
Appendix

A Derivations

A.1 Proof of Lemma 1

Use (6) to substitute for ws in the financial sector’s first-order condition and then take the
derivative with respect to the transfer T0:.

d2f(K0, s0)

ds20

ds0
dT0

psolv + ws
dpsolv
dT0

− c′′(s0)
ds0
dT0

= 0

ds0
dT0

= −ws
dpsolv
dT0

/

(
d2f(K0, s0)

ds20
psolv − c′′(s0)

)
(A.1.1)

Since dpsolv/dT0 = p(A1), this term is positive so long as A1 is in the support of Ã1 and the
transfer increases the probability of solvency by decreasing the solvency threshold A1. Hence
the numerator of the right hand side in the second line is negative. That the denominator
is also negative follows from the concavity of f and the convexity of c. This establishes that
the right side is positive and hence ds0/dT0 > 0.

A.2 A Candidate for V (K) based on f(K, s)

Consider the frictionless counterpart to our setting, with psolv = 1. In a dynamic setting, the
expression for V would reflect the value of future production of the non-financial sector as
a function of its future capital, K. For simplicity, consider one extra period of output. The
case of more than one future period should be similar as it is the sum of multiple one-period
output. The output of the additional period is given by maxs f(K, s). It is natural then to
let

V (K) = max
s
f(K, s)− wss

with ws determined by the financial sector’s first-order condition. With f(K, s) = αK1−ϑsϑ,
this implies that

V (K) = (1− ϑ)αK1−ϑs∗ϑ

where s∗ is the optimal choice of s.

Let c(s) = 1
m
sm for m ≥ 2. Then the first-order condition of the financial sector implies

that ws = sm−1 and the first-order condition of the non-financial sector implies that:

ϑαK1−ϑsϑ−1 = ws = sm−1



Solving for s∗, substituting into the expression above for V (K), and simplifying gives:

s∗ = (ϑα)
1

m−ϑK
1−ϑ
m−ϑ

V (K) = (1− ϑ)α
m

m−ϑKγ where γ =
(1− ϑ)

1− ϑ
m

Hence, V (K) has the power form that is used in the paper. Moreover,for m ≥ 2 (which is
assumed), γ < 1.

A.3 Properties of Expected Tax Revenue: T
For the assumed parametric forms, we obtained the following results:
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The second line shows that dT /dθ0 > 0 on [0, θmax0 ) and dT /dθ0 < 0 on (θmax0 , 1) where

θmax0 solves: γ
1−γ

θmax0

1−θmax0
= 1. It is zero at θmax and at 1 (where T = 0).

The third line implies that d2T /dθ20 < 0 on [0, θmax0 ] so T is increasing but concave on
this region. To see this, note that the third line can be rewritten as:

d2T
dθ20

=

(
−2 +

γ

1− γ
θ0

1− θ0
− θ0

1− θ0

)
γ

1− γ
γ

γ
1−γ (1− θ0)

γ
1−γ−1

We know that −1 + γ
1−γ

θ0
1−θ0 < 0 on [0, θmax0 ] and so, on this region, the leading term in

parenthesis is negative. Since the remaining terms are positive, d2T /dθ20 < 0 in this region.

A.4 The Government’s First-Order Condition

From (3) we obtain the following first order condition of the government for the tax rate, θ0:[
∂f(K0, s0)

∂s0
− c′(s0)

]
ds0
dT0

dT0
dT

dT
dθ0

+ [V ′(K1)− 1]
dK1

dθ0
= 0 (A.4.1)

Note that the derivatives of s0 and T here are total derivatives, since the government’s
choices are subject to the equilibrium choices of the financial and non-financial sectors.

As shown above, dT /dθ0 is positive and decreasing (towards zero), but remains positive,
on [0, θmax0 ]. Therefore, the mapping from tax level (θ0) to the marginal rate of transformation
of taxes into tax revenue (dT /dθ0), is invertible on this region. A high tax rate corresponds to



a low marginal rate of transformation of taxes into tax revenue and vice versa. Note that the
optimal tax rate must be in the region [0, θmax0 ], since any further increase in θ0 beyond θmax0

reduces tax revenue and investment. Hence, we can limit the consideration of the optimal
tax rate to this region. Since dT /dθ0 is positive and the mapping from θ0 to T is invertible
in this region, we can instead consider the government’s first order condition with respect to
T , which turns out to be more intuitive for analyzing the government’s problem. Dividing
(A.4.1) through by dT /dθ0, and rewriting (dK1/dθ0)/(dT /dθ0) = dK1/dT we obtain this
alternative first-order condition:[

∂f(K0, s0)

∂s0
− c′(s0)

]
ds0
dT0

+ [V ′(K1)− 1]
dK1

dT
= 0 (A.4.2)

where the term dT0/dT , which equals 1 under a no-default government policy, is omitted
from the expression.

A.5 Under-Investment Loss Due to Taxes

We want to obtain an expression for the second term in (8), the transfer version of the
government’s first-order condition:

[V ′(K1)− 1]dK1

dθ0
dT
dθ0

The first-order condition for investment of the non-financial sector, (7), and the para-
metric form for V imply that:

V ′(K1)− 1 = θ0V
′(K1)

= θ0γK
γ−1

Substituting in the parametric form also gives:

dK1

dθ0
=

1

1− θ0
1

γ − 1
K1

Moreover, from (7) we can solve for the equilibrium K1 as a function of θ0:

K1 = γ
1

1−γ (1− θ0)
1

1−γ

We can obtain the numerator to our fraction of interest by multiplying the expressions for



the two terms together:

[V ′(K1)− 1]
dK1

dθ0
=

θ0γ

(1− θ0)(γ − 1)
Kγ

=
θ0

1− θ0
γ

γ − 1
γ

γ
1−γ (1− θ0)

γ
1−γ

=
T
θ0

θ0
1− θ0

γ

γ − 1

where the second line follows by substituting in the expression for K0 and the third line
follows by substituting in the expression for T . Appendix A.3 derives dT /dθ0. Dividing the
expression for the numerator by the expression for dT /dθ0 shows that the marginal loss per
transfer is given by:

dL
dT

=
[V ′(K1)− 1]dK1

dθ0
dT
dθ0

=
− θ0

1−θ0
γ

1−γ

1− θ0
1−θ0

γ
1−γ

From this it is clear that dL/dT → −∞ as θ0 → θmax (since at θmax the denominator is 0).
Additionally, we have:

d2L
dT 2

=
d2L
dθ0dT

dθ0
dT

< 0 for θ0 ∈ [0, θmax) .

Hence, the marginal loss to the economy is increasing in magnitude (getting worse) as the tax
rate increases up to θmax and expected tax revenue rises to T max. In other words, marginal
tax revenues becomes increasingly expensive to raise as the marginal loss to the economy
from underinvestment rises in the tax rate/level of tax revenues.

A.6 Proof of Proposition 1

Substituting (6) into (5) and solving, we obtain the equilibrium level of s0 (note that we refer
to the equilibrium level of s0 also as s0, an abuse of notation intended to reduce clutter):

s0 =

(
ϑα

β

) 1
m−ϑ

K
1−ϑ
m−ϑ
0 p

1
m−ϑ
solv

Now substitute this into the expression for dG/dT to get:

dG
dT

=
∂f(K0, s0)

∂s
(1− psolv)

ds0
dT0

=
1

m− ϑ
(
ϑαK1−ϑ

0

) m
m−ϑ β

−ϑ
m−ϑp

ϑ
m−ϑ−1
solv (1− psolv)

dpsolv
dT0



Taking derivative again with respect to T shows that:

d2G
dT 2

∝
(

ϑ

m− ϑ
− 1

)
p

ϑ
m−ϑ−2
solv (1− psolv)

dpsolv
dT0

− p
ϑ

m−ϑ−1
solv

(
dpsolv
dT0

)2

+ p
ϑ

m−ϑ−1
solv (1− psolv)

d2psolv
dT 2

0

where dT0/dT = 1 is omitted. Since the second term in the above expression is always
negative, a sufficient condition to ensure that d2G/dT 2 < 0 is to ensure that the first and
third terms in the above expression are non-positive. The condition: m − 2ϑ ≥ 0 ensures
that the first term is non-positive. The third term is negative if the slope of the probability
density of Ã1 at A1 is non-positive. Letting Ã1 take a uniform distribution sets this term to
zero.23

Since we have shown that both G and L are concave in T , the government’s problem is
concave in T . Furthermore, the optimum tax revenue, T̂ , must correspond to a tax rate
θ̂ < θmax, because the first-order condition is negative at θmax. To see that this is the case,
note that dL/dT → ∞ as θ → θmax while dG/dT is finite for psolv > 0.

A.6.1 Impact of L1 and ND on T

Let x = L1 or ND. Rewriting (8) using the gain and loss notation as dG/dT + dL/dT = 0
and then taking the derivative with respect to x gives:

d2G
dxdT

+
d2L
dxdT

= 0 (A.6.1)

Using the Implicit Function Theorem, the two terms on the right side evaluate to the fol-
lowing:

d2G
dxdT

=
d

dpsolv

(
dG
dT

){
∂psolv
∂T0

(
∂T0
∂T

dT
dx

+
∂T0
∂x

)
+
∂psolv
∂x

}
d2L
dxdT

=
d2L
dT 2

dT
dx

Substituting into (A.6.1) and combining the terms multiplying dT /dx yields:

dT
dx

[
d

dpsolv

(
dG
dT

)
∂psolv
∂T0

∂T0
∂T

+
d2L
dT 2

]
= − d

dpsolv

(
dG
dT

){
∂psolv
∂T0

∂T0
∂x

+
∂psolv
∂x

}
(A.6.2)

23Using an exponential distribution would also be sufficient. For the log-normal distribution, this term
will be negative for a range of values below a cutoff.



Note for the left-hand side term in parenthesis:

d

dpsolv

(
dG
dT

)
∂psolv
∂T0

∂T0
∂T

+
d2L
dT 2

=
d2G
dT 2

+
d2L
dT 2

< 0

For x = ND:

∂psolv
∂T0

∂T0
∂x

+
∂psolv
∂x

=
∂psolv
∂T0

(kA − 1) < 0

since ∂T0/∂ND = −1 and ∂psolv/∂ND = (∂psolv/∂T0)kA.

For x = L1:

∂psolv
∂T0

∂T0
∂x

= 0 and
∂psolv
∂x

< 0

so for either value of x, the term in braces on the right side is negative. Finally, the inter-
mediate steps in the proof of the concavity of G in T show that

d

dpsolv

(
dG
dT

)
< 0

Combining these results shows that dT /dx > 0 for x = L1 or ND.

A.6.2 Impact of ND on T0

To show how T0 changes with ND, begin by using the result above for T . In particular,
letting x = ND in (A.6.2) and simplifying the right-side expression using ∂psolv

∂T0

∂T0
∂x

+ ∂psolv
∂x

=
∂psolv
∂T0

(kA − 1) and d2G/(dT0dT ) = d2G/dT 2 gives:

dT
dND

[
d2G
dT 2

+
d2L
dT 2

]
= (1− kA)

d2G
dT 2

dT
dND

=
(1− kA)d

2G
dT 2

d2G
dT 2 + d2L

dT 2

⇒ 0 <
dT
dND

< 1− kA

Since T0 = T −ND,

dT0
dND

=
dT
dND

− 1 ⇒ −1 <
dT0
dNd

< −kA

Moreover, this shows that T0 +kAND, the gross transfer to the financial sector, is decreasing
in ND.



A.6.3 Impact of Factor Share on T

Next we examine the effect of the factor share of financial services on T , while holding con-
stant total output. To that end, we consider the impact of a change in ϑ while simultaneously
adjusting α (the level of productivity) to keep output constant. Let D(·) be the following
differential with respect to dϑ and dα

Dg =
dg

dϑ
dϑ+

dg

dα
dα

where the derivatives are taken holding T constant but include the change caused by ds0/dϑ
and ds0/dα. Now let dα be set to keep total output constant, e.g., Df = 0, where f is
equilibrium output. This implies dα = −(df/dϑ)/(df/dα)dϑ, which gives:

Dg

dϑ
=
dg

dϑ
− dg

dα

(
df/dϑ

df/dα

)
Hence, to find the impact of ϑ on T while holding output constant, we analyze DT /dϑ.
Applying this differentiation operator to the first-order condition for T and collecting terms
gives:(

d2G
dT 2

+
d2L
dT 2

)
DT
dϑ

+
D

dϑ

dG

dT
+
D

dϑ

dL
dT

= 0 (A.6.3)

Note that the application of the D operator is linear as it is simply a sum of two derivatives.
Furthermore,

D

dϑ

(
dG
dT

)
> 0

D

dϑ

(
dL
dT

)
= 0

The first line is proved below, while the second line follows directly since dL/dT is not a
function of ϑ or α. Using the second-order condition, it follows that DT /dϑ > 0.

To prove the first line from above, note that the sign of this term in question is equal to
the sign of D(∂f/∂s0 × ds0/dT0)/dϑ. This follows from the expression for dG/dT and that
psolv does not depend on ϑ or α. Substituting (6) into (5) and using the functional form of
c(s0) shows that

sgn

(
D

dϑ

∂f

∂s0

)
= sgn

(
(m− 1)sm−20

Ds0
dϑ

)
Since m > 1, this last term equals sgn(Ds0/dϑ). To find sgn(Ds0/dϑ), substitute (6) into
(5), multiply both sides of the resulting expression by s0, and substitute in the functional



forms of f and c(s0) to obtain:

ϑf(K0, s0)psolv = βsm0 .

Applying the D operator to both sides of this expression gives:

D(ϑf(K0, s0)psolv)

dϑ
= f(K0, s0)psolv

D(βsm0 )

dϑ
= msm−10

Ds0
dϑ

Since the right-hand side of the first line is positive, so must be the right-hand side of the
second line, showing that Ds0/dϑ > 0 and hence, sgn (D(∂f/∂s0)/dϑ) > 0.

It remains to find sgn (D(ds0/dT0)/dϑ), which can be found using (A.1.1). Using similar
steps to those immediately above, it can be shown that if m ≤ 2 then sgn (D(d2f/s20)/dϑ) ≥
0. Moreover, direct differentiation and Ds0/dϑ > 0 show that if m ≤ 2 then sgn(c′′(s0)) < 0.
It is then straightforward to show that sgn (D(ds0/dT0)/dϑ) > 0.

A.7 Proof of Lemma 4

The derivative of the government’s objective with respect to NT is given by:

dG
dT0

dT0
dNT

When NT +ND ≥ T (Region 2), then T0 = NTP0 = NT
NT+ND

T and

dT0
dNT

= P0 +NT
dP0

dNT

= P0

(
ND

NT +ND

)
.

Therefore dT0/dNT > 0 if ND > 0. Moreover, this implies that NT → ∞ is optimal in the
default region. Alternatively, if ND = 0, then increasing NT into the default region provides
no benefit but does incur the loss of D.

When NT → ∞, then T0 = T , as pre-existing bondholders are completely diluted.
Note that T0 = T is the same situation as if ND were set to 0. Conditional on this,
the government’s problem reduces to the same problem it faces in Region 1. Therefore, to
determine if default is optimal, the government needs to compare this optimum-cum-default-
loss, W1

∣∣ND = 0−D, with the maximum from region 1, W1. Since the optimum within the
default region can be found by setting ND = 0, Appendix A.6.2 shows that the transfer will
be bigger conditional on default. By Appendix A.1 this implies the equilibrium provision of
financial services is greater.



A.8 Proof of Proposition 2

As Lemma 4 indicates, the tradeoff involved in default is the deadweight cost D, versus
the larger transfer and reduced taxes made possible by diluting pre-existing debt. The net
benefit of this tradeoff can be written as follows:∫ T̂0

def−kND

T̂0
no def

dG
dT0

dT0 +

∫ T̂ def
T̂ no def

dL
dT

dT −D (A.8.1)

where the first integral is the gain due to increasing the (gross) transfer, while the second
integral is the reduction in underinvestment loss due to reducing tax revenue. Note that
dG/dT0 here is evaluated at the no-default values. If (A.8.1) is positive, it is optimal for the
sovereign to choose default, while if it is negative then no-default is optimal.

To prove point (1), take the derivative of (A.8.1) with respect to L1 and simplify the
resulting expression to obtain:∫ T̂0

def−kAND

T̂0
no def

d

dL1

(
dG
dT0

)
> 0

The intermediate steps in Appendix A.4 show that the derivative in the integrand is positive.
As shown in Appendix A.6.2, the gross transfer is decreasing in ND, so T def0 > kAND+T no def0

and hence the integral is positive.

To prove the statement for ND, take the derivative of (A.8.1) with respect to ND. Sim-
plifying the derivative at the upper integration boundary gives −kAdG/dT0

∣∣
T̂0
def−kAND

while

from the lower boundary we get we get dG/dT0
∣∣
T̂0
no def . The remaining part of the derivative

is: ∫ T̂0
def−kAND

T̂0
no def

d

dND

(
dG
dT0

)
= kA

∫ T̂0
def−kAND

T̂0
no def

d

dT0

(
dG
dT0

)
= kA

(
dG
dT0

∣∣∣
T̂0
def−KAND

− dG
dT0

∣∣∣
T̂0
no def

)
Combining the three parts of the derivatives gives: (1 − kA)dG/dT0

∣∣
T̂0
no def > 0. To show

that the benefit of defaulting is convex in ND, take a second derivative to obtain: (1 −
kA)d2G/dT 2

0

∣∣
T̂0
no defdT no def0 /dND > 0.

To prove the statement for factor share, apply the operator D/dϑ (defined in Appendix
A.6.3) to (A.8.1) and again simplify to get:∫ T̂0

def−kAND

T̂0
no def

D

dϑ

(
dG
dT0

)
> 0

The integrand is positive as shown in Appendix A.6.3, so again the integral is positive.



Finally, taking the derivative with respect to k, we obtain −(dG/dT0)ND < 0 at the
upper integration boundary and 0 at the lower boundary. In the interior we obtain∫ T̂0

def−kAND

T̂0
no def

d

dkA

(
dG
dT0

)
= ND

∫ T̂0
def−kAND

T̂0
no def

d

dT0

(
dG
dT0

)
< 0

so the derivative is negative.

A.9 Optimal Tax Revenue Under Uncertainty

The first order condition for the government’s choice of T is given by:

dG
dT0

dT0
dT

+
dL
dT

= 0

Whereas under certainty dT0/dT =1, this is no longer the case. Taking the derivative of T0
with respect to T in (11) (while holding H constant) and then using (9) to substitute into
the resulting expression gives dT0/dT = P0H. Therefore, the first-order condition for T is:

dG
∂T0

HP0 +
dL
dT

= 0 (A.9.1)

with T0 given in (11). The loss due to underinvestment, L, is the same as under certainty.
Recall that it is concave, with the magnitude of the marginal loss, dL/dT , increasing in T .
Similarly, dG/dT0, the gain to the economy from the increased provision of financial services,
remains the same with uncertainty and is decreasing in T0. However, the rate at which T0
increases in T is now HP0 rather than 1. Note that this rate is a constant in T , as P0 is
only a function of H, and is less than 1.24 Finally, the second-order condition for T holds

d2G
∂T 2

0

(HP0)
2 +

d2L
dT 2

< 0

as G and L are concave and HP0 is a function only of H.

A.10 Optimal Probability of Default Under Uncertainty

Changing H affects two components of the government’s objective. As can be seen from (11),
increasing H changes T0. Unlike the case with T , however, increasing H does not have any
effect on investment. Instead, the cost associated with increasing H is that it increases the
probability of default, and so also the expected deadweight cost. The first-order condition

24To see this, note that HP0 = E0

[
min

(
H, R̃V

)]
< E0[R̃V ] = 1.



for H shows this tradeoff:

dG
dT0

dT0
dH
−Ddpdef

dH
= 0 (A.10.1)

From (10), it is clear that dpdef/dH > 0 and we can think of choosing H exactly as choosing
the probability of default. The effect on T0 = P0NT is less immediately clear, since increasing
H increases NT , but decreases P0. However, (11) shows that dT0/dH > 0. To see this we
break up T0 into two terms based on (11) and consider their derivatives:

d (T − ND

H
)/dH =

ND

H2
> 0 (A.10.2)

dE0

[
min

(
H, R̃V

)]
/dH = (1− pdef ) > 0 (A.10.3)

Demonstrating the equivalence in the second line is straightforward, as shown in Appendix
A.11. We refer to (A.10.2) as increasing the dilution of existing bondholders’ claim, since the
increase in H reduces the share of tax revenues that goes to the holders of the existing debt,
ND. We refer to (A.10.3) as reducing either the default buffer or precautionary taxation, since
by increasing H, it increases the probability that R̃V < H, in which case the government
defaults. Hence, (A.10.2) and (A.10.3) show that increasing H (while holding T constant)
increases T0. It immediately follows that dG/dH > 0 and there is a benefit to increasing H.
Substituting in for dT0/dH, the first-order condition becomes:

dG
dT0

(
ND

H2
E0

[
min

(
H, R̃V

)]
+ (T − ND

H
)(1− pdef )

)
−Ddpdef

dH
= 0

Appendix A.11 also shows that as H increases, raising it further becomes decreasingly effec-
tive at increasing T0:

d2T0
dH2

=
−2ND

H3

∫ H

0

xpR̃V (x)dx− (T − ND

H
)pR̃V (H) < 0

where pR̃V (x) denotes the probability density of R̃V evaluated at x. In other words, T0
is concave in H. Together with the concavity of G in T0, this implies that G is concave
in H, e.g., d2G/dH2.25 The implication is that while increasing H provides a benefit to
the government by increasing the transfer through dilution and reduction of precautionary
taxation, the marginal benefit is decreasing. Meanwhile, the government bears a cost for
increasing H; the resulting increased likelihood of default increases the expected deadweight
cost of default.

25Note that in the first-order conditions, we have assumed that the government takes into account the
(negative) impact of higher H on prices. Thus, we have NOT treated the government here as a price-taker.
If we instead treat the government as a price-taker, the resulting conditions are simpler: dT0/dH = P0T
(as dP0/dH is omitted due to the price-taking assumption) and the first-order condition is: dG/dT0(P0T )−
Ddpdef/dH = 0. In this case, concavity of G in H still holds because G is concave in T0.



We assume that at the optimal choice of H, d2 pdef/d
2H ≥ 0.

A.11 Uncertainty Calculations

To derive dE0

[
min

(
H, R̃V

)]
/dH, rewrite the expectation as:

E0

[
min

(
H, R̃V

)]
=

∫ H

0

x pR̃V (x)dx+H

∫ ∞
H

pR̃V (x)dx

Now taking the derivative with respect to H, one obtains:

dE0

[
min

(
H, R̃V

)]
/dH =HpR̃V (H)−HpR̃V (H) +

∫ ∞
H

pR̃V (x)dx

=

∫ ∞
H

pR̃V (x)dx

=(1− pdef )

The first line is just the derivative, while the last line follows by definition of pdef .

Using this result we have that:

dT0
dH

=
ND

H2
E0

[
min

(
H, R̃V

)]
+

(
T − ND

H

)
(1− pdef )

Substituting in the expression above for E0

[
min

(
H, R̃V

)]
, taking the derivative with re-

spect to T0, and simplifying gives:

d2T0
dH2

=
−2ND

H3

[∫ H

0

x pR̃V (x)dx+H

∫ ∞
H

pR̃V (x)dx

]
+
ND

H2
(1− pdef )

+
ND

H2
(1− pdef )−

(
T − ND

H

)
pR̃V (H)

=
−2ND

H3

[∫ H

0

x pR̃V (x)dx

]
−
(
T − ND

H

)
pR̃V (H)

Since (T −ND/H) = NT/H > 0, it is clear that d2T0/dH
2 < 0.

A.12 Proof of Proposition 3

The starting point are the first-order conditions for T and for H, given by (A.9.1) and
(A.10.1), respectively. Substituting out dG

dT0
and rearranging gives the relation



− dL
dT

dT0
dH

= HP0D
dpdef
dH

= 0 (A.12.1)

Differentiating with respect to L1 gives on the left-hand side:

− d
2L
dT 2

dT
dL1

dT0
dH
− dL
dT

d2T0
dT dH

dT
dL1

− dL
dT

d2T0
dH2

dH

dL1

and on the right-hand side:

(1− pdef )D
dpdef
dH

dH

dL1

+HP0D
d2pdef
dH2

dH

dL1

Combining the terms in dT
dL1

gives:

d2L
dT 2

dT0
dH
− dL
dT

d2T0
dT dH

and it is not difficult to see that each term has a positive sign. Combining the terms in dH
dL1

gives:

dL
dT

d2T0
dH2

+ (1− pdef )D
dpdef
dH

+HP0D
d2pdef
dH2

and again each term is positive. Thus, we see that at the optimal values, sgn
(
dT
dL1

)
=

sgn
(
dH
dL1

)
. It remains to show that both of these signs are indeed positive.

To that end, let V represent the objective function of the government with the first-order
conditions given by (A.9.1) and (A.10.1). Let X = [T , H] be the vector of the two controls.
Then the first order conditions can be written as just dV/dX = 0. Differentiating this with
respect to L1 then gives

dV

dL1dX
+
d2V

dX2

dX

dL1

= 0 .

By assumption, the optimal X is internal and so d2V/dX2 is negative definite. Isolating
dX/dL1 then gives

dX

dL1

= −
(
d2V

dX2

)−1
dV

dL1dX
.



Premultiplying by dV T

dL1dX
we obtain

dV T

dL1dX

dX

dL1

= − dV T

dL1dX

(
d2V

dX2

)−1
dV

dL1dX
> 0

where the sign follows since the Hessian is negative definite. Since

d2G
dL1dT

> 0

it is straightforward to see that dV
dL1dX

> 0, i.e., both terms in the vector are positive. Hence,
we must have that dX/dL1 > 0 as well since both terms in this vector are of the same sign.
Similar steps prove the result for ϑ.

A.13 Proposition 4

Below we derive the return on financial sector equity, debt, and the sovereign bond. A
complication created by the guarantee is that the number of outstanding sovereign bonds is
state contingent, since it depends on the realization of Ã1. Let NG(Ã1) denote the number
of new bonds issued towards the guarantee. This means there will also be a different price
for sovereign bonds contingent on the realization of Ã1. Hence, P0 will now depend on Ã1,
as will T0. This state-contingency is implicit below but will be omitted to avoid excessive
notation.

Assume that Ã1 ∼ U [Amin, Amax] and consider two types of shocks. The first is a shock
to the value of the risky asset held by the financial sector. This shock changes the mean of
Ã1 by shifting the support of Ã1 by an amount dA. Thus, Ã1 remains uniformly distributed
with the same dispersion, but a different mean. The second shock affects the sovereign
bond price by changing the expected growth rate of future output by dR. For R̃V uniformly
distributed this corresponds to a dR shift in its support.

From the model we have that the value of financial sector equity is given by

E =

∫ Amax

A1

(Ã1 + T0 − L1)p(Ã1)dÃ1

where p(Ã1) is the uniform probability density. Calculating the change in E induced by a
shock dA gives

dE

dA
= psolv +

T0(Amax)− T0(A1)

Amax − Amin
= psolv .

The second equality follows by the fact that there is no change in the guarantee once Ã1 > A1

because at this point the financial sector is solvent. Calculating the change in E due to a



shock dR gives

dE

dR
=
dP0(A1)

dR
NTpsolv

Note that since there is no change in the guarantee for Ã1 > A1, the quantity dP0/dR is the
same for any Ã1 > A1.

Next, we have that the value of financial sector debt is given by

D =

∫ Amax

A1

L1p(Ã1)dÃ1 +

∫ A1

Amin

(Ã1 + T0)p(Ã1)dÃ1 +

∫ A1

Amin

(L1 − Ã1 − T0)P0p(Ã1)dÃ1

The last term gives the value of the guarantee. Differentiating, simplifying, and combining
terms gives that the change in D induced by a shock dA is

dD

dA
= (1− psolv)(1− P0(Amin)) +

T0(A)− T0(Amin)

Amax − Amin
(1− P0(Amin))

The change in D due to a shock dR is given by

dD

dR
=

∫ A1

Amin

dP0

dR
NT (1− P0)p(Ã1)dÃ1 +

∫ A1

Amin

(L1 − Ã1 − T0)
dP0

dR
p(Ã1)dÃ1

The second term represents the change in value of the existing guarantee due to the change
in the sovereign bond price. The first term incorporates both the change in the value of the
existing transfer plus the change in the ‘amount’ of guarantee. That is, if dR is positive, the
transfer increases in value by dT0/dR, but this reduces the amount of guarantee given by
the government for each realization by that same amount. This is true for each realization
of Ã1 under the integral sign.

We now approximate these values by by ignoring the state-dependence of P0 on Ã1 in
the above expressions. This simplifies them to:

dE

dA
= psolv

dE

dR
≈ dP0

dR
NTpsolv

and

dD

dA
≈ (1− psolv)(1− P0)

dD

dR
≈ dP0

dR
NT (1− psolv)(1− P0) +

1

2

dP0

dR
(1− psolv)(A1 − Amin)



By inspection one can then see that the following relation holds for these approximations:

dD ≈ 1− psolv
psolv

(1− P0) dE +
1

2
(1− psolv)(A1 − Amin) dP0

Simple algebra and a substitution then give (12),

dD

D
≈ (1− psolv)(1− P0)

psolv

E

D

dE

E
+

(1− psolv)2(Amax − Amin)

2

P0

D

dP0

P0

.


