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A: Calculations for Section II 

Assume that all random variables are independent. For simplicity, we assume that we 

forecast the excess returns on bonds with  = 1, so that st = t + t and Et[rxt+1] = t. It trivially 

follows that the magnitude of regression coefficients will be larger for high default-risk firms 

than for low default-risk firms since 
, 1[ ]t t tE rx     and L < H. 

A.1 Time-series forecasting regressions of excess corporate bond returns 

The coefficient from a univariate forecasting regression of rxt+1 on quality (dH – dL) is  
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(A1)
 

The coefficient from a univariate forecasting regression of returns on total issuance (dH  + dL) is: 
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(A2)
 

We next consider a multivariate forecasting regression of rxt+1 on dH  – dL and dH + dL. We have 
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(A3) 

As 2

  grows large, or as 2 0  , aggregate debt issuance becomes less informative and relative 

issuance (i.e., issuer quality) becomes more informative about variation in δt. 

The coefficient in a univariate forecasting regression of rxt+1 on spreads st is given by 
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Next consider a multivariate regression of rxt+1 of dH  – dL and spreads st. We have 
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Where det[V] > 0 is the determinant of the variance-covariance matrix of dH  – dL and spreads st. 

As 2

  grows or as 2

  falls, credit spreads become less informative and quality becomes more 
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informative about δt. 

A.2 Deriving ISSt 

Suppose that firm-level debt issuance is given by 
, , ( / )t ti t i t id         . Under 

the simplifying assumption i and i,t are independent and normally distributed, we can show that 
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It is easy to check that ISSt is a decreasing function of t. Furthermore, as 2
  grows large 

relative to 
2

 , so that individual firm debt issuance decisions are a noisy signal of expected 

returns, ISSt becomes approximately linear in t. Under these conditions, ISSt is proportional to 

/xs
t tB    , the coefficient from a cross-sectional regression of di,t on i. 

 To derive (A6), first note that the coefficient from a cross-sectional regression of i on di,t 

is 
2 2 2 2[ ( / )] / [ ( / ) ]t t         . Therefore, since i and i,t are normally distributed we have: 
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Finally, equation (A6) follows from noting that
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where we have made using of the express ions for the means of left- and right- truncated normal 

random variables (see e.g., Greene (2003), p. 759). 

B: Data Definitions 

Where applicable, we provide the relevant Compustat data items from the Fundamentals 

Annual file. 

B.1 Compustat measures of issuance 

We follow Baker and Wurgler (2002) and define net equity issues as the change in book 
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equity minus the change in balance sheet retained earnings divided by lagged assets. Net debt 

issues in equation (8) are defined as the residual change in assets (the change in book assets 

minus the change in book equity), divided by lagged assets. Issuance in calendar year t is based 

on firm fiscal year-ends that fall in year t. 

Book equity is stockholder's equity, plus balance sheet deferred taxes (item TXDB) and 

investment tax credits (ITCB) each when available, minus preferred stock. For stockholder’s 

equity we use SEQ; if SEQ is missing we use the book value of common equity (CEQ) plus the 

book value of preferred stock (PSTK); finally, we use total assets (AT) minus total liabilities (LT) 

minus minority interest (MIB). For preferred stock we use redemption value (PSTKRV), 

liquidation value (PSTKL), and book value (PSTK) in that order. 

We obtain similar results if we use a more narrow definition of debt issuance which 

excludes non-bond and non-loan liabilities such as trade credit. This measure is defined as the 

change in debt in current liabilities (DLC) plus long-term debt (DLTT) divided by lagged assets. 

B.2 Characteristic definitions 

Firm characteristics that use CRSP market data are measured as of December t. Data 

from financial statements are from firm fiscal year ends that fall in t. For instance, EDF is 

computed using market data through December t and, in the case of firms with December fiscal 

year-ends, debt issuance is the normalized change in debt over the prior 12 months. Since we 

measure EDF at year-end, it reflects the change in debt over the prior year and captures any 

incremental risk that creditors are assuming. This is appropriate: if a transaction significantly 

raises leverage, we no longer want to say that the firm is low risk. This corresponds to the agency 

practice of rating new debt issues pro-forma for the amount of debt that the firm is adding. 

Expected Default Frequency (EDF): EDF is computed following the procedure in Bharath and 

Shumway (2008). For each firm-year, we calculate 

, ,,

2
, , , ,[ (ln[( ) / ] ( 0.5 )) / ],

i t i ti t i t i t i t i t V VEDF E F F          where Ei,t is the market value of the 

firm’s equity as of December, Fi,t is the face value of the firm’s debt computed as short-term debt 

(DLC) plus one-half of long-term debt (DLTT), i,t is the firm’s asset drift, 
,i tV  is the asset 
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volatility, and ( )   is the standard normal CDF. Following Bharath and Shumway (2008), we 

estimate i,t using the firm’s cumulative stock return over the prior 12 months, and estimate asset 

volatility using
, ( / ( )) ( / ( ))(0.05 0.25 )

it it itV Naive it it it E it it it EE E F F E F         where 
,i tE  is the 

annualized volatility of monthly stock returns over the prior year. As such, this construction is 

not an exact implementation of the Merton (1974) model, but Bharath and Shumway show that it 

is slightly better at forecasting defaults than the more complicated version which requires solving 

a system of nonlinear equations. 

Shumway Distress (SHUM): We use the bankruptcy hazard rate estimated by Shumway (2001), 

exp( ) / (1 exp( ))SHUM H H   where: 

013.303 1.982 ( / ) 3.593 .467 1.809 ( ) 5.791( / ) .MH SIZE R RNI A L A REL             

(NI/A) is net income over period-end assets, (L/A) is total liabilities over assets, RELSIZE is the 

log of a firm's market equity divided by the total capitalization of all NYSE and AMEX stocks, 

MR R  is firm's cumulative return over the prior 12-months minus the cumulative return on the 

value-weighted NYSE/AMEX index, and σ is volatility of residuals from trailing 12-month 

market-model regression. 

Interest Coverage: Annual EBITDA divided by annual interest expense (XINT). 

Leverage: Book debt (DLC plus DLTT) divided by book assets (AT). 

CAPM  and  and  are estimated from a trailing 24-month CAPM regression. We require 

that a firm has valid returns for at least 12 of the previous 24 months.  

Size (ME): Size is market equity (ME) at the end of December in year t. 

Age: Age is number of years since the first appearance of a firm (PERMCO) on CRSP. 

Dividends (Div): Div is a dummy variable equal to one for dividend payers (firms for which 

DVPSXF>0) and zero for non-payers. 

C: Time-series Robustness Checks 

C.1 Non-parametric HAC standard errors and small sample inference 
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Our results are robust to alternate choices for the Newey-West bandwidth parameter. In 

our baseline specifications we use a bandwidth of k years in the k-year return forecasting 

regressions. As shown by Andrews (1991), the bandwidth, m, must grow at a rate proportional to 

T
1/3

 in order for HAC standard errors to be consistent. If the scores, wt = xtet, follow an AR(1) 

(i.e.,
 
wt = wt-1 + t), Newey and West (1994) have shown that the MSE-minimizing bandwidth 

choice for the Bartlett Kernel is                       . We estimate AR(1) coefficients 

of no greater than 0.2, suggesting an optimal bandwidth of approximately 2 for T = 47. However, 

we obtain highly significant t-statistics for larger choices of m. We also obtain similar standard 

errors in our k-year forecasting regressions if we use Hansen-Hodrick (1980) standard errors 

which are robust to serial correlation at up to k-1 lags. 

It is well known that HAC estimators exhibit size distortions in finite samples. We 

address this concern in two ways. First, we compute p-values using the asymptotic theory from 

Kiefer and Vogelsang (2005) which has better finite sample properties than traditional 

asymptotic theory. Second, we compute bootstrapped p-values using a moving-blocks bootstrap. 

The usual asymptotic theory for HAC inference is derived under the assumption that 

    and      . Kiefer and Vogelsang proceed under the assumption that      for 

some        . That is, they assume that the bandwidth is a fixed fraction of the sample size. 

Letting B(r) denote a standard Brownian motion and  ̃              , with the Bartlett 

kernel they show that   
 
      √     where           ∫  ̃     

 

 
      ∫  ̃   

   

 

   ̃      and     
 
   as    , so that their “fixed b asymptotics” are equivalent to standard 

asymptotics in the limit. They simulate this distribution to obtain the relevant critical values.
1
 In 

Table A.1, we use asterisks to denote coefficients that are significant at the 10%, 5%, and 1% 

level using their critical values. 

Gonglaves and Vogelsang (2008) show that inference based on this “fixed b” approach is 

asymptotically equivalent to inference based on a moving-block bootstrap. However, for small 

sample sizes they argue that better approximations may be obtained via the block bootstrap with 

                                                           
1 The critical value for a 2-sided test with 95% confidence is                                          . 



7 
 

a suitably chosen block length. Thus, we also use a block bootstrap to estimate the empirical 

distribution of our t-statistics. For the b
th

 iteration of the bootstrap we create a pseudo time series 

using a moving-blocks resampling technique as described below. We estimate our regression and 

compute a HAC standard errors using the pseudo time series, saving the resulting t-statistic. 

Finally, we compute bootstrapped p-values by comparing the actual t-statistic to the distribution 

of bootstrapped t-statistics. 

To preserve the time-series dependence of the data, we create pseudo time series using 

the stationary block bootstrap of Politis and Romano (1994). Let 
1 1{ , , }S

t,k t t t kB = ,   z z z  be the 

block of length k starting from t. If t i T   for some 1i k  , we let 
t i t 
z z  where 

mod{ , }t t i T   . For instance, if T = 10 and k = 2, then 
10 2 10 1

{ }
S

,
B = ,z z , so we “wrap the data 

around the circle”. Letting { }
j

L be a sequence of iid draws from the geometric distribution with 

probability q and { }
j

I be a sequence of iid draws from the discrete uniform distribution on 

{1,2, , },T we create a pseudo time series by re-sampling blocks of random length as 

1 1 2 2, ,
{ , , }

I L I L
B B . This process is stopped once T observations have been selected. 

These results are presented in Table A.1. We use 10,000 replications for each regression 

and a parameter of q = 1/8, so that the average block length is 8 years. Similar results obtain for 

other choices of q. While the p-values derived from the bootstrap-t procedure are larger (i.e., less 

significant) than those based on asymptotic theory, we find that our 1- and 2-year forecasting 

results using ISS
EDF

 are significant at the 1% level or better. Thus, t-statistics as large as those 

shown in Table A.1 are highly unlikely to obtain by chance. 

C.2 Parametric HAC standard errors 

Following the suggestion of Cochrane (2008) and Bates (2010), we also compute 

parametric HAC standard errors under the assumption that regression residuals follow an 

ARMA(p,q) process. As noted by these authors, if true 1-period expected returns follow an 

AR(1) process (i.e., 1t t t      ) and realized returns are expected returns plus white noise 

(i.e., 1 1t t tr     ), then realized 1-period returns follow an ARMA(1,1) and realized k-period 
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cumulative returns follow an ARMA(1,k). Thus, if we are interested in testing the null that 

0 { 0, time-varying}tc
tkH    , we must take the serial correlation of residuals into account.

2
 

In other words, once we abandon the null of zero return predictability, we should expect serial 

correlation even in a non-overlapping return forecasting regression under the null that a given 

predictor has no forecasting power. Furthermore, since the variance of unexpected returns is 

likely to be large relative to the time-variation in expected returns, traditional non-parametric 

estimators or parametric VARHAC estimators which assume the residuals follow an AR(p) may 

fail to capture this dependence.  

Letting 1t t tw x e   denote the OLS scores, we fit an ARMA(p,q) model for the wt via 

maximum likelihood, t p t- p t p t- p1 t-1 1 t-1w w + + w + + + + .        Our ARMA-HAC 

variance estimator is 

   
   

2
2
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( , ) 2 2
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ˆ .

ˆ ˆ1

q ttHAC
ARMA p q
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V (b)=

x

  

 

  

  




         

(C1) 

The more familiar VARHAC estimator which assumes that the scores follow an ARMA(p) 

process obtains as a special case in which one assumes ˆ 0.k   To implement (A1) in our 

univariate specifications, we apply this procedure after first demeaning both the left- and right-

hand side variables. In order to side-step the problem of multivariate ARMA (“VARMA”) 

estimation, we implement the correction in multivariate specifications by exploiting the Frisch-

Waugh theorem (i.e., we regress returns and the predictor of interest on the controls and then 

apply the procedure to a univariate regression of orthogonalized returns on the orthogonalized 

predictor). As shown in Table A.1, this ARMA-HAC procedure yields t-statistics that are similar 

in magnitude to those based on Newey-West standard errors. 

C.3 Stambaugh bias 

We next consider the potential impact that the small-sample bias described in Stambaugh 

(1999), so called “Stambaugh bias”, may have on our results. Specifically, as noted by Baker, 

                                                           
2 Under the classical null,   

  {         ̅} the residuals are serially uncorrelated and this problem does not arise. 
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Wurgler, and Taliaferro (2006), one might worry that, since corporations tend to issue debt 

securities following high past excess returns, this might result in what Butler, Grullon, and 

Weston (2005) have called “aggregate-pseudo market timing”. Specifically, it is not that low 

quality issuance negatively forecasts excess credit returns, it is simply that lower quality firms 

issue following high past returns and, due to the existence of Stambaugh bias, we might 

mistakenly conclude that it has negative forecasting power in small samples. 

Formally, consider a univariate forecasting regression of the form 

1t t tr x u     , 
             

(C2) 

1t t tx x v     , 
             

(C3) 

where tu and tv  are jointly normal. Stambaugh (1999) shows that 

, , 2

2 2

1 3
ˆ[ ] [ ] ( )

u v u v

v v

E b E O T
T

  
  

 


      .

         
(C4) 

Therefore, if , 0,u v   b will exhibit a downward bias in small samples. In our univariate 

forecasting regressions, we use the techniques in Amihud and Hurvich (2004) to compute bias-

adjusted estimates of   and standard error for these bias-adjusted estimates. For multivariate 

regressions, we use the simulation procedure in Baker and Stein (2004) to compute bias-adjusted 

estimates and to compute p-values for our OLS estimates under the null that the coefficient is 0.
3
 

As shown in Table A1, Stambaugh (1999) bias is not a significant concern. Neither 

ISS
EDF

 nor HYS is highly persistent, having first order auto-correlations of roughly 0.55, 

significantly lower the scaled price ratios familiar from the equity premium forecasting literature. 

Interestingly, Table A.1 shows that, while Stambaugh bias is negative at a 1-year forecasting 

horizon as one would expect, the bias shrinks and often changes sign in our longer horizon 

forecasting regressions. As explained by Bates (2010), this is because while innovations in our 

                                                           
3 We perform two simulations for each regression, the first to generate a bias-adjusted estimate and the second to generate p-

values under the null of no predictability. We first simulate the multivariate analogs of (C2) and (C3) recursively, using the OLS 

coefficient estimates and drawing with replacement from the empirical distribution of errors, u and v. We throw out the first 100 

draws and draw T additional observations. We estimate (C2) on each simulated sample, giving us a set of coefficients b*. Our 

bias-adjusted estimate is         –    ̅̅ ̅ –    - i.e., we adjust the OLS estimate by subtracting off the bootstrap bias estimate: the 

mean of b* minus the OLS estimate. Next, we run separate simulation for each covariate, repeating the above steps but imposing 

the null that k = 0. This gives us a set of coefficients, bk
**, which we use to compute the probability of observing a coefficient as 

large bk when k = 0. 
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predictors are positively related to current realizations of unexpected returns, they are negatively 

related to innovations to future expected returns (i.e., with current “discount rate news”). When 

forecasting 1-year returns, only the positive correlation with unexpected returns comes into play, 

generating the expected downward bias. However, when forecasting longer-horizon returns the 

negative correlation with discount rate news generates an offsetting bias. 

 

D: Additional Empirical Results 

D.1 Additional tests of the null that expected returns are non-negative 

Figure A.1 shows the forecasting exercise discussed in Section V of the text. Each year 

we forecast k-period cumulative excess returns, compute the standard error of the fitted value, 

and count the number of years in which expected returns are negative with 95% confidence. 

Figure A.1 shows that ISS
EDF

 has forecast significantly negative 3-year cumulative excess returns 

in 14 years since 1962, and all but one of these years was actually followed by negative excess 

returns. ISS
EDF

 has also forecast significantly negative excess returns at a 1-year and 2-year 

horizon in 7 and 14 sample years, respectively.  

We next report tests of the hypothesis that 0EDF

ta b ISS    at various sample quantiles 

of ISS
EDF

. The tests are based on our estimates for 2-year cumulative excess high yield returns. 

We have t = –0.65 at the 50
th

 percentile, t = –2.52 at the 75
th

 percentile, t = –3.32 at the 90
th

 

percentile, and t = –4.46 at the sample maximum. In summary, our OLS estimates indicate the 

expected excess returns are significantly negative for values of ISS
EDF

 above the 70
th

 percentile 

of sample values. 

We next estimate nonlinear forecasting models which nest the null that expected excess 

returns are always non-negative, allowing us to further assess the statistical significance of the 

above findings. While a variety of theories predict that expected excess returns should be non-

negative, they are silent on the exact function form so we experiment with a few different 

possibilities. For starters, we assume that  2[ | ] max ,EDF

t

HY EDF
ttE rx ISS a b ISS c    . We can 

estimate this model via nonlinear least squares and test the hypothesis that c = 0. Since nonlinear 
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least squares is a GMM estimator, this t-test (a Wald test) is asymptotically equivalent to a 

Lagrange multiplier test based on the restricted estimator that imposes c = 0, or a likelihood ratio 

test that compares the criterion functions evaluated at the constrained and unconstrained 

estimates (see Newey and McFadden 1994). When we estimate this specification, we obtain c = 

–6.8 and t = –3.71 using Newey-West standard errors. Alternately, we can assume that 

2[ | ] 1{ / } 1{ / }EDF EDF EDF EDF

t t t t

HY EDF
ttE rx ISS a b ISS ISS a b c ISS ISS a b            , so the 

regression function is piecewise linear with a kink at the point where 0EDF

ta b ISS   . 

Estimating this specification, we obtain b = –19.7 (t = –3.54) and c = –13.8 (t = –2.66). In 

summary, the data reject the hypothesis that expected excess returns are always non-negative. 

D.2 Unpacking issuer quality 

In this section we decompose the forecasting power of issuer quality. We first note that 

fluctuations in issuer quality can be due to either between- or within-firm variation in credit 

quality. The between-firm effect is obvious: during bad times, low quality firms may be unable to 

borrow or may find credit to be prohibitively expensive. The within-firm effect is more subtle: 

during booms individual firms may add enough leverage to diminish their own credit quality. For 

example, rapid debt-financed growth might significantly raise a firm’s probability of default. 

Since EDFi,t is impacted by leverage-increasing transactions during year t, ISS
EDF

 

combines between- and within-firm effects. We can recalculate ISS
EDF

 using pre-issuance EDF 

(i.e., replacing EDFi,t with EDFi,t-1 in equation (8)) to isolate the between-firm effect. The 

coefficient on ISS
Pre-EDF

 in a univariate forecasting regression of 2-year high yield returns is  

b = -11.419 (t = -3.25) versus our baseline result of b = -15.254 (t = -5.29). Although the 

coefficients are similar, the R
2
 drops from 26% to 15%. Thus, both between- and within-firm 

variation contribute to our findings. Going further, since EDFi,t = EDFi,t-1 + EDFi,t, we can 

decompose ISS
Post-EDF

 = ISS
Pre-EDF

 + ISS
EDF

 and we find that both terms have independent 

forecasting power: the coefficients in a bivariate forecasting regression are  

bPre-EDF= -15.240 (t = -5.17) and bEDF = -15.361 (t = -3.34). This suggests that our results are 

partially driven by periods in which the creditworthiness of low quality borrowers is further 
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eroded by rising debt burdens. 

In a related exercise, we ask whether variation in issuer quality is driven by industry-level 

debt issuance waves or within-industry variation in issuer quality. To do so, we first introduce a 

regression-based approach to measure the quality of issuance. Each year we run a cross-sectional 

regression of debt issuance decile on EDF decile, , , ,i t i t i tt td A B EDF v    . The slope coefficient 

Bt is high in years when high EDF firms are issuing relatively more debt than low EDF firms. 

We then use the time series of estimated coefficients to forecast future high yield returns. We 

would expect this procedure to yield nearly identical results to ISS
EDF

 and this is what we find: 

we obtain b = -0.994 (t = -5.26) in univariate and b = -0.886 (t = -4.58) in multivariate 

forecasting regressions for 2-year excess returns. This is hardly surprising since the resulting Bt 

series is 0.99 correlated with ISS
EDF

. 

It is simple to explore the impact of industry-level issuance waves using this 

methodology. Specifically, each year we estimate , , ( ) , ,i t t IND i t i t i t
d A B EDF v    , including a full 

set of industry effects, so Bt is identified using only within-industry variation in debt issuance 

and EDF. In the second stage, we obtain we obtain b = -1.044 (t = -4.18) in univariate and  

b = -0.941 (t = -4.20) in multivariate forecasting regressions. Thus, the results remain quite 

strong if we restrict attention to within-industry variation, suggesting that our results are not 

primarily driven by industry-level debt issuance waves. 

D.3 Forecasting equity market and equity factor returns 

While ISS
EDF

 is a reliable forecaster of excess credit returns, the Table A.2 shows that 

this variable has little ability to forecast stock market returns. However, we do find that ISS
EDF

 

has some ability to negatively forecast the Fama and French (1993) HML and SMB factors. 

Nonetheless, as previously shown in Table 5, the coefficient and significance of ISS
EDF

 when 

forecasting high yield excess returns are largely unchanged even if we control for 

contemporaneous realizations of the Fama and French (1993) factors or the term premium. Table 

A.2 also shows that ISS
EDF

 is a reliable negative forecaster of the returns on distressed stocks 
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(firms with high EDFs) relative to those on non-distressed stocks. Thus, while our results suggest 

that there is an important degree of segmentation between equity and credit markets, the stocks 

of distressed firms are, perhaps unsurprisingly, sensitive to credit market factors.
4
 

D.4 Subsample forecasting results for log(HYS) 

Tables A.3 and A.4 present univariate and multivariate subsample forecasting results for 

log(HYS). Specifically, the results are shown separately for 1926-1943, 1944-1982, 1983-2007, 

1944-2007, and the full 1926-2007 sample. The results are generally quite strong for the 1944-

1982 and 1983-2007 subsamples as well as the combine 1944-2007 post-war period. The single 

exception is the 1926-1943 subsample which, as noted in the main text, is heavily influenced by 

the outlying 1933 observation. However, the results remain significant even when we splice all 

four series together and examine the full 1926-2008 sample. 

D.5 Quantity and quality of corporate bond offerings 

Here we show that the findings that (i) issuer quality contains incremental information 

over and above the total quantity of issuance and (ii) that the quantity of low quality issuance is 

particularly useful for forecasting returns emerge using our corporate bond issuance data from 

1944-2008. These results complement the findings in Table 4 where we used EDF to measure 

firm credit quality. Here we measure credit quality using Moody’s credit ratings, adopting the 

traditional investment grade versus speculative grade classification. 

Table A.5 shows these results using the growth in issuance. Specifically, we compute the 

growth in total issuance   
           

          
     

          as well as the growth in high yield 

and investment grade issuance,   
          

         
     

       and   
          

         
     

   

    5 We run forecasting horseraces between (i) log(HYS) and   
    and (ii)   

   and   
  . These 

results are shown separately for 1926-1943, 1944-1982, 1983-2007, 1944-2007, and the full 

                                                           
4 Another exercise suggesting equity and credit market segmentation compares the quality of high and low equity issuers using 

EDF. Each year we compute measures as in equation (8), but we now compare the credit quality of high and low net equity 

issuers. These measures of equity issuer credit quality are only modestly correlated with ISSEDF and HYS. Equity issuer quality 

does not forecast excess credit returns. 
5 The level of nominal issuance is deflated using the CPI deflator so these represent real growth rates. Baker, Wurgler, and 

Taliaferro (2006) find that a similar variable based on equity issues forecasts market-wide stock returns. 
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1926-2007 sample. Panel A shows forecasting regressions without controls and Panel B adds our 

additional time-series controls. For instance, column (5) shows a forecasting horserace between 

log(HYS) and   
    for the 1944-1982 sample. We find that log(HYS) remains a strong forecaster 

of excess bond returns even controlling for the aggregate growth in total bond issuance. The 

regressions in columns (6) through (8) suggest that   
   is a more reliable forecaster of excess 

corporate bond returns than   
  . Columns (9) through (12) repeat this analysis for the 1983-2007 

sample, the results for 1944-2007 are in columns (13) to (16), and the full sample results are in 

columns (17) to (20) The same broad patterns emerge the later 1983-2007 sample as well as the 

1944-2007 and 1926-2007 samples. 

Table A.6 presents a parallel analysis using measures of bond issuance scaled by GDP. 

For instance, column (5) shows that log(HYS) remains significant in the 1944-1982 sample even 

if we control for the aggregate level of bond issues       
         . The results in columns (6), 

(7), and (8) suggest that       
         is generally a more reliable forecaster of bond returns 

than       
        . Similar results obtain for 1944-1982, 1983-2007, and 1944-2007. However, 

when we include the early subsample which contains 1933, this generally strengthens the 

forecasting power of       
        . In summary, (i) the quality of bond issuance contains 

incremental information over and over aggregate issuance quantities and (ii) much of the 

forecasting power of aggregate issuance comes from issuance by low quality firms. 

D.6 The determinants of the high yield share 

Table A.7 analyses the determinant of HYS as well as 1-year and 2-year changes in HYS 

over the 1944-2008 period. Thus, the analysis parallels Table 8 in the text which analyzed the 

determinants of ISS
EDF

. Specifically, Table A.7 presents regressions of the form: 

, , ,( ) .HY

t

G G G HY

t S t L t S t t trxHYS a b y c y y d e DEF u            (D1)
 

We also run this regression in changes rather than levels: 

, , ,( ) ,HY

t k t

G G G HY

k t k S t k L t S t k t k trxHYS a b y c y y d e DEF u
 

             (D2) 

where Δk denotes the k-year difference. We focus on the 1944-2008 subsample to minimize the 

effect of the outlying 1933 observation for HYS: including 1933 in the subsequent analysis 
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meaningfully weakens the results. 

 Unfortunately, the levels regressions shown in columns (1) through (5) are less 

informative due to the structural break in HYS in the early 1980s. However, when we estimate 

these regressions in first or second differences the results for HYS generally parallel those from 

Table 8 for ISS
EDF

. Specifically, Table A.6 indicates that HYS tends to rise when (i) the short-

term interest rates or the term spread decline or (ii) when high yield defaults fall or the excess 

returns on low-grade bonds are high. 

 

E: An Extrapolative Model of Credit Cycles 

Here we show that a simple model with extrapolative beliefs can match several of the 

stylized facts documented in the paper, namely, that (1) excess credit returns are mean-reverting 

and expected returns can be negative, (2) issuer quality predicts returns even after controlling for 

credit spreads, and (3) past default rates lead to changes in issuer quality. Our objective is to 

provide a simple account of the credit cycle in which extrapolation plays a role. 

The model is based on the idea that investors are extrapolative rather than forward 

looking, and form their expectations of future defaults by looking at recent default patterns. As 

such, the idea is inspired by the accounts of Hickman (1958) and Grant (1992, 2008) who 

emphasize the “perils of tranquility” in which investors come to believe that good times will 

persist indefinitely during booms. To formalize these intuitions, we borrow from Barberis, 

Shleifer, and Vishny (1998, hereafter “BSV”) who model equity market investors who are 

capable of either under-reacting to or over-extrapolating patterns in firm earnings. We adapt 

BSV’s modeling approach to explain aggregate credit market dynamics. 

In the model, investors form their expectations of future defaults by extrapolating recent 

default patterns. Specifically, the economy evolves according to a simple Markov process, 

switching between good times in which few firms default and bad times in which a higher 

fraction of firms default. However, investors think that the economy either evolves according to 

a more or less persistent process. After a series of consecutive good states, investors begin to 

believe that the process governing aggregate defaults is more persistent than it truly is, causing 
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them to under-estimate future default probabilities.
6
 These expectations will be revised after a 

period of high corporate defaults, resulting in a sharp decline in bond prices. And if these bad 

times persist for long enough, investors will begin to over-estimate future default probabilities. 

As in BSV, the model generates short-term return continuation and longer-term return reversals 

in corporate bond returns. 

We then introduce a set of issuing firms into the model, allowing us to link the quality of 

corporate debt issuance to future bond returns. The mechanism is as follows: low quality firms 

respond to narrow spreads by issuing more debt during booms, raising their leverage and default 

probabilities. Investors understand that leverage impacts default probabilities. However, 

investors’ growing belief that good times are likely to persist leads them to underestimate the 

impact of rising leverage on long-run default probabilities. Following a string of low aggregate 

defaults, investors become willing to lend to more highly levered firms for a given spread. 

Because spreads mean different things at different times, both spreads and issuer quality are 

useful for forecasting returns in the model. Specifically, controlling for the level of spreads, a 

lower level of issuer quality is associated with greater over-optimism about future default rates 

and, hence, lower expected returns. We provide a numerical illustration of the model in which 

investor biases are modest, but where there is meaningful mispricing nonetheless. 

E.1 Defaultable perpetuities and aggregate default dynamics 

There is single class of risk neutral investors with discount rate r who purchase 

defaultable perpetuities. Perpetuities pay a coupon of c each period prior to default and recover 

(1 )  upon default where (0,1]  is the loss-given-default. As a simple benchmark, first 

suppose the default probability is constant over time and equal to . In this case, the price of the 

perpetuity must be the same at any date prior to default and satisfies the present value relation 

[(1 )( ) (1 )] / (1 ).P = c+P + r      (E1) 

Solving (E1) for P, we obtain 

                                                           
6 As noted by, Caballero and Krishnamurthy (2008) and Gennaioli, Shleifer, and Vishny (2010), it is plausible to think that this 

tendency might be most pronounced for newer and less familiar credit market instruments. Thus, it is not surprising that many 

credit market booms have featured a different set of instruments than prior booms. 
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 1 1 1

0
(1 ) (1 ) (1 ) [(1 ) (1 )] ( ) [(1 ) (1 )],

j

j
P = r r c+ r c+     

  


        

       
(E2) 

which is increasing in c and decreasing in π,  , and r.
 7

 

We introduce aggregate default dynamics in a simple way. We suppose that there are two 

possible macro states St: a high-default state H, and low-default state L. If the economy is in the 

high-default state at time t, the default probability is t H  ; otherwise, t L   if 
t

S L , 

where L H  . The economy switches between the H and L default states according to a 

Markov chain with transition matrix T0, where 

0

1 1

1
.

1

t

t

t tS H S L

S H

S L

 

 

  





 
  

 
T

 

(E3) 

We assume that 1    and   , implying that the economy is in the low default state most 

of the time (i.e., Pr( ) / ( ) 1/ 2tS L       ). 

E.2 Rational prices 

First consider how rational prices would evolve in this setting. (For simplicity, we carry 

out the analysis in terms of prices assuming a fixed coupon of c. Of course, prices can be mapped 

to spreads, s, using the convention that s = c/P – r.) Rational prices in the two states satisfy: 

 1(1 ) (1 )[(1 )( ) (1 )] [(1 )( ) (1 )]H H H H L L LP = r c+P + c+P +           
 

(E4) 

 1(1 ) [(1 )( ) (1 )] (1 )[(1 )( ) (1 )] .L H H H L L LP = r c+P + c+P +             

The solution to (E4) is given by 

   
1

2 0 0(1 ) diag( ) ( ) 1 .r c


      0 0 0 0p I T 1- π T 1- π π  (E5) 

where  H LP P 0p ,  H L  0π , and I2 is the 2 2  identity matrix. PH and PL are the 

only two possible prices, and the price of non-defaulted claims only changes when the economy 

transitions between states. Since required returns are constant, differences between PH and PL 

arise solely from time-variation in conditional default probabilities and the expected timing of 

                                                           
7 Technically, we assume               (i.e., investors lose money when the firm defaults) to ensure that        . 
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defaults.
8
 The set-up can be seen as a simplified version of models such as Duffie and Singleton 

(1999) which emphasize time-varying default arrival rates.
9
 

E.3 Investor beliefs and equilibrium prices 

 While the true macro state is generated by (E3), investors incorrectly believe that the 

macro state is either generated by a less persistent regime (Regime 1) or a more persistent regime 

(Regime 2). In Regime 1, the perceived transition matrix for the macro state is T1; in Regime 2, 

is it T2. We assume 

1 2

1 1 1 1

1 (1 ) (1 ) 1 (1 ) (1 )
, ,

(1 ) 1 (1 ) (1 ) 1 (1 )

t t

t t

t t t tS H S L S H S L

S H S H

S L S L

       

       

      

 

 

        
    

        
T T

      

(E6) 

where [0,1)  , and (1 )( ) 1     . Higher values of   indicate a greater scope for biased 

beliefs about transition dynamics. Specifically, in Regime 1, investors think the macro state is 

less persistent that it truly is; in Regime 2, investors think the state is more persistent than it 

really is. Finally, investors believe that the economy switches between Regime 1 and Regime 2 

according to the following Markov process 

1 1

2 2

1 11 2

1

2

1
,

1

t

t

t tR R

R

R

 

 

  





 
  

 
Λ

 

(E7) 

where 1 2 1    and the regime is assumed to be independent of the macro state. 

Investors observe the macro state St and form conjectures about the current regime Rt. 

Their estimate of the probability of being in Regime 1, denoted by qt ≡ Pr[Rt = 1|S
t
], is based on 

the history of macro states observed up to and including t. While investors entertain two 

incorrect regimes that bracket reality, they update their belief about the current regime in a 

Bayesian fashion. Thus, the law of motion for qt is 

1 2 1 1

1

1 2 1 1 1 2 1 1

[(1- ) + (1- )] Pr[ | , 1]
.

[(1- ) + (1- )] Pr[ | , 1] [ +(1- )(1- )] Pr[ | , 2]

t t t t t

t

t t t t t t t t t t

q q S S R
q

q q S S R q q S S R

 

   

 



   

 


    
           

(E8) 

                                                           
8 We have       so long as   is not so small that investors are made better off by default. For instance, if    , we have 

                                        
9 For instance, following Duffie and Singleton (1999), these models often decompose credit spreads as                 where 

     is the risk-neutral default arrival rate at time t,      is the risk-neutral loss given default, and   is an illiquidity premium. 
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The estimated probability of being in the less persistent Regime 1, q, rises when St+1 differs from 

St and falls when St+1 is the same as St. 

As discussed by BSV, this set-up can be seen as reflecting two psychological findings 

about biases in human inference. First, there is evidence of “conservatism” in which subjects 

underweight new evidence that conflicts with existing beliefs. Second, subjects often use a 

“representativeness” heuristic and act as if they believe in a “law of small numbers” leading to 

over-extrapolation at intermediate horizons. Gennaioli and Shleifer (2010) present a model in 

which agents have limited recall and represent hypotheses using a subset of representative 

scenarios. As explored in Gennaioli, Shleifer, and Vishny (2010), variation in the set of scenarios 

that come to mind can lead to mispricing as agents alternately under- and over-estimate the 

probability of rare bad states. However, one does not need to be swayed by the psychology 

literature to find our assumptions reasonable. An equally plausible institutional interpretation is 

that intermediaries use backwards-looking risk management systems such as Value-at-Risk when 

extending credit over the cycle, leading to under-reaction at short horizons and over-reaction at 

longer horizons. 

As shown in Section E.6 below, prices take the form 

1( , ) ( ) ,tS

t t tP S q  q p  (E9) 

where  0 1 0 ,H

t t tq q  q  0 0 1 ,L

t t tq q  q
1 ,1 ,1 ,2 ,2H L H LP P P P    p  is  

   
1

1 4 1 1 1(1 ) diag( ) ( ) 1 .r c


      p I T 1- π T 1- π π   (E10) 

In (E10),  1 H L H L    π , I4 is the 4 4  identity matrix, and T is the 4 4  transition 

matrix for the combined state given by 

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

(1 )(1 (1 )) (1 ) (1 ) (1 (1 )) (1 )

(1 ) (1 ) (1 )(1 (1 )) (1 ) (1 (1 ))

(1 (1 )) (1 ) (1 )(1 (1 )) (1 ) (1 )

(1 ) (1 (1 )) (1 ) (1 ) (1 )(1 (1 ))

          

           

           

           

       

       


       

       








T .








 (E11) 

For instance, 
1 1 1

Pr( , 2 | , 1) (1 (1 ))
t t t t

S H R S H R   
 
       . 

For example, in the high default state, the price is  
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  ,1 ,2
,   (1 ) ,

t t H t H
P H q q P q P    (E12) 

a weighted average of high-default probability prices in Regimes 1 and 2. Under conditions 

given in Section E.6, 
,2 ,1 ,1 ,2H H L L

P P P P    so we can interpret qt as a conditional measure of 

investor sentiment. Specifically, in the low default state, a low value of qt means that investors 

are overly optimistic that good times will last. Conversely, in the high default state, a high value 

of qt means that investors are overly optimistic that good times will return. 

While investors’ required returns are constant and given by r, expected returns as 

perceived by an unbiased outside observer are not constant. Prices under-react to an initial 

transition from the low-default to the high-default state, and vice versa, but over-react to 

sustained spells in the low or high state.
10

 For instance, a sustained spell in the low default state 

causes investors to underestimate the long-run probability of default and over-value risky debt. 

Conversely, sustained spells in the high state lead to over-estimation of long-run default 

probabilities and under-valuation of debt. Thus, excess bond returns exhibit short-term 

continuation and longer-term reversals. 

E.4 Adding a corporate sector 

To understand why issuer quality may be informative, we could now just invoke the 

reduced form model developed in Section 2.2 of the paper. Specifically, the debt financing costs 

faced by high default risk firms would be more exposed to movements in conditional investor 

sentiment, qt, so issuer quality would be useful for forecasting bond returns. However, to 

simplify the analysis we just assume that issuer quality follows a simple law of motion. This 

analysis also shows that issuer quality might have significant forecasting power even if corporate 

managers are not particularly “smart” and issue according to a simple rule-of-thumb. 

Each period t, we assume a new cohort of bonds is issued with quality Dt. D is an 

unconditional scaling of default probabilities: doubling D doubles the probability of default in 

both the high and low states (i.e. for an issuer with quality D, default probabilities in the high and 

low state are HD   and LD  ). Thus, it is convenient to think of D as reflecting the leverage of 

                                                           
10 To deliver under-reaction we need to assume      , so the perceived probability of being in Regime 1 exceeds ½. 
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the average issuing firm in each cohort. 

We assume issuer quality evolves according to 

  min max 1 1
max ,min , ( ) ,

t t t
D D D D b P P

 
   

 
(E13) 

where b > 0, 0 < Dmin < Dmax, and P  is the long-run average price. Equation (E13) captures the 

idea that low quality firms borrow more when spreads are tight, raising their leverage and future 

default probabilities. Because (E13) can be seen as a description of leverage for a representative 

low quality firm, it best captures the “within-firm” quality dynamics discussed in Appendix D. 

However, we can interpret (E13) as description the quality of the average issuing firm, in which 

case (E13) would reflect both within- and between-firm effects. Although tighter spreads are 

assumed to lead to lower quality issuance, nothing in (E13) requires firm manager to be 

particularly “smart.” For instance, equation (E13) could arise through a simple cost of capital 

channel in which tighter spreads induce low quality firms to borrow and invest more. 

The price of each new cohort of bonds is given by 

    
1

4 1 1 1
( )( , , ) (1 ) diag( ) ( ) 1 .t

S

tt t t t t t
P S q D r D D c D


    q I T 1- π T 1- π π

 
(E14) 

Investors understand that higher leverage leads to higher default probabilities and factor this into 

their valuations. But spreads can either rise or fall during a spell in the low default state: spreads 

fall if investors’ growing belief in a low-default paradigm outweighs the rise in firm leverage. 

The realized return on a large portfolio of bonds with quality Dt from t to t+1 is given by 

 
1 11 1 1[(1 )( ( , , )) (1 )] / ( , , ) 1.

t tt t S t t t t S t t tr D c P S q D D P S q D 
           (E15) 

We are interested in how expected returns, 
1

[ | , , ]
t t t t

E r S P D


, vary according to the issuer quality, 

Dt. Because Dt varies over time, knowledge of Pt and St does not fully reveal conditional investor 

sentiment, qt, the state variable that drives expected returns. Practically speaking, this means that 

issuer quality contains additional information about future returns that is not contained in credit 

spreads. For instance, if the economy is in the low default state, prices can either be high because 

leverage is low and future default probabilities are low, or because investors are overly 

optimistic about future defaults (i.e., qt is low). More formally, it can be shown that Dt is 

negatively related to future returns even after controlling for the level or prices or spreads, so that 
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1
[ | , , ] / 0

t t t t t
E r S P D D


    and 

1
[ | , , ] / 0.

t t t t t
E r S P D P


    Intuitively, credit spreads under-react to 

the deterioration in issuer quality (i.e. increase in leverage) during credit booms, so issuer quality 

itself becomes useful for forecasting returns. 

E.5 Numerical example 

We simulate the model using the issuer quality rule in (E13) and generate returns using 

(E15). Consistent with the historical behavior of high yield default rates, we assume 1%L  , 

10%H  , 5%  , and 20%  , so 80% of the time is spent in the low-default state. We assume 

r = 0%, c = 1.25%,   = 50%, and b = 0.2: leverage is increasing in past prices and remains 

bounded between Dmin = 0.5 and Dmax = 2. Finally, we assume  = 75%, 1 = 0.5%, and 2 = 1%. 

Investors believe that regime changes are rare; if they believe that regime changes are frequent, 

qt does not fluctuate much over time. While the differences between Regime 1 and 2 are non-

trivial, investor biases are still fairly modest in the simulation. For instance, the perceived 

probability of transitioning from the L to H state ranges from 1.25% to 8.75%, so biases never 

exceeds 3.75%. Under these assumptions, PH,1 = 93.52%, PL,1 = 98.96%, PH,2 = 80.50%, and 

PL,2 = 113.83% when D = 1. Table A.8 lists expected returns for different combinations of 

lagged prices and lagged issuer quality separately in both the low-default and high-default macro 

states. The table shows that expected one-period returns are monotonically decreasing in both 

lagged prices and issuer quality. Although investors in the example under-estimate low 

probability events in good times, the mistakes they make are not unreasonable. Modest biases in 

assessing low probability events can generate meaningful mispricing which varies over time and 

can even generate negative conditional expected returns.  

Table A.8 also shows that the variation in conditional expected returns is largest in the 

high default state. Expected returns are lowest when the economy first enters the high default 

state at the end of a long debt boom (i.e., after a spell of low default realizations). At these times, 

leverage is elevated due to the long boom and prices can still be high. Investors are often overly-

optimistic that the low default state will return, leading them to under-react to the initial bad 
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news.
11

 These expectations will often be disappointed, resulting in large negative returns. 

Conversely, the highest expected returns occur following a long spell of high default realizations, 

which is marked by declining issuer quality and depressed prices. 

E.6 Model proofs 

Suppose the investor knows the regime Rt and let PS,R denote the price in state (S,R). For 

instance, PH,1, the price in the high default state in the less persistent regime 1, satisfies 
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1

1 ,1 1 ,1

1

1 ,2 1 ,2

(1 ) (1 )(1 (1 ))[(1 )( ) (1 )] (1 ) (1 )[(1 )( ) (1 )]

(1 ) (1 (1 ))[(1 )( ) (1 )] (1 )[(1 )( ) (1 )]
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Letting 1 ,1 ,1 ,2 ,2H L H L
P P P P    p  and  1 H L H L

    π , the system can be written as 

  1

1 1 1 1
(1 ) [diag( )(c ) 1 ],r


    p T 1- π 1 p π       (E16)

 

where T is given by (E11). Solving we have 

     
1

1 1 1 14(1 ) diag( ) ( ) 1 ,r c


    p I T 1- π T 1- π π      (E17)
 

where I4 is a 4 4  identity matrix. It follows that 

1
( , ) ( ) ,tS

t t t
P S q  q p              (E18) 

where  0 1 0
H

t t t
q q  q  and  0 0 1

L

t t t
q q  q  – e.g., if St = H, the price is P(H,qt) = 

qtPH,1 + (1-qt)PH,2, a weighted average of high-default probability prices in regimes 1 and 2.  

Letting t   denote the random default time and noting that [( , ) | ] ( )t
St j

t j t j t
E S R

 
S q T , an 

alternate derivation of prices follows from 
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  (E19) 

 So long as (i) L H   (ii) 1 2 1   , (iii) [0,1)  , (iv) and (1 )( ) 1     , it is 

tedious but straightforward to show that PH,2 < PH,1 < PL,1 < PL,2, implying that ( , ) / 0
t t

P H q q    

and ( , ) / 0.
t t

P L q q    Thus, qt is a measure of conditional investor sentiment, noting that in the L 

                                                           
11 At the end of a long spell of low default realizations qt will be low as investors come to believe that the macro state is quite 

persistent. As a result, qt will jump following a unexpected transition to the H state and, believing that they are now in Regime 1, 

investors will overestimate the probability of a return to good times – i.e. they overestimate the likelihood of a “soft landing.” 
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state a low value of qt is associated with positive sentiment while in the H state a high value of qt 

is associated with positive sentiment. 

 When we allow for time-varying leverage, prices take the form 

    
1

1 1 1
( ) ( )( , ) (1 ) diag( ) ( ) 1 .( )t t

S S

t tt t t t ttP S q r D D c DD


     1q p q I T 1- π T 1- π π
          

(E20) 

Using the rules for vector and matrix differentiation (see e.g. Lax 1997), we have 
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so long as   is not too small (e.g. when     the inequality is immediate since all elements of 

 
1

1
(1 ) diag( )r



 I T 1- π  are non-negative). Put simply, prices are decreasing in leverage (or 

default probabilities) holding fixed the coupon and loss-given-default. 

 Now suppose tS L , so that 
,1 ,2 ( )  (1 ) ( ).t t L t t L tP q P D q P D    Consider the experiment 

of varying Pt while holding fixed Dt and vice versa. Since 
,1 ,2( ) ( ) 0L t L tP D P D  , it follows that 
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Since low values of qt are associated with more favorable sentiment when tS L , it follows that 

expected returns are decreasing in both Pt and Dt. Next suppose that tS H , so 

,1 ,2 ( )  (1 ) ( ).t t H t t H tP q P D q P D    Since 
,1 ,2( ) ( ) 0,H t H tP D P D  we have 
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P D P D

P


  



,1 ,2 

,1 ,2

 ( ) /  (1 )( ( ) / )
0.

( ) ( )

( )
t H t t t H t tt

t H t H t

q P D D q P D Dq

D P D P D

     
  

 
 

Since high values of qt are associated with more favorable sentiment when tS H , it follows 

that expected returns are decreasing in both Pt and Dt. Thus, we have shown that expected 

returns are decreasing in both Pt and Dt in both default states. 
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Panel A: 1-year expected excess returns Panel B: 2-year expected excess returns 

  
Panel C: 3-year expected excess returns 

 

Figure A.1:Univariate Forecasts of High Yield Excess Returns. These figures plot ISSEDF (horizontal axis) against cumulative 1-, 2- and 3-year future high yield excess returns 

(vertical axis). The darker solid line is the univariate forecast corresponding to regressions in Table 2.2 shown with 95% confidence bands. In each panel, the caption summarizes 

the number of years with negative predicted excess returns, and the number of years where the prediction is significantly negative at the 95% level. Years in which the prediction is 

significantly negative are labeled. Standard errors are based on Newey-West (1987) standard errors. 
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Table A.1 

Time-Series Robustness Checks 

Time-series forecasting regressions of log excess returns on speculative-grade bonds on debt issuer quality ISSEDF, including 

controls for the short-rate, the term spread, the credit spread, and lagged excess returns 

, , , , ,
( ) ( ) .HY G G G BBB G HY

t k L t S t S t L t L t t t k

EDF

k trx a b ISS c y y d y e y y f rx u
 
               

t-statistics based on Newey-West (1987) are shown in brackets. *, **, *** denotes significance at the 10%, 5%, and 1% level, 

respectively, based on the fixed-b asymptotics developed by Kiefer and Vogelsang (2005). We next report bootstrapped p-values 

using the stationary moving-blocks bootstrap of Politis and Romano (1994) using a average block length of 8 and 10,000 

bootstrap replications. We also report t-statistics based on parametric standard errors which assume that the scores for k-period 

returns follow an either ARMA(1,k) and ARMA(2,k) process, respectively. We then study the impact of Stambaugh (1999) bias 

on our baseline results. The corrections that we consider require us to drop the final observation for 2008, so we first report the 

OLS coefficient omitting the final sample year. We next report a bootstrap bias-adjusted estimate and a bootstrap p-value using 

the approach of Baker and Stein (2004) and Baker, Taliaferro, and Wurgler (2006). For the univariate specifications, we also 

report the bias-adjusted estimates and associated standard error using the methods in Amihud and Hurvich (2004). Last, we 

decompose the bias as                      following Amhiud and Hurvich (2004). 

 1-yr returns: 
1

HY

t
rx


 2-yr returns:

 2

HY

t
rx


  

         

 

[b] 

-9.534*** -7.636*** -8.617*** -6.282** -15.254*** -11.022*** -18.052*** -13.890*** 
[t] Newey-West [-3.97] [-3.45] [-2.97] [-2.40] [-5.29] [-3.45] [-4.60] [-4.54] 

Bootstrapped p-value 0.0005 0.000 0.001 0.003 0.001 0.017 0.006 0.001 

[t] ARMA(1,k) [-2.95] [-4.02] [-2.29] [-3.05] [-5.1] [-3.92] [-4.25] [-5.73] 

[t] ARMA(2,k) [-5.08] [-3.76] [-3.66] [-2.76] [-4.93] [-3.69] [-4.63] [-6.34] 

Controls None Rates Credit All None Rates Credit All 

Stambaugh Bias         

[bOLS] (dropping 2008) -8.842 -6.868 -9.584 -8.031 -15.392 -10.939 -18.172 -14.198 

[b] bootstrap bias-adjusted -8.783 -6.608 -8.808 -6.780 -15.815 -11.317 -17.651 -13.307 

Bootstrap p-value 0.006 0.065 0.017 0.063 0.000 0.019 0.001 0.005 

[b] AH (2004) bias-adjusted -8.746    -15.816    

[t] AH (2004) bias-adjusted [-2.70]    [-4.02]    

BIAS(bOLS) AH (2004) -0.096    0.424    

BIAS (OLS) -0.061    -0.062    

 1.581    -6.782    
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Table A.2 

Forecasting Equity Market and Equity Factor Returns 

Annual time-series forecasting regressions of log excess equity returns on issuer quality ISSEDF 

, , , , ,
( ) ( ) ,

E EDF G G G BBB G E

t k t L t S t S t L t L t t t k
rx a b ISS c y y d y e y y f rx u

 
               

where rxE is cumulative excess return on an equity portfolio over the next k-years. Control variables include the term spread, 

short-rate, credit spread, and lagged values of the dependent variable. We report only the coefficient on ISSEDF and its associated 

t-statistic. Excess returns are alternately MKTRF, SMB, and HML, obtained from Ken French’s web-site, or the return on the size-

balanced value-weighted long-short portfolio based on EDF. t-statistics for k-period forecasting regressions are based on Newey-

West (1987) standard errors, allowing for serial correlation up to k-lags. 

 Univariate Including time-series controls 

 rxE
t+1 rxE

t+2 rxE
t+3 rxE

t+1 rxE
t+2 rxE

t+3 

       
rx = MKTRF       

B -4.570 -4.968 -7.814 -2.099 -5.263 -12.703 

[t] [-0.98] [-0.95] [-1.31] [-0.36] [-0.90] [-2.33] 

R2 0.02 0.01 0.02 0.04 0.19 0.33 

       
rx = SMB       

b -6.187 -8.788 -9.729 -6.593 -12.621 -21.579 

[t] [-1.62] [-1.20] [-1.10] [-1.35] [-1.57] [-2.45] 

R2 0.06 0.05 0.03 0.15 0.13 0.18 

       
rx = HML       

b -6.803 -10.635 -12.085 -3.816 -2.689 -5.332 

[t] [-2.06] [-3.10] [-3.58] [-0.77] [-0.68] [-1.06] 

R2 0.07 0.10 0.10 0.13 0.25 0.31 

       
rx = EDF (high-low)       

b -6.169 -10.420 -14.484 -5.853 -11.438 -21.495 

[t] [-1.80] [-2.00] [-2.37] [-1.56] [-2.33] [-3.44] 

R2 0.05 0.08 0.12 0.12 0.18 0.25 
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Table A.3 

Univariate Subsample Results for log(HYS) 

Univariate time-series forecasting regressions of log excess returns on log(HYS) 

log( ) .
t k t t k

rx a b HYS u
 
     

The high yield share (HYS) is the fraction of non-financial corporate bond issuance with a high yield rating from Moody’s. In Panel A, the dependent variable is the cumulative 1-, 

2-, or 3-year excess return on high yield bonds. In Panel B, the dependent variable is the cumulative 1-, 2-, or 3-year excess return on BBB-rated corporate bonds. In Panel C, the 

dependent variable is the cumulative 1-, 2-, or 3-year excess return on AAA-rated corporate bonds. t-statistics for k-period forecasting regressions are based on Newey-West 

(1987) standard errors allowing for serial correlation up to k-lags. 

 1926-1943 1944-1982 1983-2008 1944-2008 1926-2008 

 1-yr 2-yr 3-yr 1-yr 2-yr 3-yr 1-yr 2-yr 3-yr 1-yr 2-yr 3-yr 1-yr 2-yr 3-yr 

Panel A: High Yield Excess Returns (rxHY) 

b 5.523 0.862 -5.128 -2.940 -5.103 -6.323 -11.483 -14.264 -17.798 -2.029 -3.371 -4.100 -1.517 -2.917 -3.884 

[t] [0.86] [0.06] [-0.24] [-5.65] [-5.14] [-3.48] [-2.77] [-4.23] [-5.76] [-2.52] [-2.84] [-2.74] [-1.77] [-1.98] [-1.93] 

R2 0.04 0.00 0.01 0.19 0.34 0.38 0.15 0.21 0.28 0.05 0.11 0.13 0.02 0.04 0.05 

Panel B: BBB Excess Returns (rxBBB) 

b 3.352 1.676 -2.162 -2.440 -4.001 -4.503 -3.139 -3.344 -5.118 -1.138 -1.887 -2.099 -0.874 -1.656 -2.100 

[t] [1.18] [0.25] [-0.20] [-5.81] [-5.49] [-4.59] [-1.32] [-2.46] [-2.09] [-2.41] [-2.51] [-2.37] [-1.71] [-1.86] [-1.85] 

R2 0.05 0.00 0.00 0.31 0.43 0.44 0.05 0.06 0.13 0.06 0.12 0.12 0.02 0.04 0.05 

Panel C: AAA Excess Returns (rxAAA) 

b 0.453 0.136 0.133 -1.706 -2.763 -2.685 -0.030 -1.015 -1.920 -0.406 -0.600 -0.242 -0.310 -0.473 -0.108 

[t] [0.82] [0.15] [0.12] [-6.32] [-4.93] [-3.05] [-0.07] [-1.07] [-1.14] [-1.40] [-1.14] [-0.36] [-1.17] [-1.03] [-0.19] 

R2 0.02 0.00 0.00 0.36 0.36 0.21 0.00 0.02 0.05 0.03 0.02 0.00 0.02 0.01 0.00 
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Table A.4 

Multivariate Subsample Results for log(HYS) 

Time-series forecasting regressions of log excess returns on speculative-grade bonds on log(HYS), controlling for the term spread, short-rate, 

credit spread, and lagged excess returns      
                    (    

      
 )        

    (    
        

 )       
       . 

 1-yr returns 2-yr returns 3-yr returns  

Panel A: 1926-1943 

log(HYS) 12.272 3.365 8.823 10.092 -6.574 4.713 9.257 -16.305 4.319 

[1.88] [0.45] [1.06] [1.08] [-0.53] [0.39] [0.77] [-0.88] [0.33] 

, ,

G G

L t S t
y y  -6.369  -6.223 -4.871  -9.664 -9.448  -25.799 

[-1.81]  [-1.85] [-0.72]  [-2.30] [-0.79]  [-4.51] 

,

G

S t
y  -8.091  -6.346 -14.651  -13.481 -21.098  -23.719 

[-2.29]  [-2.17] [-2.55]  [-2.78] [-3.48]  [-4.25] 

, ,

BBB G

L t L t
y y   2.805 4.033  12.810 12.815  20.846 27.299 

 [0.89] [2.42]  [1.92] [4.33]  [1.95] [7.95] 

HY

t
rx  

 0.596 0.489  1.127 0.818  1.225 0.882 

 [1.77] [2.08]  [1.51] [1.77]  [1.16] [1.66] 

R2 0.28 0.27 0.39 0.31 0.22 0.41 0.36 0.23 0.59 

Panel B: 1944-1982 

log(HYS) -2.258 -2.807 -1.917 -4.774 -5.227 -4.587 -6.762 -6.725 -6.626 

[-3.00] [-4.82] [-2.20] [-4.42] [-4.57] [-3.62] [-3.35] [-3.37] [-2.91] 

, ,

G G

L t S t
y y  2.525  -1.461 1.256  1.572 -2.846  -0.703 

[1.12]  [-0.49] [0.46]  [0.31] [-0.67]  [-0.11] 

,

G

S t
y  -0.015  -1.155 0.005  -0.237 -0.368  -0.251 

[-0.04]  [-1.40] [0.01]  [-0.21] [-0.41]  [-0.17] 

, ,

BBB G

L t L t
y y   1.664 5.920  -0.103 0.595  -2.557 -1.595 

 [1.44] [1.60]  [-0.05] [0.13]  [-0.62] [-0.27] 

HY

t
rx  

 0.041 0.053  -0.198 -0.241  -0.394 -0.382 

 [0.35] [0.39]  [-1.35] [-1.33]  [-2.50] [-1.80] 

R2 0.23 0.21 0.29 0.34 0.36 0.38 0.39 0.44 0.44 

Panel C: 1983-2008 

log(HYS) -11.180 -6.632 -5.326 -11.889 -12.432 -9.525 -15.000 -17.516 -14.451 

[-2.89] [-1.58] [-1.20] [-3.21] [-3.12] [-2.32] [-5.05] [-4.02] [-5.19] 

, ,

G G

L t S t
y y  1.803  4.203 8.188  11.651 8.269  11.254 

[0.39]  [0.81] [2.10]  [2.55] [2.34]  [3.52] 

,

G

S t
y  -1.751  -0.225 -1.052  -1.173 -0.105  -0.430 

[-1.19]  [-0.15] [-1.14]  [-1.11] [-0.08]  [-0.34] 

, ,

BBB G

L t L t
y y   11.227 8.335  5.693 -4.489  -0.161 -9.068 

 [2.42] [1.56]  [0.53] [-0.57]  [-0.01] [-0.85] 

HY

t
rx  

 0.138 -0.059  -0.025 -0.620  -0.077 -0.585 

 [0.56] [-0.27]  [-0.08] [-2.20]  [-0.22] [-2.79] 

R2 0.24 0.33 0.36 0.40 0.22 0.48 0.39 0.28 0.45 

Panel D: 1944-2008 

log(HYS) -1.787 -2.210 -1.720 -3.260 -3.395 -3.094 -4.143 -4.068 -4.130 
[-2.23] [-2.10] [-1.75] [-2.91] [-2.51] [-2.50] [-2.62] [-2.46] [-2.46] 

, ,

G G

L t S t
y y  4.295  2.590 7.884  9.519 7.441  10.857 

[2.21]  [0.92] [4.01]  [3.47] [2.89]  [3.31] 

,

G

S t
y  -0.174  -0.810 0.356  0.227 0.520  0.893 

[-0.36]  [-1.33] [0.78]  [0.31] [0.90]  [0.84] 

, ,

BBB G

L t L t
y y   5.918 5.923  3.155 -0.674  1.399 -4.693 

 [-2.36] [2.26]  [1.48] [-0.22]  [0.42] [-0.91] 

HY

t
rx  

 -0.030 -0.105  -0.122 -0.443  -0.215 -0.553 

 [-0.24] [-0.80]  [-0.76] [-2.42]  [-1.21] [-3.05] 

R2 0.13 0.20 0.30 0.27 0.15 0.35 0.24 0.16 0.32 

Panel E: 1926-2008 

log(HYS) -1.495 -1.925 -1.717 -3.154 -3.438 -3.250 -4.067 -4.543 -4.254 

[-1.88] [-2.32] [-2.14] [-2.51] [-2.57] [-2.63] [-2.21] [-2.23] [-2.20] 

, ,

G G

L t S t
y y  2.201  0.275 6.269  5.577 5.555  3.076 

[1.20]  [0.12] [2.47]  [1.46] [1.31]  [0.51] 

,

G

S t
y  -0.375  -0.514 -0.054  -0.057 -0.240  -0.515 

[-0.78]  [0.94] [-0.07]  [-0.06] [-0.20]  [-0.38] 

, ,

BBB G

L t L t
y y   3.492 2.936  4.552 1.024  5.904 3.658 

 [1.53] [1.13]  [1.60] [0.28]  [1.78] [0.76] 

HY

t
rx  

 0.172 0.131  0.307 0.130  0.201 0.067 

 [1.06] [0.80]  [1.27] [0.49]  [0.73] [0.21] 

R2 0.07 0.07 0.09 0.14 0.09 0.14 0.11 0.10 0.12 
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Table A.5 

Quantity and Quality and Future Returns to Credit Using the Growth of Bond Issuance 

Annual time-series regressions of the form      
            (    

      
 )        

    (    
        

 )       
       , where rxHY is the cumulative 2-year excess 

return on high yield bonds, HYS is the high yield share,   
             

            
     

          denotes real growth is total issuance: the log ratio of total corporate bond 

issuance in year t and average issuance over the prior 5 years (nominal issuance is deflated using the CPI deflator so this represents a real growth rate),   
          

         
     

   

    and   
          

         
     

       are the analogous constructions for investment grade and high yield issuance. To facilitate comparisons of the coefficients,   
   and   

   

are standardized to have a standard deviation of 1 in each subsample. Panel A shows regressions without controls. Panel B shows regressions with controls. Control variables 

include the term spread, short-rate, credit spread, lagged excess high yield returns. t-statistics are based on Newey-West (1987) standard errors allowing for serial correlation up to 

2-lags. 

 1926-1943 1944-1982 1983-2007 1944-2007 1926-2007 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) 

Panel A: Univariate 

log(HYS) -12.41    -5.10    -13.76    -3.27    -3.07    

 [2.19]    [5.31]    [3.64]    [2.81]    [2.45]    

bTOT -34.14    -2.13    -4.02    -3.00    -15.91    

 [8.08]    [0.48]    [0.62]    [0.71]    [3.21]    

bIG  -20.30  -16.16  -0.51  -0.61  -1.31  -0.96  -0.83  -0.74  -7.14  -6.28 

  [5.68]  [5.19]  [0.26]  [0.34]  [0.54]  [0.33]  [0.56]  [0.49]  [3.33]  [3.25] 

bHY   -16.36 -8.42   -4.68 -4.69   -4.79 -4.72   -4.57 -4.55   -6.42 -5.42 

   [2.93] [1.87]   [3.55] [3.45]   [1.65] [1.58]   [3.09] [3.10]   [3.49] [3.84] 

R2 0.57 0.46 0.30 0.52 0.34 0.00 0.20 0.21 0.21 0.01 0.07 0.08 0.12 0.00 0.11 0.12 0.23 0.15 0.12 0.24 

Panel B: Multivariate 

log(HYS) -6.55    -4.12    -6.86    -2.64    -3.25    

 [1.52]    [3.67]    [1.56]    [2.42]    [2.86]    

bTOT -28.15    -5.62    -11.09    -8.83    -15.93    

 [4.69]    [0.94]    [1.28]    [2.07]    [3.52]    

bIG  -18.06  -15.22  -3.51  -2.52  -4.98  -4.50  -3.82  -3.19  -7.03  -6.41 

  [3.42]  [2.54]  [1.51]  [1.12]  [1.71]  [1.50]  [2.49]  [1.98]  [3.52]  [3.47] 

bHY   -12.37 -5.60   -3.94 -3.17   -4.22 -3.57   -3.57 -2.90   -6.09 -5.33 

   [2.19] [1.85]   [2.20] [2.24]   [2.03] [1.43]   [2.70] [2.27]   [3.41] [3.52] 

R2 0.74 0.69 0.56 0.71 0.41 0.26 0.28 0.32 0.53 0.49 0.47 0.52 0.40 0.33 0.32 0.36 0.32 0.24 0.20 0.32 
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Table A.6 

Quantity and Quality and Future Returns to Credit Using the Ratio of Issuance to GDP 

Annual time-series regressions of the form 

2 , , , , , 2
( ) ( ) ,HY G G G BBB G HY

t L t S t S t L t L t t ttrx a b X c y y d y e y y f rx u
 
             

 
where rxHY is the cumulative 2-year excess return on high yield bonds, HYS is the high yield share,       

            is the log ratio of total corporate bond issuance in year t to 

GDP,       
         and       

         are the analogous constructions for investment grade and high yield corporate bond issuance. To facilitate comparisons of the 

coefficients,       
         and       

         are standardized to have a standard deviation of 1 in each subsample. Panel A shows regressions without controls. Panel B shows 

regressions with controls. Control variables include the term spread, short-rate, credit spread, lagged excess high yield returns. t-statistics are based on Newey-West (1987) 

standard errors allowing for serial correlation up to 2-lags. 

 
 1926-1943 1944-1982 1983-2007 1944-2007 1926-2007 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) 

Panel A: Univariate 

log(HYS) -4.21    -5.73    -13.65    -3.54    -1.52    

 [-0.70]    [-5.72]    [-3.39]    [-3.54]    [-0.99]    

ln(BTOT/GDP) -30.74    -5.91    -2.51    1.05    -9.09    

 [-5.27]    [-1.77]    [-0.46]    [0.33]    [-2.05]    

ln(BIG/GDP)  -21.76  -16.83  0.90  -0.26  -1.36  3.26  -0.14  1.90  -6.20  -4.74 

  [-7.17]  [-4.78]  [0.56]  [-0.22]  [-0.43]  [0.97]  [-0.07]  [-1.18]  [-2.42]  [-1.72] 

ln(BHY/GDP)   -18.22 -8.90   -6.78 -6.82   -7.02 -8.75   -4.12 -4.91   -5.44 -3.39 

   [-4.62] [-2.13]   [-6.35] [-5.95]   [-3.44] [-3.98]   [-2.17] [-2.88]   [-2.75] [-1.74] 

R2 0.58 0.53 0.37 0.59 0.38 0.01 0.42 0.42 0.21 0.01 0.16 0.19 0.11 0 0.09 0.11 0.13 0.12 0.09 0.14 

Panel B: Multivariate 

log(HYS) -1.89    -5.24    -7.55    -1.90    -1.40    

 [-0.39]    [-4.47]    [-1.92]    [-1.67]    [-1.07]    

ln(BTOT/GDP) -24.40    -14.26    -20.59    -5.97    -12.94    

 [-3.56]    [-3.63]    [-2.49]    [-1.63]    [-3.56]    

ln(BIG/GDP)  -17.52  -13.88  -2.74  -2.97  -8.55  -6.12  -4.81  -2.35  -8.23  -6.45 

  [-3.38]  [-2.07]  [-1.33]  [-2.12]  [-2.09]  [-1.53]  [-2.06]  [-1.05]  [-3.88]  [-3.14] 

ln(BHY/GDP)   -15.25 -6.37   -6.41 -6.47   -9.29 -7.52   -4.72 -3.81   -6.80 -4.27 

   [-2.77] [-1.71]   [-4.82] [-5.17]   [-4.47] [-4.79]   [-2.95] [-2.34]   [-3.76] [-2.66] 

R2 0.71 0.67 0.59 0.69 0.50 0.21 0.51 0.54 0.62 0.53 0.56 0.61 0.38 0.33 0.38 0.39 0.30 0.28 0.23 0.32 
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Table A.7 

Determinants of the High Yield Share, 1944-2008 

Time-series regressions of HYS on levels and past changes of interest rates: 

, , , 1
( )

G G G HY HY

S t L t S t t t tt
HYS a b y c y y d rx e DEF u


           , or 

 

, , , 1 1
( ) .

G G G HY HY

k k S t k L t S t t k t k t k tt
rxHYS a b y c y y d e DEF u

   
             

 
yS

G denotes the short-term Treasury bill yield; yL
G-yS

G denotes the term spread, DEFHY is the issuer-weighted high yield default rate from Moody’s, rL
HY-rL

G is the excess high yield return, and Δk denotes 
the k-year difference. In columns (1) to (5) we regress the level of HYS on a number of covariates, columns (6) to (10) repeat this analysis in first differences, and columns (11) to (15) in second 

differences. In the last two columns in each block we add additional controls for lagged stock market returns and macroeconomic variables (the growth in industrial product, real consumption growth, 

and a recession indicator). Robust t-statistics are shown in brackets. 

  HYS 1HYS 2HYS 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

Levels 
,

G

S t
y  1.305  0.582 0.656 0.617           

 [2.30]  [0.95] [1.02] [1.16]           

 
, ,

( )G G

L t S t
y y  2.465  -0.703 -0.335 -0.159           

 [1.77]  [-0.32] [-0.15] [-0.08]           

 

1

HY

t
rx


  0.065 0.166 0.002 0.048           

  [0.50] [0.90] [0.01] [0.31]           
 

t
DEF   1.483 1.808 1.800 1.578           

  [2.44] [1.57] [1.56] [1.81]           

1-year 
,1

G

S t
y  

     -0.929  -0.142 -0.138 0.007      

Changes      [-1.11]  [-0.23] [-0.20] [0.01]      

 
, ,1( )G G

L t S t
y y       -3.361  -0.442 -0.586 -0.176      

      [-2.07]  [-0.33] [-0.43] [-0.11]      

 

1

HY

t
rx


 

      0.336 0.255 0.380 0.262      
       [4.23] [3.10] [2.79] [3.01]      

 
1 t
DEF        -1.527 -1.855 -1.741 -1.781      

       [-3.32] [-2.90] [-2.86] [-2.65]      

2-year 

,2

G

S t
y  

          -2.208  -0.715 -0.736 -0.191 

Changes           [-2.29]  [-1.28] [-1.12] [-0.23] 

 
, ,2

( )
G G

L t S t
y y  

          -5.153  -0.753 -1.006 0.293 

           [-2.95]  [-0.54] [0.70] [0.16] 

 

3 1

HY

t t
rx

  
            0.220 0.139 0.270 0.136 

            [1.82] [1.14] [1.47] [1.06] 

 
2 t
DEF  

           -2.212 -2.951 -2.807 -2.927 
            [-3.05] [-3.68] [-3.70] [-3.21] 

 Other controls None None None MKT Macro None None None MKT Macro None None None MKT Macro 

 R2 0.06 0.09 0.11 0.12 0.33 0.09 0.40 0.41 0.43 0.42 0.15 0.41 0.47 0.49 0.53 
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Table A.8 

Simulated Returns from an Extrapolative Model of Credit Cycles 

Model simulation assuming c = 1.25%, r = 0%,   = 50%,  = 20%,  = 5%,  = 75%, 1 = 0.5%, 2 = 1%, b = 20%, Dmin = 50%, and Dmax = 200%. We simulate a history of 

5,000,000 periods from the model and then compute the average return within each cell so long as there are at least 2,500 observations in the cell. In the simulation, the macro state 

evolves according to equation (EE) and investor beliefs about the persistence of the macro state (i.e. conditional sentiment) evolve according to equation (E8). Leverage is assumed 

to follow equation (E13) and we simulate returns according to equation (E15). 

Panel A. Expected Returns (in %) in the High Default State E[rt+1|St=H,Pt,Dt] 

  Lagged Price (Pt) 

L
ag

g
ed

 L
ev

er
ag

e 
(D

t)
 

 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 

0.70                 4.82                           

0.75             4.55 3.82 3.46                           

0.80           4.35 3.20 1.57 0.55                           

0.85         4.18 2.44 1.07 -0.06 -0.74 -1.24 -1.37                       

0.90       3.79 1.97 0.60 -0.20 -0.95 -1.35 -1.44                         

0.95     3.47 2.14 0.34 -0.37 -1.10 -1.43 -1.49                           

1.00   2.99 1.83 0.32 -0.53 -1.10 -1.39 -1.51                             

1.05   2.04 0.40 -0.44 -1.04 -1.42 -1.53                               

1.10 1.89 0.74 -0.39 -1.03 -1.34                                   

1.15 0.88 -0.25 -0.88                                       

1.20 0.06 -0.65                                         

1.25 -0.01                                           

Panel B. Expected Returns (in %) in the Low Default State E[rt+1|St=L,Pt,Dt] 

  Lagged Price (Pt) 

L
ag

g
ed

 L
ev

er
ag

e 
(D

t)
 

 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 

0.70                                            

0.75                                            

0.80                              0.26 0.20 0.20 0.04 -0.13 -0.31 -0.40 

0.85                          0.34 0.30 0.27 0.14 0.05 -0.18 -0.38 -0.60   

0.90                      0.36 0.34 0.31 0.25 0.07 -0.03 -0.26 -0.51       

0.95                    0.38 0.34 0.30 0.21 0.04 -0.07 -0.43 -0.53         

1.00                  0.37 0.34 0.28 0.17 0.06 -0.16 -0.49 -0.60           

1.05                0.42 0.34 0.27 0.17 -0.04 -0.13 -0.46 -0.69             

1.10                0.33 0.27 0.25   -0.26 -0.43 -0.59               

1.15              0.37 0.35       -0.47 -0.64                 

1.20                      -0.66 -0.62                   

1.25                      -0.71 -0.92                   

 


