

√
τ
)
dN(s) + e−ρτ

∫ ∞

p̃/(σ
√

τ)

V
(−p̃ + sσ

√
τ
)
dN(s) (A-11)

V̂ = ψ + φ + min
τ̂

B

∫ τ̂

0

e−ρt
[
σ2t

]
dt + e−ρτ̂ 2

∫ ∞

0

V
(
sσ
√

τ̂
)

dN(s) (A-12)

We use the corollary of the contraction mapping theorem. First, notice that if the V in the
right side of equation (20) is symmetric around p̃ = 0, with a minimum at p̃ = 0, then it is
optimal to set p̂ = 0. Second, notice that if the function V in the right side of equation (19) is
symmetric with a minimum at p̃ = 0, then the value function in the left side of this equation
is also symmetric, and hence V in equation (21) is symmetric. Third, using the symmetry,
we show that if V (p̃) is weakly increasing, then the right side of equation (21) is weakly

38The second line in equation (A-11) uses that
∫∞
−∞ V (p − s)dN(s) =

∫∞
−p

V (p + s)dN(s) +
∫∞

p
V (−p +

s)dN(s).
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increasing. It suffices to show that V̄ (p̃) given by the right side of (A-11) is increasing in p̃
for a fixed arbitrary value of τ . We do this in two steps. The first step is to notice that the
expression containing p̃2 in (A-11) is obviously increasing in p̃. For the second step, without
loss of generality, we assume that V is differentiable almost everywhere and compute the
derivative with respect to p̃ of the remaining two terms involving the expectations of V (·) in
(A-11). This derivative is:

e−ρτ

σ
√

τ

[
V (0) dN

( −p̃

σ
√

τ

)
− V (0) dN

(
p̃

σ
√

τ

)]

+ e−ρτ

[∫ ∞

−p̃/(σ
√

τ)

V ′(p̃ + s(σ
√

τ))dN(s)−
∫ ∞

p̃/(σ
√

τ)

V ′(−p̃ + s(σ
√

τ))dN(s)

]

= e−ρτ

[∫ ∞

0

V ′(z)
1

σ
√

τ

(
dN

(
z − p̃

σ
√

τ

)
− dN

(
z + p̃

σ
√

τ

))]

= e−ρτ

[∫ ∞

0

V ′(z)
1

σ
√

τ
√

2 π

(
e
− 1

2

(
z−p̃
σ
√

τ

)2

− e
− 1

2

(
z+p̃
σ
√

τ

)2
)

dz

]
≥ 0

where the term involving V (0) is zero due symmetry of dN(s), and where the inequality

follows since e
− 1

2

(
x−p̃
σ
√

τ

)2

− e
− 1

2

(
x+p̃
σ
√

τ

)2

> 0 for x > 0 and p̃ > 0. Notice that the inequality is
strict if p̃ > 0 and V ′(x) > 0 in a segment of strictly positive length. If p̃ = 0, then the slope
is zero.

Finally, differentiating the value function twice, and evaluating at p̃ = 0 we get

V ′′(0) = 2 B
1− e−ρτ̂

ρ
+ 2

e−ρτ̂

σ
√

τ̂

∫ p̄

0

V ′(z) z
e−

1
2

z2

σ2τ̂

σ
√

τ̂ 2 π
dz > 0 .

C.5 Proof of Proposition 5.

Proof. First we notice that using the quadratic approximation into the definition of p̄ given
by V̄ (p̄) = V̂ implies

ψ =
1

2
V ′′(0) (p̄)2 . (A-13)

Second we derive equation (23) as the first order condition for τ̂ . To this end, use the
Bellman equation (20) for a fixed τ̂ > 0 evaluated at the optimal p̂ = 0, the symmetry of
V (p̃) , and the approximation

V (p̃) = min{V̂ , V (0) +
1

2
V ′′(0) (p̃)2}
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to write:

V (0) = V̂ − ψ = φ + Bσ2

∫ τ̂

0

e−ρtt dt + e−ρτ̂

∫ ∞

−∞
V

(
sσ
√

τ̂
)

dN(s)

= φ + Bσ2

∫ τ̂

0

e−ρtt dt + e−ρτ̂ V (0) + ψ e−ρτ̂ 2

[
1−N

(
p̄

σ
√

τ̂

)]

+ e−ρτ̂ V ′′(0)

2

∫ p̄

σ
√

τ̂

− p̄

σ
√

τ̂

(σ2τ̂ s2) dN(s)

= φ + Bσ2

∫ τ̂

0

e−ρtt dt + e−ρτ̂ V (0) + ψ e−ρτ̂ 2

[
1−N

(
p̄

σ
√

τ̂

)]

+ e−ρτ̂ V ′′(0) σ2τ̂

∫ p̄

σ
√

τ̂

0

s2 dN(s)

Thus

ρV (0) =
φ + Bσ2

∫ τ̂

0
e−ρtt dt + ψ e−ρτ̂ 2

[
1−N

(
p̄

σ
√

τ̂

)]
+ e−ρτ̂ V ′′(0) σ2τ̂

∫ p̄

σ
√

τ̂

0 s2 dN(s)

(1− e−ρτ̂ ) /ρ

letting ρ ↓ 0 gives

lim
ρ↓0

ρV (0) =
φ + ψ 2

[
1−N

(
p̄

σ
√

τ̂

)]

τ̂
+ Bσ2 τ̂

2
+ V ′′(0) σ2

∫ p̄

σ
√

τ̂

0

s2 dN(s)

Maximizing the right side of this expression gives

0 = −
φ + ψ 2

[
1−N

(
p̄

σ
√

τ̂

)]

τ̂ 2
+

Bσ2

2
+

(
ψ 2 n

(
p̄

σ
√

τ̂

) ( p̄

σ

)
(τ̂)−3/2

)
1

τ̂

− V ′′(0) σ2

(
p̄

σ
√

τ̂

)2

n

(
p̄

σ
√

τ̂

) ( p̄

σ

)
(τ̂)−3/2

where we use n(·) for the density of the standard normal. Using that V ′′(0) = 2 ψ / p̄2, this
expression simplifies to

0 = −
φ + ψ 2

[
1−N

(
p̄

σ
√

τ̂

)]

τ̂ 2
+

Bσ2

2

rearranging and using the definition of ϕ̂ gives σ2τ̂ = h(ϕ̂) of equation (23).
Third, we obtain an expression for V ′′(0). Differentiating the value function twice, and

evaluating it at p̃ = 0 we get

V ′′(0) = 2 B
1− e−ρτ̂

ρ
+ 2

e−ρτ̂

σ
√

τ̂

∫ p̄

0

V ′(z) z
e−

1
2

z2

σ2τ̂

σ
√

τ̂ 2 π
dz
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With a change in variable s = z/(σ
√

τ̂) we have:

V ′′(0) = 2 B
1− e−ρτ̂

ρ
+ 2 e−ρτ̂

∫ p̄

σ
√

τ̂

0

V ′
(
σ
√

τ̂ s
)

s
e−

1
2
s2

√
2 π

ds .

Using the third order approximation V (p̃) = V (0) + 1
2
V ′′(0) (p̃)2 around p̃ = 0 we obtain:

V ′′(0) = 2 B
1− e−ρτ̂

ρ
+ e−ρτ̂ V ′′(0) 2 σ

√
τ̂

∫ p̄

σ
√

τ̂

0

s2 e−
1
2
s2

√
2 π

ds

or collecting terms:

V ′′(0) =
2 B 1−e−ρτ̂

ρ

1− e−ρτ̂ 2 σ
√

τ̂
∫ p̄

σ
√

τ̂

0 s2 e−
1
2 s2

√
2 π

ds

and letting ρ ↓ 0, using the definition of ϕ̂ and N for the CDF of a standard normal:

V ′′(0) =
2 B τ̂

1− 2 σ
√

τ̂
∫ ϕ̂

0
s2 dN(s)

. (A-14)

Using equation (A-13) to replace V ′′(0) into equation (A-14), using the definition of ϕ̂, and
using σ2τ̂ = h(ϕ̂) to replace τ̂ and

√
τ̂ we obtain equation (22).

C.6 Numerical evaluation of Proposition 5.

In this section we evaluate the accuracy of the approximated solution in Proposition 5. To
do so, we solve the model numerically on a grid for p̃ and obtain the numerical counterparts
to the policy rule derived in Proposition 5. In doing so we approximate V̄ (·) through either
a cubic spline or a sixth order polynomial. Results are invariant to the latter.

As Figure A-2 - Figure A-4 show, the solution for p̄ (and as a consequence for ϕ̂) in
Proposition 5 diverges from its numerical counterpart the more, the larger the ratio α ≡ ψ

φ

is. In particular, the approximated solution tend to understate the value of p̄ relatively to
the numerical solution.

This discrepancy is due to the nature of our approximation which relies on a second
order approximation of V̄ (·), while higher orders (the fourth one in particular) become more
relevant as ψ/φ increases, causing the inaction range to widen. To document this effect, we
show the following computations. We solved the model numerically, assuming a polynomial
of order sixth for V̄ (·), on a grid of values for p̃ for values of α = 0.1 and α = 2. We used the
symmetry property of V̄ (·) to set the value of all the odd derivatives evaluated at p̃ = 0 equal
to zero. We then compared the numerical solution for V̄ (·) with the approximated one given
by Proposition 5, but having an intercept (i.e. V̄ (0)) equal to the constant term in the sixth
order polynomial. As Figure A-5 shows, the quadratic approximation for V̄ (·) works better
for low values of p̃, and more generally for low values of α. The second order approximation
for V̄ (·) tends to overstate the value of the function for values away from zero, as it ignores the
fourth derivative V ′′′′(0), which is negative. While the difference in the approximation will
also affect the value of V̂ , we find this effect much smaller in our computations. Therefore,
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Figure A-2: Numerical and approximated ϕ̂ as a function of α ≡ ψ
φ
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Note: parameter values are B = 20, ρ = 0.02, σ = 0.2, ψ = 0.03. We let φ to vary.

Figure A-3: Numerical and approximated τ̂ as a function of α ≡ ψ
φ
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Note: parameter values are B = 20, ρ = 0.02, σ = 0.2, ψ = 0.03. We let φ to vary.
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Figure A-4: Numerical and approximated p̄ as a function of α ≡ ψ
φ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

α = ψ/φ

p̄

Nume.
Apx.

Note: parameter values are B = 20, ρ = 0.02, σ = 0.2, ψ = 0.03. We let φ to vary.

the quadratic approximation tends to understate the inaction range, i.e. to produce values
of p̄ that are smaller. This is consistent with the values displayed in Figure A-4.

Figure A-5: Numerical and approximated V̄ as a function of α ≡ ψ
φ
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Note: parameter values are B = 20, ρ = 0.02, σ = 0.2, ψ = 0.03. We let φ to vary.
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C.7 Proof of Proposition 6.

Proof. Begin defining

f̂(ϕ̂) =
ĥ(ϕ̂) ϕ̂2

1− 2
√

h(ϕ̂)
∫ ϕ̂

0
s2dN(s)

,

ĥ(ϕ̂) = 2 (φ + 2ψ (1−N(ϕ̂))) , so that

f̂(ϕ̂) =
2 ϕ̂2 (φ + 2ψ (1−N(ϕ̂)))

1− 2
[
2σ2 φ

B
+ 4σ2 ψ

B
(1−N(ϕ̂))

]1/4 ∫ ϕ̂

0
s2dN(s)

,

and noting that ψ = f̂(ϕ) is the same as the solution of equation (22) and equation (23).
First we turn to the existence and uniqueness of the solution. We show that it follows

from an appliction of the intermediate function theorem, toghether with monotonicity. We
show that if φ

ψ
> 1/2 − 2(1 − N(1)) ≈ 0.1827 then: there is a value 0 < ϕ̂′ ≤ 1 so that: i)

the function f̂ is continuous and increasing in ϕ̂ ∈ [0, ϕ̂′), ii) f̂(0) = 0, iii) f̂(ϕ̂′) > ψ, iv)
f̂(ϕ̂) < 0 for ϕ̂ ∈ (ϕ̂′, 1].

The value of ϕ̂′ is given by the minimum of 1 or the solution to

1 = 2

[
2σ2 φ

B
+ 4σ2 ψ

B
(1−N(ϕ̂′))

]1/4 ∫ ϕ̂′

0

s2dN(s) , (A-15)

so that if ϕ̂′ < 1, the function f̂ as a discontinuity going from being positive and tending to
+∞ to being negative and tending to −∞.

The rest of the proof fills in the details: Step (1): Show that ĥ(ϕ̂)2 · (ϕ̂)2 is increasing in

ϕ̂ if φ/ > ψ0.1667 for ϕ̂ < 1. Step (2): Show that
√

h(ϕ̂) · ∫ ϕ̂

0
s2dN(s) is increasing in ϕ̂ if

ϕ̂ < 1. Step (3): Using (1) and (2) the function f̂ is increasing in ϕ̂ for values of ϕ that are
smaller than 1, provided that its denominator is positive.

Step (1) follows from totally differentiating h(ϕ̂)2 ·(ϕ̂)2 with respect to ϕ̂. Collecting terms
we obtain that the derivative is proportional to φ + 2 · ψ(1 − N(ϕ̂) − ϕ̂ · N ′(ϕ̂)). Since the
function 1−N(ϕ̂)− ϕ̂ ·N ′(ϕ̂) is positive for small values of ϕ̂ and negative for large values, we
evaluate it at its upper bound for the relevant region, obtaining: φ+2ψ(1−N(1)−N ′(1)) > 0
or φ > ψ2[N(1) + N ′(1) − 1] ≈ ψ 0.1667. But notice that this condition is implied by our
previous restriction φ > ψ[1/2− 2(1−N(1))] ≈ φ 0.1827.

Step (2) follows from totally differentiating
√

h(ϕ̂) · ∫ ϕ̂

0
s2dN(s) with respect to ϕ̂. Col-

lecting terms we obtain that the derivative is proportional to ϕ̂2−∫ ϕ̂

0
s2dN(s) ψ/2(φ+ψ (1−

N(ϕ̂))). This expression is greater than ϕ̂2 − ∫ ϕ̂

0
s2dN(s) /2((1−N(ϕ̂))), which is obtained

by setting φ to zero. This integral is positive for the values of ϕ̂ in (0, 1).
Now we turn to the comparative statics results. That ϕ̂∗ is decreasing in φ follows since f̂

is increasing in φ. That σ2τ̂ ∗ is increasing it follows from the previous result and inspection of
h. That ϕ̂∗ is decreasing in σ2/B follows since f̂ is increasing in σ2/B. That σ2τ̂ ∗ is increasing
it follows from the previous result and inspection of h. That ∂ϕ̂∗/∂ σ2

B
= 0 at σ2/B = 0 follows

from differentiating f̂ with respect to σ2/B and verifying that that derivative is zero when
evaluated at at σ2/B = 0. That ϕ̂∗ is strictly increasing in ψ when σ2/B is small relative to
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φ it follows from differenting f̂/ψ with respect to ψ. That derivative is strictly negative and
continuous on the parameters, when evaluated at φ > 0 and σ2/B = 0.

C.8 Proof of Proposition 7.

Proof. We rewrite the solution of p̄ and τ̂ using the solution of equation (24) into equation (22)
and equation (23). The approximation in equation (24) is based on the zero derivative found
in Proposition 6 in item 3. We now characterize the elasticity of ϕ̂0. First we write the
equation defining ϕ̂0 as

α̃ = 2ϕ̃(α̃) + log
(
2 + eα̃4N

(
eϕ̃(α̃)

))
(A-16)

where we let α̃ = log α and ϕ̃ = log ϕ̂0. Differentiating ϕ̃ this expression with respect to α̃
and collecting terms we obtain:

∂ϕ̃

∂α̃
≡ ∂ log ϕ̂0

∂ log α
=

1− 4α(1−N(ϕ̂0))
2+4α(1−N(ϕ̂0))

2− 4α(1−N(ϕ̂0))
2+4α(1−N(ϕ̂0))

n(ϕ̂0)ϕ̂0

(1−N(ϕ̂0))

(A-17)

Since, ϕ̂0 → 0 as α → 0, then ∂ log ϕ̂0

∂ log α
→ 0. For values of α > 0, we have that

∂ log ϕ̂0

∂ log α
<

1

2
⇐⇒ n(ϕ̂0)ϕ̂0

(1−N(ϕ̂0))
< 2, (A-18)

which is a property of the normal distribution for values of ϕ̂0 < 1. Finally, the first inequality
follows because 2 ϕ̂0/α = [1 − ϕ̂2

04(1 − N(ϕ̂0))] < 1. The second inequality follows becasue
ϕ̂0 < 1.

C.9 Proof of Proposition 8.

Proof. The expression is based on a second order expansion of τ around p̃ = 0. The first
order condition for τ can be written as:

F (τ ; p̃) ≡ e−ρτ

(
B

(
p̃2 + σ2τ

)− ρ

∫ ∞

−∞
V

(
p̃− sσ

√
τ
)
dN(s) +

∫ ∞

−∞
V ′ (p̃− sσ

√
τ
) −s σ

2
√

τ
dN(s)

)
.

At a minimum F (τ(p̃) ; p̃) = 0 and Fτ (τ(p̃) ; p̃) ≥ 0. We have ∂τ(p̃)
∂p̃

∣∣∣
p̃=0

= −Fp̃

Fτ
= 0 . That

∂τ/∂p̃ = 0 follows from the symmetry of τ(·) around p̃, which is verified directly by checking
that Fp̃ = 0 (see below). Totally differentiating Fττ

′ + Fp̃ we obtain:

0 = Fττ (τ
′)2 + Fτ p̃τ

′ + Fττ
′′ + Fp̃ττ

′ + Fp̃p̃ ,

using that τ ′ = 0 we get the second derivative:

∂2τ(p̃)

(∂p̃)2

∣∣∣∣
p̃=0

= −Fp̃p̃

Fτ

= 0
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To compute this second derivative we first compute:

Fτ (τ ; p̃) = −ρF (τ ; p̃) + e−ρτ

(
Bσ2 − ρ

∫ ∞

−∞
V ′ (p̃− sσ

√
τ
) −sσ

2
√

τ
dN(s)

−
∫ ∞

−∞
V ′ (p̃− sσ

√
τ
) −s στ−3/2

4
dN(s) +

∫ ∞

−∞
V ′′ (p̃− sσ

√
τ
) s2σ2

4 τ
dN(s)

)

Taking ρ ↓ 0, using that at the optimum F = 0, that in the approximation V̄ ′(p̃) = V ′′(0) p̃
and that V̄ ′′(p̃) = V ′′(0) we obtain:

Fτ (τ ; 0) = B σ2 −
∫ ∞

−∞
V ′ (−sσ

√
τ
) −s σ τ−3/2

4
dN(s) +

∫ ∞

−∞
V ′′ (−sσ

√
τ
) s2σ2

4 τ
dN(s)

= B σ2 −
∫ ∞

−∞
V ′′(0)

s2σ2

4 τ
dN(s) +

∫ ∞

−∞
V ′′(0)

s2σ2

4 τ
dN(s)

= B σ2 . (A-19)

We also have:

Fp̃(τ ; p̃) = e−ρτ

(
2Bp̃− ρ

∫ ∞

−∞
V ′ (p̃− sσ

√
τ
)
dN(s) +

∫ ∞

−∞
V ′′ (p̃− sσ

√
τ
) −s σ

2
√

τ
dN(s)

)

Fp̃p̃(τ ; p̃) = e−ρτ

(
2B − ρ

∫ ∞

−∞
V ′′ (p̃− sσ

√
τ
)
dN(s) +

∫ ∞

−∞
V ′′′ (p̃− sσ

√
τ
) −s σ

2
√

τ
dN(s)

)

Evaluating Fp̃p̃ at p̃ = 0 for ρ ↓ 0 and the approximation with V ′′′(0) = 0 gives:

Fp̃p̃(τ ; 0) = 2B . (A-20)

Expanding τ(·) around p̃ = 0, using that its first derivative is zero, and that the second deriva-
tive is the negative of the ratio of the expressions in equation (A-19) and equation (A-20) we
obtain:

τ (p̃) = τ (0) + τ ′ (0) (p̃) +
1

2
τ ′′ (0) (p̃)2 = τ̂ − 1

2

Fp̃p̃

Fτ

(p̃)2 = τ̂ −
(

p̃

σ

)2

.

which appears in the proposition.

C.10 Proof of Proposition 9.

Proof. We start by computing the second derivative of Ta(p) at p = 0 (for notation simplicity
we use p in the place of p̃). To further simplify notation rename the extreme of integration
as:

s1 ≡ p− p̄

σ
√

τ(p)
, s2 ≡ p + p̄

σ
√

τ(p)
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which depend on p with derivatives

∂s1

∂p
=

√
τ(p)− (p− p̄) τ ′(p)

2
√

τ(p)

στ(p)
,

∂s2

∂p
=

√
τ(p)− (p + p̄) τ ′(p)

2
√

τ(p)

στ(p)
.

The first order derivative is:

T ′
a(p) = τ ′(p) +

∫ s2

s1

T ′
a

(
p− sσ

√
τ(p)

) (
1− στ ′(p)

2
√

τ(p)
s

)
dN(s)

− Ta(p̄) n (s1)
∂s1

∂p
+ Ta(−p̄) n (s2)

∂s2

∂p

where n(s) denotes the density of the standard normal. The second order derivative is:

T ′′
a (p) = τ ′′(p) +

∫ s2

s1

T ′′
a

(
p− sσ

√
τ(p)

) (
1− στ ′(p)

2
√

τ(p)
s

)2

dN(s)

+

∫ s2

s1

T ′
a

(
p− sσ

√
τ(p)

) sσ

2τ(p)

(
−τ ′′(p)

√
τ(p) +

(τ ′(p))2

2
√

τ(p)

)
dN(s)

− T ′
a(p̄)

(
1− στ ′(p)

2
√

τ(p)
s1

)
n(s1)

∂s1

∂p
+ T ′

a(−p̄)

(
1− στ ′(p)

2
√

τ(p)
s2

)
n(s2)

∂s2

∂p

− Ta(p̄)

(
n′(s1)

(
∂s1

∂p

)2

+ n(s1)
∂2s1

(∂p)2

)
+ Ta(−p̄)

(
n′(s2)

(
∂s2

∂p

)2

+ n(s2)
∂2s2

(∂p)2

)
.

To evaluate this expression note that at p = 0 we have τ ′(0) = 0, τ(0) = τ̂ , −s1 = s2 = ϕ̂,
∂s1

∂p
= ∂s2

∂p
= 1

σ
√

τ̂
(recall the notation already used above ϕ̂ ≡ p̄

σ
√

τ̂
). Hence the second to last

line in the previous formula is −2T ′
a(p̄) n(s1)

∂s1

∂p
by the symmetry of Ta(p). Note moreover

that at p = 0

∂2s1

(∂p)2
= − ∂2s2

(∂p)2
=

p̄ τ ′′(0)
√

τ̂

2σ τ̂ 2

Thus we get:

T ′′
a (0) = τ ′′(0) +

∫ ϕ̂

−ϕ̂

T ′′
a

(
−sσ

√
τ̂
)

dN(s)− στ ′′(0)

2
√

τ̂

∫ ϕ̂

−ϕ̂

T ′
a

(
−sσ

√
τ̂
)

s dN(s)

− 2T ′
a(p̄)

n (ϕ̂)

σ
√

τ̂
− 2Ta(p̄)

(
−n′(ϕ̂)

σ2 τ̂
+ n(ϕ̂)

p̄ τ ′′(0)
√

τ̂

2σ τ̂ 2

)
(A-21)

Using that τ ′′(0) = −2/σ2 (from Proposition 8), the last term in the previous equation can be

rewritten as −2Ta(p̄)
σ2τ̂

(−n′(ϕ̂)− ϕ̂ n(ϕ̂)), which is zero since n′(x)+x n(x) = 0 for a standard
normal density.

Given that T ′
a(0) = T ′′′

a (0) = 0, and T ′′
a (0) < 0, we approximate Ta(p) with a quadratic
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function on the interval [−p̄ , p̄] :

Ta(p) = Ta(0) +
1

2
T ′′

a (0) (p)2 .

Using the first and the second derivative of this quadratic approximation into the right hand
side of equation (A-21), and τ ′′(0) = −2/σ2, gives:

T ′′
a (0) = −2/σ2+T ′′

a (0) (2 N(ϕ̂)− 1)− 2T ′′
a (0)

∫ ϕ̂

0

s2dN(s)− 2 T ′′
a (0) ϕ̂ n(ϕ̂)

or

T ′′
a (0) =

−1/σ2

1−N(ϕ̂) +
∫ ϕ̂

0
s2dN(s) + ϕ̂n(ϕ̂)

. (A-22)

To solve for Ta(0) let us evaluate Ta(p) at p̄ obtaining:

Ta(p̄) = τ(p̄) +

∫ 2ϕ̄

0

Ta

(
p̄− sσ

√
τ(p̄)

)
dN(s) , where ϕ̄ ≡ p̄

σ
√

τ(p̄)
=

ϕ̂√
1− ϕ̂2

.

Using the quadratic approximation for Ta in the previous equation we get

Ta(p̄) = τ(p̄) +

∫ 2ϕ̄

0

(
Ta(0) +

1

2
T ′′

a (0)
(
p̄− sσ

√
τ(p̄)

)2
)

dN(s)

= τ(p̄) +

(
N (2ϕ̄)− 1

2

)
Ta(0) +

1

2
T ′′

a (0)

∫ 2ϕ̄

0

(
p̄− sσ

√
τ(p̄)

)2

dN(s)

Replacing Ta(p̄) = Ta(0) + 1
2
T ′′

a (0) p̄2 on the left hand side, and collecting terms gives

Ta(0) =

τ(p̄) + 1
2
T ′′

a (0)

(∫ 2ϕ̄

0

(
p̄− sσ

√
τ(p̄)

)2

dN(s)− p̄2

)

1.5−N (2ϕ̄)

= τ(p̄)

1 + σ2

2
ϕ̄2 T ′′

a (0)

(∫ 2ϕ̄

0

(
1− s

ϕ̄

)2

dN(s)− 1

)

1.5−N (2ϕ̄)

= τ̂
(
1− ϕ̂2

) 1 + σ2

2
ϕ̄2 T ′′

a (0)

(∫ 2ϕ̄

0

(
1− s

ϕ̄

)2

dN(s)− 1

)

1.5−N (2ϕ̄)
(A-23)

where the last line uses the equality τ(p̄) = τ̂−(
p̄
σ

)2
= τ̂ (1− ϕ̂2). Substituting equation (A-22)

into equation (A-23) gives

Ta(0) = τ̂
(1− ϕ̂2)

1.5−N (2ϕ̄)


1−

1/2
(∫ 2ϕ̄

0
(ϕ̄− s)2 dN(s)− ϕ̄2

)

1−N(ϕ̂) +
∫ ϕ̂

0
s2dN(s) + ϕ̂n(ϕ̂)


 (A-24)
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which gives the approximation for the expression Ta(0) = τ̂ · A(ϕ̂) in the proposition. A
numerical study of the function A(ϕ̂) shows that A(0) = 1, and that the function approx-
imation is accurate and increasing for ϕ̂ ∈ (0, 0.75), that A(0.75) ∼= 1.78 and decreasing
thereafter.

Next we show that, given equation (30), the average frequency of price adjustment can
be written as na = 1/Ta(0) where Ta(0) = τ̂Ã(ϕ̂). Rewrite equation (31) in terms of ϕ(p) =

p

σ
√

τ(p)
,

T (p̃) = T̃ (ϕ̃) = τ(ϕ̃) +

∫ ϕ̄

−ϕ̄

T̃ (ϕ)n

(
ϕ

√
τ(ϕ)√
τ(ϕ̃)

− ϕ̃

) √
τ(ϕ)√
τ(ϕ̃)

dϕ, (A-25)

=
τ̂

1 + ϕ̃2
+

∫ ϕ̄

−ϕ̄

T̃ (ϕ)n

(
ϕ

√
1 + ϕ̃2

√
1 + ϕ2

− ϕ̃

) √
1 + ϕ̃2

√
1 + ϕ2

dϕ, (A-26)

where the first equality follows from strict monotonicity of ϕ(p). Then we can write Ta(0) =
T̃ (0) = τ̂Ã(0, ϕ̂) ≡ A(ϕ̂), where

Ã(ϕ̃, ϕ̂) =
1

1 + ϕ̃2
+

∫ ϕ̄

−ϕ̄

Ã(ϕ, ϕ̂)n

(
ϕ

√
1 + ϕ̃2

√
1 + ϕ2

− ϕ̃

) √
1 + ϕ̃2

√
1 + ϕ2

dϕ. (A-27)

We use a grid of values for ϕ̃ to solve recursively for Ã(ϕ̃, ϕ̂).

C.11 Proof of Proposition 10.

Proof. Let q(ϕ) and Q(ϕ) be respectively the density and CDF of

ϕ (p) ≡ p

σ
√

τ(p)
.

Notice that ϕ (p) is a monotonic transformation of p, dϕ
dp

= 1

σ
√

τ(p)
− ϕ τ ′(p)

2τ(p)
> 0. Notice that

using p(ϕ) to denote the inverse function, we compute

τ(p) = τ̂ −
( p

σ

)2

=
τ̂

1 + (ϕ(p))2

which, abusing notation, defines the new function

τ(ϕ) =
τ̂

1 + ϕ2
(A-28)

The monotonicity of the transformation also gives that Q(ϕ(p)) = G(p) at all p, implying

g(p)
dp

dϕ
dϕ = q(ϕ(p))dϕ (A-29)
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Using equation (A-29) and the change of variables from p to ϕ in equation (33) we write:

g(p̃) =

∫ ϕ̄

−ϕ̄

g(p(ϕ)) n

(
p̃− p(ϕ)

σ
√

τ(p(ϕ))

)
1

σ
√

τ(p(ϕ))

dp

dϕ
dϕ +

[
1−

∫ ϕ̄

−ϕ̄

g(p(ϕ))
dp

dϕ
dϕ

]
n

(
p̃

σ
√

τ̂

)
1

σ
√

τ̂

=

∫ ϕ̄

−ϕ̄

q(ϕ) n

(
p̃

σ
√

τ(p(ϕ))
− ϕ

)
1

σ
√

τ(p(ϕ))
dϕ +

[
1−

∫ ϕ̄

−ϕ̄

q(ϕ)dϕ

]
n

(
p̃

σ
√

τ̂

)
1

σ
√

τ̂
.

For clarity, rewrite the previous equation using the density of p̃ conditional on ϕ:

f(p̃|ϕ) ≡ n

(
p̃

σ
√

τ(p(ϕ))
− ϕ

)
1

σ
√

τ(p(ϕ))

This gives:

g(p̃) =

∫ ϕ̄

−ϕ̄

f(p̃|ϕ) q(ϕ)dϕ +

[
1−

∫ ϕ̄

−ϕ̄

q(ϕ)dϕ

]
f(p̃|0). (A-30)

Now consider the following monotone transformation of the random variable ϕ̃: Φ(ϕ̃, ϕ) ≡
ϕ̃

√
τ(ϕ̃)√
τ(ϕ)

, where the function τ(ϕ) is given in equation (A-28).39 Using the definition of ϕ and

the law of motion for p̃ it follows that Φ(ϕ̃, ϕ) − ϕ is a random variable with the standard
normal distribution: n (Φ(ϕ̃, ϕ)− ϕ).

By doing the change in variables from p̃ to ϕ̃ on the left-hand side of equation (A-30),
and from p̃ to Φ(ϕ̃, ϕ) on the right-hand side of equation (A-30), we obtain

q(ϕ̃)
dϕ̃

dp̃
=

∫ ϕ̄

−ϕ̄

n (Φ(ϕ̃, ϕ)− ϕ)
dΦ(ϕ̃, ϕ)

dϕ̃

dϕ̃

dp̃
q(ϕ) dϕ +

[
1−

∫ ϕ̄

−ϕ̄

q(ϕ)dϕ

]
n (ϕ̃)

dΦ(ϕ̃, ϕ̃)

dϕ̃

dϕ̃

dp̃
,

q(ϕ̃) =

∫ ϕ̄

−ϕ̄

n (Φ(ϕ̃, ϕ)− ϕ)
dΦ(ϕ̃, ϕ)

dϕ̃
q(ϕ) dϕ +

[
1−

∫ ϕ̄

−ϕ̄

q(ϕ)dϕ

]
n (ϕ̃) .

We notice that q(·) attains its maximum at ϕ̃ = 0, and that it is symmetric, so that
q′(0) = q′′′(0) = 0 and q′′(0) < 0. Furthermore, q(ϕ̄) > 0. Then, for small ϕ̄ = p̄

σ
√

τ̂
, this

function can be approximated by a quadratic function with

q(ϕ) = q(0) +
1

2
q′′(0) ϕ2 .

The value of q(·) and its first and second derivatives with respect to ϕ̃, evaluated at ϕ̃ = 0,

39The monotonicity holds since Φ is increasing in ϕ̃.
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are given by

q(0) =

∫ ϕ̄

−ϕ̄

q(ϕ)n (−ϕ)
dΦ(0, ϕ)

dϕ̃
dϕ +

[
1−

∫ ϕ̄

−ϕ̄

q(ϕ)dϕ

]
n(0),

q′(0) =

∫ ϕ̄

−ϕ̄

q(ϕ)n′ (−ϕ)

(
dΦ(0, ϕ)

dϕ̃

)2

dϕ +

∫ ϕ̄

−ϕ̄

q(ϕ)n (−ϕ)
d2Φ(0, ϕ)

(dϕ̃)2
dϕ +

[
1−

∫ ϕ̄

−ϕ̄

q(ϕ)dϕ

]
n′(0),

q′′(0) =

∫ ϕ̄

−ϕ̄

q(ϕ)n′′ (−ϕ)

(
dΦ(0, ϕ)

dϕ̃

)3

dϕ +

∫ ϕ̄

−ϕ̄

q(ϕ)n′ (−ϕ) 3
dΦ(0, ϕ)

dϕ̃

d2Φ(0, ϕ)

(dϕ̃)2
dϕ

+

∫ ϕ̄

−ϕ̄

q(ϕ)n (−ϕ)
d3Φ(0, ϕ)

(dϕ̃)3
dϕ +

[
1−

∫ ϕ̄

−ϕ̄

q(ϕ)dϕ

]
n′′(0).

Using equation (A-28) gives

dΦ(0, ϕ)

dϕ̃
=

√
1 + ϕ2 ,

d2Φ(0, ϕ)

(dϕ̃)2
= 0 ,

d3Φ(0, ϕ)

(dϕ̃)3
= −3

√
1 + ϕ2.

Using that n′′(−ϕ) = n(−ϕ)(ϕ2 − 1), we rewrite q(0) and q′′(0) as

q(0) = 2

∫ ϕ̄

0

q(ϕ)n(ϕ)
√

1 + ϕ2dϕ +

(
1− 2

∫ ϕ̄

0

q(ϕ)dϕ

)
n(0),

q′′(0) = 2

∫ ϕ̄

0

q(ϕ)n(ϕ)
√

1 + ϕ2(ϕ4 − 4)dϕ−
(

1− 2

∫ ϕ̄

0

q(ϕ)dϕ

)
n(0).

These two equations and the quadratic approximation for q(·) give a system of 2 equations
in 2 unknowns: q(0) and q′′(0):

q(0) + q′′(0) = 2

∫ ϕ̄

0

(
q(0) +

1

2
q′′(0) ϕ2

)
n(ϕ)

√
1 + ϕ2(ϕ4 − 3)dϕ

q(0) = 2

∫ ϕ̄

0

(
q(0) +

1

2
q′′(0) ϕ2

)
n(ϕ)

√
1 + ϕ2dϕ +

(
1− 2

∫ ϕ̄

0

(
q(0) +

1

2
q′′(0) ϕ2

)
dϕ

)
n(0) .

The equations above imply

q′′(0)

q(0)
= − 1− 2

∫ ϕ̄

0
n (ϕ)

√
1 + ϕ2(ϕ4 − 3)dϕ

1− ∫ ϕ̄

0
n (ϕ) ϕ2

√
1 + ϕ2(ϕ4 − 3)dϕ

≡ θ(ϕ̄)

q(0) =
n(0)

1 + 2
∫ ϕ̄

0

(
n(0)− n(ϕ)

√
1 + ϕ2

)
dϕ + θ(ϕ̄)

∫ ϕ̄

0

(
n(0)− n(ϕ)

√
1 + ϕ2

)
ϕ2dϕ

.
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Using these results into equation (34) to obtain

R(ϕ̂) = 2

∫ ϕ̄

0

τ(ϕ)q(ϕ)dϕ +

[
1− 2

∫ ϕ̄

0

q(ϕ)dϕ

]
τ̂ (A-31)

≈ τ̂ − 2τ̂

[
−

∫ ϕ̄

0

(1 + ϕ2)−1

(
q(0) +

1

2
q′′(0)ϕ2

)
dϕ +

∫ ϕ̄

0

(
q(0) +

1

2
q′′(0)ϕ2

)
dϕ

]

(A-32)

≈ τ̂ − 2τ̂

[∫ ϕ̄

0

(
q(0) +

1

2
q′′(0)ϕ2

)
ϕ2

(1 + ϕ2)
dϕ

]
(A-33)

where we use the quadratic approximation of q(·), the definition of ϕ(p), and the quadratic
approximation of τ(p).

Notice that, given equation (30), the average frequency of price review can be always
written as nr = 1/Tr(0) where Tr(0) = τ̂R(ϕ̂). This result follows directly from substituting
equation (30) into equation (A-32).

C.12 Proof of Proposition 11.

In this section we report the numerical solution of the model to the following experiments:
(i) a change in ψ holding φ fixed; (ii) a change in φ holding ψ fixed. These experiments are
meant to capture the elasticities of na and nr with respect to ψ and φ.

Figure A-6: Numerical and approximated p̄ as a function of α ≡ ψ
φ
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Note: fixed parameter values are ρ = 0.02, σ = 0.2; ψ = 0.03 when φ is allowed to change;
φ = 0.06 when ψ is allowed to change.

We show results for different parameterizations of B = 5, 20, 50. The first row in
Figure A-6 display results for log(na), log(nr) to changes in log(φ) holding ψ = 0.03 as

74



in our benchmark calibration. The larger φ, the closer the value of α to zero. As we can see,
the elasticity of nr with respect to φ is roughly equal to - 1/2, independently of the level of
B and the level of α. Similarly, the elasticity of na with respect to φ is not changing much
to changes in the level of B, however it is sensitive to the level of α, being roughly equal to
- 1/2 for large values of φ, i.e. for α closer to zero, and smaller at smaller values of φ.

The second row in Figure A-6 display results for log(na), log(nr) to changes in log(ψ)
holding φ = 0.06 as in our benchmark calibration. The smaller ψ, the closer the value of α
to zero. The elasticities of na and nr with respect to ψ are smaller at smaller values of ψ.

C.13 Proof of Proposition 12.

Proof. Rewrite equation (40) as

w(∆p) =
1

σ
√

τ̂

∫ ϕ̄

−ϕ̄

√
1 + ϕ2 n

(
∆p
√

1+ϕ2

σ
√

τ̂
− ϕ

)
q(ϕ)dϕ

1− ∫ ϕ̄

−ϕ̄
q(ϕ)dϕ

+
1

σ
√

τ̂
n

(
∆p

σ
√

τ̂

)
,

usign the change of variable ϕ = p̃/(σ
√

τ(p̃)), using the approximation for the optimal

policty: τ(p) = τ̂ − (p/σ)2 = τ̂
1+ϕ2 , which implies that p(ϕ) = σ

√
τ̂ ϕ/

√
1 + ϕ2, and hence

this change of variables gives the density of the normalized prices: q(ϕ) = g(p(ϕ))dp(ϕ)/dϕ.
Thus letting the normalized price changes be:

x ≡ ∆p

σ
√

τ̂
, (A-34)

we define the density of the normalized price changes x as v(·), satisfying v(x)/(σ
√

τ̂) and
then the distribution of normalized price adjustment have density given by the change of

variable formula: v(x) = w
(

∆p

σ
√

τ̂

)
σ
√

τ̂

v(x) =

∫ ϕ̄

−ϕ̄

√
1 + ϕ2 n

(
x

√
1 + ϕ2 − ϕ

)
q(ϕ)dϕ

1− ∫ ϕ̄

−ϕ̄
q(ϕ)dϕ

+ n (x) for |x| > ϕ̄ . (A-35)

Finally we can use the approximation for q(ϕ) ≈ q(0) + 1
2
q′′(0)ϕ2 and the formulas for q(0)

and q(0)′′ developed in the proof of Proposition 10. The expressions obtained there for q(0)
and q′′(0) are a function of ϕ̄. Thus we can write:

v(x; ϕ̄) =

∫ ϕ̄

−ϕ̄

[
q(0) + 1

2
q′′(0)ϕ2

] √
1 + ϕ2 n

(
x

√
1 + ϕ2 − ϕ

)
dϕ

1− ∫ ϕ̄

−ϕ̄

[
q(0) + 1

2
q′′(0)ϕ2

]
dϕ

(A-36)

+ n (x) for |x| > ϕ̄ .

where we include ϕ̄ as an argument to emphasize that this density does not depend on any
other parameter. This is the expression in the proof. Finally, we notice that the mode and
minimum are equal to ϕ̄.
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C.14 Proof of Proposition 14.

Proof. Consider

G(p̂ ; T̄ , π) ≡ E
(∫ T̄

0

e−ρt [(πt− p̂) + σW (t)]2 dt

)
(A-37)

where W (t) is a standard brownian motion. If p̂ and the T̄ are optimal, then G(·; T̄ , π) should
be maximized at p̂. We will show that, provided that the stopping time is positive and finite,

∂G(0 ; T̄ , π)

∂p̂
< 0 if π > 0 . (A-38)

We write equation (A-37) as

G(p̂ ; T̄ , π) ≡ E
(∫ T̄

0

e−ρt
[
(πt− p̂)2 + 2σW (t) (πt− p̂) + σ2W (t)2

]
dt

)

and thus

∂G(p̂ ; T̄ , π)

∂p̂
= E

(∫ T̄

0

e−ρt [−2 (πt− p̂)− 2σW (t)] dt

)

= −E
(∫ T̄

0

e−ρt2 (πt− p̂) dt

)
− σ 2E

[∫ T̄

0

e−ρtW (t)dt

]

Equating this first order condition to zero, rearranging, and taking ρ to zero:

p̂ =
π E

(
T̄ 2

2

)
+ σ E

[∫ T̄

0
W (t)dt

]

E
(
T̄

)

C.15 Proof of Proposition 15.

Proof. To show that ∂p̂
∂π
|π=0 > 0 we note that p̂ = 0 for zero inflation, and -by equation (47)

in Proposition 14- strictly positive for positive inflation and strictly negative for negative
inflation. To show that ∂τ̂

∂π
|π=0 = 0 we let F (τ̂ , p̂, π) = 0 denote the first order condition of

the problem equation (17) with respect to τ̂ :

F (τ̂ , p̂, π) = B (p̂− πτ̂)2 − ρ

∫ ∞

−∞
V

(
p̂− πτ̂ − sσ

√
τ̂
)

dN(s)

+

∫ ∞

−∞
V ′

(
p̂− πτ̂ − sσ

√
τ̂
) (

−π − sσ

2
√

τ̂

)
dN(s)
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Totally differentiating F (τ̂(π), p̂(π), π) with respect to π, we can solve for ∂τ̂/∂π as function
of ∂p̂/∂π and derivatives of the function F as:

0 =
∂F

∂τ̂

∂τ̂

∂π
+

∂F

∂p̂

∂p̂

∂π
+

∂F

∂π
.

We now show that ∂F (τ̂ , 0, 0)/∂p̂ = ∂F (τ̂ , 0, 0)/∂π = 0 and ∂F (τ̂ , 0, 0)/∂τ̂ > 0, hence
∂τ̂/∂π = 0. Direct computations give:

∂F (τ̂ , p̂, π)

∂π
= −2B (p̂− πτ̂) τ̂ + ρτ̂

∫ ∞

−∞
V ′

(
p̂− πτ̂ − sσ

√
τ̂
)

dN(s)

− τ̂

∫ ∞

−∞
V ′′

(
p̂− πτ̂ − sσ

√
τ̂
) (

−π − sσ

2
√

τ̂

)
dN(s)−

∫ ∞

−∞
V ′

(
p̂− πτ̂ − sσ

√
τ̂
)

dN(s)

and evaluating this expression at π = p̂ = 0, using the symmetry of V (p̃) and of the normal
distribution N(s) around zero, we obtain that this derivative is zero. Likewise we obtain
that:

∂F (τ̂ , p̂, π)

∂p̂
= 2B (p̂− πτ̂)− ρτ̂

∫ ∞

−∞
V ′

(
p̂− πτ̂ − sσ

√
τ̂
)

dN(s)

+

∫ ∞

−∞
V ′′

(
p̂− πτ̂ − sσ

√
τ̂
) (

−π − sσ

2
√

τ̂

)
dN(s)

which evaluated at π = p̂ = 0 also vanishes. Finally

∂F (τ̂ , p̂, π)

∂τ̂
= 2B (p̂− πτ̂) π − ρ

∫ ∞

−∞
V ′

(
p̂− πτ̂ − sσ

√
τ̂
) (

−π − sσ

2
√

τ̂

)
dN(s)

+

∫ ∞

−∞
V ′′

(
p̂− πτ̂ − sσ

√
τ̂
) (

−π − sσ

2
√

τ̂

)2

dN(s)

+

∫ ∞

−∞
V ′

(
p̂− πτ̂ − sσ

√
τ̂
)( sσ

4 τ̂ 3/2

)
dN(s)

which is strictly positive evaluated at π = p̂ = 0 since V ′′(0) > 0 and since V (p̃) and dN(s)
is symmetric around zero.

C.16 Proof of Proposition 16.

Proof. It is mathematically simpler to solve the menu cost model as concentrating in the
steady state case, i.e. when ρ = 0. This problem corresponds to the the limit as ρ ↓ 0. Thus
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when π > 0 and σ = 0 we can write the objective function as:

min
p̂,τ

1

τ

[∫ τ

0

B (πt− p̂)2 dt + (ψ + φ)

]
= min

p̂,τ

1

τ

[
B

∫ τ

0

(
π2t2 − 2p̂πt + p̂2

)
dt + (ψ + φ)

]

= min
p̂,τ

1

τ

[
B

(
π2τ 3

3
− 2p̂πτ 2

2
+ p̂2τ

)
+ (ψ + φ)

]
= min

τ

1

τ

[
B

(
π2τ 3

3
− π2τ 3

2
+

π2τ 3

4

)
+ (ψ + φ)

]

= min
τ

1

τ

[
B

π2τ 3

12
+ (ψ + φ)

]
= min

τ

[
B

π2τ 2

12

]
+

(ψ + φ)

τ

where we use that τπ
2

= arg minp̂
2p̂τ2

2
+ p̂2τ . The first order condition for τ gives

2 B π2 τ

12
=

(ψ + φ)

τ 2
.

This implies the following optimal rules:

τ ∗ =

(
6 (ψ + φ)

B π2

)1/3

, p̂ =

(
3 π (ψ + φ)

4 B

)1/3

, and p̂− p = πτ =

(
6 π (ψ + φ)

B

)1/3

(A-39)

The value of na is obtained as na = 1/τ ∗. The values for τ(p̃) are obtained by requiring
that the review happens exactly at the time of an adjustment: τ(p̃)π = p̃ − p in the range
of inaction. The optimal policy has this form because, due to the deterministic evolution of
p̃(t), if φ > 0 it is optimal to review only at the time of an adjustment.

Now consider the menu cost version of this model for ρ > 0, σ = 0 and π > 0. We
use this model to show that for all ρ > 0, the optimal return point and boundaries satisfy
p̄− p̂ < p̂− p. In the range of inaction p̃ ∈ (p, p̄) the value function satisfy the ODE:

ρV (p̃) = Bp̃2 − πV ′(p̃)

with value matching, optimality of p̂ and smooth pasting conditions:

V (p) = V (p̂) + ψ + φ, V ′(p̂) = 0 and V ′(p) = 0 .

The solution of the ODE in the range of inaction is:

V (p̃) =
B

ρ
p̃2 − π

ρ

2 B

ρ
p̃ +

(
π

ρ

)2
2 B

ρ
+ A e−ρ/π p̃

for some constant A to be determined. Let a0p̃ + a1p̃ + a2p̃
2 be the particular solution of the

ODE. Its coefficients must solve:

ρ
(
a0 + a1p̃ + a2p̃

2
)

= Bp̃2 − π (a1 + 2a2p̃)

and thus

a2 =
B

ρ
, a1 = −π

ρ

2 B

ρ
, a0 =

(
π

ρ

)2
2 B

ρ

78



Notice that the quadratic function showing the particular solution of the ODE is the value of
a policy where the fixed cost is never paid. Hence in the range of inaction, where the solution
to this ODE must hold, the value function has to be smaller. This implies that the constant A
has to be negative. We now use that A < 0 implies that p̄− p̂ < p̂−p. To see this, denote the

quadratic particular solution of the ODE as Q(p̃), so we have V ′(p̃) = Q′(p̃)− A(ρ/π)−ρ/πp̃.
This derivative is zero at p̂ where the function attains its minimum, and it is positive for
higher values and negative for lower ones. From V ′(p̂) = 0 we obtain:

2
B

ρ
p̂− π

ρ

B

ρ
2 =

ρ

π
A e−

ρ
π

p̂

so that

A =

(
p̂− π

ρ

)
2

B

ρ

π

ρ
e

ρ
π

p̂

From V (p̄)− V (p̂) = φ + ψ we obtain:

B

ρ
(p̄2 − p̂2)− π

ρ

B

ρ
2 (p̄− p̂) + A

(
e−

ρ
π

p̄ − e−
ρ
π

p̂
)

= φ + ψ

and substituting A into this expression we get:

B

ρ
(p̄2 − p̂2)− π

ρ

B

ρ
2 (p̄− p̂) +

(
p̂− π

ρ

)
2

B

ρ

π

ρ

(
e

ρ
π

(p̂−p̄) − 1
)

= φ + ψ

We now obtain an expression for p̄ as a function of p̂ and the parameters π(φ + ψ)/B by
letting ρ to go to zero. To do so, we use that ex − 1 = x + (1/2)x2 + o(x2) and apply it to
e

ρ
π

(p̂−p̄) − 1 obtaining:

p̄2 − p̂2 − π

ρ
2 (p̄− p̂) +

(
p̂− π

ρ

)
2
π

ρ

(
ρ

π
(p̂− p̄) +

1

2
(
ρ

π
)2(p̂− p̄)2 + o(ρ2)

)
=

φ + ψ

B
ρ

In this expression we can simplify the terms that are multiplied by 1/ρ. To see this we can
developed the third term into:

φ + ψ

B
ρ = p̄2 − p̂2 − π

ρ
2 (p̄− p̂) +

(
p̂− π

ρ

)
2 (p̂− p̄)

+

(
p̂− π

ρ

)
2
π

ρ

(
1

2
(
ρ

π
)2(p̂− p̄)2 + o(ρ2)

)

or canceling the terms multiplied by 1/ρ

φ + ψ

B
ρ = p̄2 − p̂2 + p̂ 2 (p̂− p̄) +

(
p̂− π

ρ

) (ρ

π
(p̂− p̄)2 + o(ρ)

)

developing the parenthesis

φ + ψ

B
ρ = p̄2 − p̂2 + p̂ 2 (p̂− p̄) + p̂

ρ

π
(p̂− p̄)2 − (p̂− p̄)2 + o(ρ)
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developing the square

φ + ψ

B
ρ = p̄2 − p̂2 + 2p̂2 − 2p̂p̄ + p̂

ρ

π
(p̂− p̄)2 − p̂2 − p̄2 + 2p̄p̂ + o(ρ)

canceling the common terms

φ + ψ

B
ρ = p̂

ρ

π
(p̂− p̄)2 + o(ρ)

multiplying π/ρ:

φ + ψ

B
π = p̂ (p̂− p̄)2 +

o(ρ)

ρ

and taking ρ to zero:

φ + ψ

B
π = p̂ (p̂− p̄)2

We can write p̄ = a p̂ for a constant a > 1 to be determined:

φ + ψ

B
π = p̂3 (1− a)2

and replacing the expression for p̂3:

φ + ψ

B
π =

(
3

4

φ + ψ

B
π

)
(1− a)2

or solving for the positive value of a:

√
4

3
+ 1 = a

or

p̄ =

(√
4

3
+ 1

)
p̂

Now we compare p̄− p̂ with p̂− p:

p̄− p̂

p̂− p
=

√
4
3

8
1
3

=
1√
3
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