
Online Appendix A.1

Online Appendix: Assessing DSGE Model

Nonlinearities
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A QAR(1,1) Model

This section shows how to derive important moments for the QAR(1,1) model given

by

yt = φ1yt−1 + φ2s
2
t−1 + (1 + γst−1)σut, ut ∼ iidN(0, 1) (A.1)

st = φ1st−1 + σut, |φ1| < 1 (A.2)

by exploiting the recursively linear structure of the model. The model corresponds

to (9) in the main text. To simplify the presentation, we dropped the tildes for φ2,

γ, and s.

A.1 Moments

We now derive the time-invariant mean and autocovariances for yt, assuming the

process is stationary and was initialized in the infinite past. Due to the recursively

linear structure of the model, we begin with the derivation of the moments of st.

Moments of st. The process st in (A.2) is linear and has a moving average repre-

sentation of the form

st = σ

∞∑
j=0

φj1ut−j.

The mean and the autocovariances of st are given by

E[st] = 0, µs2 = E[s2t ] =
σ2

1− φ2
1

, E[stst−h] = φh1µs2 .
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Since the innovations ut are iid standard normal variates, we obtain the following

third and fourth moments:

E[s3t ] =
∞∑
j=0

φ3j
1 E[u3t−j] = 0, E[s4t ] =

∞∑
j=0

φ4j
1 E[u4t−j] =

3σ4

1− φ4
1

.

Mean of yt. Taking expectations on both sides of (A.1) we obtain

E[yt] = φ1E[yt−1] + φ2µs2 + (1 + γE[st−1])σE[ut] = φ1E[yt] +
φ2σ

2

1− φ2
1

.

Here we used the expression for µs2 obtained previously as well as the fact that ut

and st−1 are independent. In turn,

µy = E[yt] =
φ2σ

2

(1− φ1)(1− φ2
1)
. (A.3)

Variance of yt. Consider the centered second moment of yt:

V[yt] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + σ(1 + γst−1)ut)

2
]

= E
[
φ2
1(yt−1 − µy)2 + φ2

2(s
2
t−1 − µs2)2 + σ2(1 + γst−1)

2u2t

2φ1φ2(yt−1 − µy)(s2t−1 − µs2) + 2φ2σ(s2t−1 − µs2)(1 + γst−1)ut

+2φ1σ(1 + γst−1)(yt−1 − µy)ut
]

= φ2
1E[(yt−1 − µy)2] + φ2

2E[(s2t−1 − µs2)2] + σ2(1 + γ2µs2)

+2φ1φ2E[(yt−1 − µy)(s2t−1 − µs2)].

The time-invariant solution is

V[yt] =
1

1− φ2
1

[
φ2
2V[s2t ] + σ2(1 + γ2E[s2t ]) + 2φ1φ2Cov[yt, s

2
t ]

]
,

where

Cov[yt, s
2
t ] = E

[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)

×(φ2
1(s

2
t−1 − µs2) + 2φ1σst−1ut + σ2(u2t − 1))

]
= φ3

1E[(yt−1 − µy)(s2t−1 − µs2)] + φ2
1φ2E[(s2t−1 − µs2)2]

+2φ1γσ
2µs2 ,
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which implies

Cov[yt, s
2
t ] =

1

1− φ3
1

[
φ2
1φ2V[s2t ] + 2φ1γσ

2E[s2t ]

]
.

Interestingly,

Cov[yt, st] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)(φ1st−1 + σut)

]
= φ2

1Cov[yt−1, st−1] + σ2.

All other terms drop out because E[ut] = E[st] = E[s3t ] = 0. Thus, solving for the

time-invariant solution leads to the “first order” variance expression

Cov[yt, st] = E[s2t ] =
σ2

1− φ2
1

.

Autocovariances of yt. Consider E[(yt − µy)(yt−1 − µy)]:

Cov[yt, yt−1] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)(yt−1 − µy)

]
= φ1V[yt−1] + φ2Cov[yt−1, s

2
t−1].

In general, higher-order autocovariances can be computed recursively:

Cov[yt, yt−h] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)(yt−h − µy)

]
= φ1Cov[yt−1, yt−h] + φ2Cov[yt−h, s

2
t−1].

The term Cov[yt−h, s
2
t−1] can also be calculated recursively:

Cov[yt−h, s
2
t−1] = E

[
(yt−h − µy)(φ2

1(st−2 − E[s2t−2]) + 2φ1st−2σut−1 + σ(ut−1)
2 − 1)

]
= φ2

1Cov[yt−h, s
2
t−2].

A.2 Initialization and Identification

In order to compute the likelihood function recursively, it is necessary to initialize s0.

We write the joint distribution of observables, initial state, and parameters as

p(Y0:T , θ, s0) = p(Y1:T |y0, s0, θ)p(y0, s0|θ)p(θ)



Online Appendix A.4

and use MCMC methods to generate draws from the posterior

p(θ, s0|Y0:T ) ∝ p(Y1:T |y0, s0, θ)p(y0, s0|θ)p(θ).

We will approximate the distribution of (y0, s0) using a normal distribution y0

s0

 ∣∣∣∣θ ∼ N

 µy

µs

 ,
 Σyy Σys

Σsy Σss

 . (A.4)

The moments of this normal distribution are calculated as follows. We will assume

that the system was in its steady state in period t = −T∗, i.e., s−T∗ = 0 and y−T∗ = φ0.

In principle, T∗ could be infinite, but this will create some problems if φ1 = 1. In

order to simplify the time subscripts a bit, we shift the time index by T∗ periods.

Starting from s0 = 0 and y0 = φ0, we will calculate the first and second moments of

yt, st, and s2t recursively, starting with

E[s0] = 0, E[y0] = φ0, V[s0] = 0, V[y0] = 0, (A.5)

Cov[y0, s0] = 0, Cov[y0, s
2
0], V[s20] = 0.

The process for st is linear autoregressive of order one and we obtain

E[st] = φ1E[st−1], V[st] = φ2
1V[st−1] + σ2. (A.6)

Since the innovations εt are iid standard normal variates, we see that the third moment

is zero:

E[s3t ] =
t−1∑
j=0

φ3j
1 E[ε3t−j] = 0.

Now consider

V[s2t ] = E[(s2t − V[st])
2] (A.7)

= E[(φ2
1(s

2
t−1 − V[st−1]) + 2φ1st−1σεt + σ2(ε2t − 1))2]

= φ4
1V[s2t−1] + 4φ2

1σ
2V[st−1] + 2σ4.

A formula for the mean of yt is obtained by taking expectations of the observation

equation:

E[yt] = φ0(1− φ1) + φ1E[yt−1] + φ2V[st−1]. (A.8)
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The covariance between yt and st is given by

Cov[yt, st] = E[(yt − E[yt])st] (A.9)

= E
[(
φ1(yt−1 − E[yt−1]) + φ2(s

2
t−1 − E[s2t−1]) + (1 + γst−1)σεt

)(
φ1st−1 + σεt

)]
= φ2

1Cov[yt−1, st−1] + σ2.

All other terms drop out because the first and third moments of st−1 and εt are equal

to zero. The covariance between yt and s2t is given by

Cov[yt, s
2
t ] = E[(yt − E[yt])(s

2
t − V[st])] (A.10)

= E
[
(φ1(yt−1 − E[yt−1]) + φ2(s

2
t−1 − V[st−1]) + (1 + γst−1)σεt)

×(φ2
1(s

2
t−1 − V[st−1]) + 2φ1σst−1εt + σ2(ε2t − 1))

]
= φ3

1Cov[yt−1, s
2
t−1] + φ2

1φ2V[s2t−1] + 2φ1γσ
2E[s2t−1].

The variance of yt can be computed as follows:

V[yt] = E
[
(φ1(yt−1 − E[yt−1] + φ2(s

2
t−1 − V[st−1]) + σ(1 + γst−1)εt)

2
]

(A.11)

= φ2
1V[yt−1] + φ2

2V[s2t−1] + σ2(1 + γ2V[st−1])

+2φ1φ2Cov[yt−1, s
2
t−1].

We can iterate Equations (A.6) to (A.11) forward for T∗ periods to obtain the moments

for the initial distribution of (y0, s0) in (A.4).

Note, that for γ = φ2 = 0, s0 and y0 become perfectly correlated conditional on

θ since for a linear model y0 = s0 + φ0. This may affect our posterior sampler when

we include s0 into the parameter vector. To avoid the singularity we add a small

constant to the covariance matrix of (y0, s0).

A.3 MCMC Implementation

The RWM algorithm mentioned in Section 3.3 is used to implement the posterior

inference. Using a preliminary covariance for the proposal distribution in the RWM
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algorithm that is constructed from the prior variance of the QAR parameters, we

generate an initial 100,000 draws from the posterior. Based on the last 50,000 draws,

we compute a covariance matrix that replaces the preliminary covariance matrix of the

proposal distribution. We then continue the chain, generating an additional 60,000

draws and retaining the last 50,000 to construct summary statistics for the posterior.
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A.4 Detailed Estimation Results

Table A-1: Prior Distribution for QAR(1,1) Model, Samples Starting in 1960

GDP Growth Wage Growth Inflation Fed Funds Rate

φ0 N
(
0.48, 2

)
N
(
1.18, 2

)
N
(
2.38, 2

)
N
(
2.50, 2

)
φ1 N †(0.36, 0.5) N †(−0.02, 0.5) N †(0.00, 0.5) N †(0.66, 0.5)

σ IG(1.42, 4) IG(0.82, 4) IG(1.87, 4) IG(0.58, 4)

φ2 N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)

γ N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)

Notes: (†) The prior for φ1 is truncated to ensure stationarity. The IG distribution

is parameterized such that pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

Table A-2: Prior Distribution for QAR(1,1) Model, Samples Starting in 1984

GDP Growth Wage Growth Inflation Fed Funds Rate

φ0 N
(
0.43, 2

)
N
(
1.58, 2

)
N
(
4.38, 2

)
N
(
6.08, 2

)
φ1 N †(0.28, 0.5) N †(0.34, 0.5) N †(0.85, 0.5) N †(0.94, 0.5)

σ IG(1.33, 4) IG(0.88, 4) IG(1.83, 4) IG(1.45, 4)

φ2 N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)

γ N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)

Notes: (†) The prior for φ1 is truncated to ensure stationarity. The IG distribution

is parameterized such that pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.
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Table A-3: Posterior Estimates for QAR(1,1) Model, 1960:Q1 to 1983:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.42 0.28 -0.02 -0.05 1.16 1.42

[0.11 , 0.69] [0.11 , 0.46] [-0.14 , 0.09] [-0.17 , 0.06] [0.91 , 1.53] [1.02 , 1.85]

WAGE 1.75 0.41 -0.05 0.04 0.52 0.89

[1.49 , 1.98] [0.23 , 0.58] [-0.13 , 0.04] [-0.05 , 0.15] [0.40 , 0.68] [0.63 , 1.15]

INFL 4.24 0.87 -0.01 0.16 1.52 -1.97

[2.28 , 5.84] [0.80 , 0.95] [-0.08 , 0.07] [0.04 , 0.27] [1.08 , 2.12] [-4.68 , 0.79]

FFR 4.84 0.92 0.02 0.38 0.62 -1.56

[0.86 , 6.75] [0.88 , 0.96] [-0.05 , 0.05] [0.30 , 0.47] [0.41 , 1.00] [-4.21 , 0.14]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.

Table A-4: Posterior Estimates for QAR(1,1) Model, 1960:Q1 to 2007:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.48 0.29 -0.02 -0.06 0.69 1.37

[0.33 , 0.63] [0.16 , 0.41] [-0.07 , 0.04] [-0.13 , 0.01] [0.58 , 0.82] [1.19 , 1.56]

WAGE 1.41 0.44 -0.03 0.12 0.48 1.22

[1.25 , 1.59] [0.33 , 0.55] [-0.09 , 0.02] [0.05 , 0.20] [0.40 , 0.57] [1.00 , 1.42]

INFL 3.51 0.85 -0.01 0.23 1.06 -1.31

[2.74 , 4.47] [0.79 , 0.91] [-0.06 , 0.05] [0.16 , 0.31] [0.81 , 1.38] [-2.90 , 0.31]

FFR 2.96 0.96 0.04 0.44 0.28 -0.74

[2.16 , 4.16] [0.95 , 0.97] [0.02 , 0.06] [0.37 , 0.52] [0.22 , 0.42] [-1.27 , 0.45]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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Table A-5: Posterior Estimates for QAR(1,1) Model, 1960:Q1 to 2012:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.45 0.33 -0.03 -0.07 0.68 1.41

[0.28 , 0.60] [0.22 , 0.44] [-0.08 , 0.03] [-0.14 , 0.00] [0.58 , 0.81] [1.19 , 1.61]

WAGE 1.29 0.43 -0.01 0.08 0.54 1.31

[1.12 , 1.46] [0.32 , 0.53] [-0.06 , 0.04] [0.01 , 0.15] [0.46 , 0.63] [1.11 , 1.50]

INFL 3.23 0.84 0.02 0.22 1.09 -1.26

[2.55 , 4.16] [0.78 , 0.90] [-0.04 , 0.09] [0.15 , 0.30] [0.87 , 1.36] [-2.82 , 0.22]

FFR 3.54 0.96 -0.01 0.41 0.22 0.43

[2.29 , 5.06] [0.94 , 0.97] [-0.02 , 0.00] [0.33 , 0.50] [0.13 , 0.37] [-0.94 , 1.47]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.

Table A-6: Posterior Estimates for QAR(1,1) Model, 1984:Q1 to 2007:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.57 0.26 -0.07 0.01 0.25 1.06

[0.44, 0.70] [0.10 , 0.44] [-0.13 , -0.02] [-0.10 , 0.11] [0.20 , 0.32] [0.91,1.21]

WAGE 1.09 0.24 -0.06 0.07 0.41 0.10

[0.93,1.21] [0.06,0.42] [-0.12,0.02] [-0.03,0.17] [0.32,0.53] [-0.09,0.29]

INFL 2.72 0.63 -0.06 0.07 0.68 2.42

[2.30,3.13] [0.48,0.78] [-0.14,0.04] [-0.06,0.19] [0.52,0.89] [1.76,2.93]

FFR 9.80 0.91 -0.16 0.08 0.22 0.79

[8.68,11.56] [0.87,0.93] [-.23,-.10] [-0.03,0.17] [0.15,0.32] [-0.26,1.64]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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Table A-7: Posterior Estimates for QAR(1,1) Model, 1984:Q1 to 2012:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.53 0.36 -0.09 -0.07 0.28 1.09

[0.38 , 0.66] [0.22 , 0.52] [-0.15 , -0.03] [-0.17 , -0.00] [0.23 , 0.35] [0.87 , 1.28]

WAGE 0.98 0.18 -0.04 0.03 0.48 0.20

[0.83 , 1.14] [0.02 , 0.36] [-0.10 , 0.04] [-0.06 , 0.12] [0.38 , 0.60] [0.03 , 0.37]

INFL 2.51 0.63 -0.02 0.07 0.76 2.54

[2.12 , 2.93] [0.48 , 0.77] [-0.10 , 0.06] [-0.03 , 0.19] [0.61 , 0.97] [1.80 , 3.00]

FFR 10.00 0.92 -0.17 0.01 0.19 1.00

[8.72 , 11.43] [0.90 , 0.94] [-0.25 , -0.12] [-0.05 , 0.11] [0.15 , 0.29] [0.05 , 1.40]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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B The DSGE Model

B.1 First-Order Conditions

Intermediate Goods Producers. Taking as given nominal wages, final good prices,

the demand schedule for intermediate products, and technological constraints, firm

j chooses its labor inputs Ht(j) and the price Pt(j) to maximize the present value

of future profits. After using the production function to substitute our Yt(j) from

the present value of future profits in (24) (see main text) we can write the objective

function of the firm as

IEt

[ ∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s

(
1− Φp

(
Pt+s(j)

Pt+s−1(j)

))
At+sHt+s(j)−

1

Pt+s
Wt+sHt+s(j)

)]
.

(A.12)

This objective function is maximized with respect to Ht(j) and Pt(j) subject to

At+sHt+s(j) =

(
Pt(j)

Pt

)−1/λp,t
Yt+s.

We use µt+sβ
sQt+s|t to denote the Lagrange multiplier associated with this constraint.

Setting Qt|t = 1, the first-order condition with respect to Pt(j) is given by

0 =
1

Pt

(
1− Φp

(
Pt(j)

Pt−1(j)

))
AtHt(j)−

Pt(j)

PtPt−1(j)
Φ′p

(
Pt(j)

Pt−1(j)

)
AtHt(j) (A.13)

− µt
λp,tPt

(
Pt(j)

Pt

)−1/λp,t−1
Yt + βEt

[
Qt+1|t

P 2
t+1(j)

Pt+1P 2
t (j)

Φ′p

(
Pt+1(j)

Pt(j)

)
At+1Ht+1(j)

]
.

Taking first-order conditions with respect to Ht(j) yields

Wt

Pt
=
Pt(j)

Pt

(
1− Φp

(
Pt(j)

Pt−1(j)

))
At − µtAt. (A.14)

Households. The first-order condition with respect to consumption is given by

Ptλt =

(
Ct(k)

At

)−τ
1

At
. (A.15)

We define

Qt+1|t =
λt+1Pt+1

λtPt
. (A.16)
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Using this definition, the first-order condition for bond holdings becomes

1 = βEt
[
Qt+1|t

Rt

πt+1

]
. (A.17)

Member k is a monopolistic competitor with respect to his wage choice. Taking into

account the demand for labor of type k the relevant portion of the utility function

for the wage decision is

IEt

[
∞∑
s=0

βs

(
· · · − χH

1

1 + 1/ν

(
Wt+s(k)

Wt+s

)−(1+1/ν)/λw

H
1+1/ν
t

)]
.

The relevant portion of the budget constraint after substituting Ht+s(k) by the labor

demand schedule is

· · · = Wt+s(k)

(
Wt+s(k)

Wt+s

)−1/λw
Ht+s

(
1− Φw

(
Wt+s(k)

Wt+s−1(k)

))
+ · · · ,

where the demand for aggregated labor services Ht+s is taken as given. Taking first-

order conditions with respect to Wt(k) yields

0 =
χH
λwWt

(
Wt(k)

Wt

)− 1+1/ν
λw
−1

H
1+1/ν
t + λt

(
Wt(k)

Wt

)−1/λw
Ht

(
1− Φw

(
Wt(k)

Wt−1(k)

))
nonumber(A.18)

− λt
λw

Wt(k)

Wt

(
Wt(k)

Wt

)−1/λw−1
Ht

(
1− Φw

(
Wt(k)

Wt−1(k)

))
(A.19)

−λt
Wt(k)

Wt−1(k)

(
Wt(k)

Wt

)−1/λw
HtΦ

′
w

(
Wt(k)

Wt−1(k)

)
+βEt

[
λt+1

W 2
t+1(k)

W 2
t (k)

(
Wt+1(k)

Wt+1

)−1/λw
Ht+1Φ

′
w

(
Wt+1(k)

Wt(k)

)]
.

B.2 Equilibrium Relationships

We consider the symmetric equilibrium in which all intermediate-goods-producing

firms, as well as households, make identical choices when solving their optimization

problem. Therefore, we can drop the index k and j. In slight abuse of notation, let

∆Xt = Xt/Xt−1 and πt = ∆Pt. We use wt = Wt/Pt to denote the real wage. Since

the non-stationary technology process At induces a stochastic trend in output, con-

sumption, and real wages, it is convenient to express the model in terms of detrended

variables yt = Yt/At, ct = Ct/At and w̃t = wt/At.
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Intermediate Goods Producers. Using the above notation, multiplying (A.13)

by Pt, and replacing Yt by Atyt. we can simplify the first-order condition for Pt(j) as

follows:

0 =
(
1− Φp(πt)

)
Atyt − πtΦ′p(πt)Atyt −

µt
λp,t

Atyt + βEt
[
Qt+1|tπt+1Φ

′
p(πt+1)At+1yt+1

]
.

Dividing by Atyt and replacing At+1/At by γ exp(zt+1) we obtain

0 =
(
1− Φp(πt)

)
− πtΦ′p(πt)−

µt
λp,t

+ βEt
[
Qt+1|tπt+1Φ

′
p(πt+1)∆yt+1γ exp(zt+1)

]
.

We proceed by rewriting (A.14) as

w̃t =
(
1− Φp(πt)

)
− µt. (A.20)

Households. In terms of detrended consumption we can express Qt+1|t as

Qt+1|t =

(
ct+1

ct

)−τ
1

γ
exp(−zt+1). (A.21)

The consumption Euler equation remains unchanged:

1 = βEt
[
Qt+1|t

Rt

πt+1

]
. (A.22)

We now divide (A.19) by λt and replace λt by c−τt /(AtPt):

0 =
χH
λw

1

w̃t
cτtH

1+1/ν
t +Ht

(
1− Φw(πt∆wt)

)
− 1

λw
Ht

(
1− Φw(πt∆wt)

)
−πt∆wtHtΦ

′
w(πt∆wt) + βEt

[
Qt+1|tπt+1∆w

2
t+1Ht+1Φ

′
w(πt+1∆wt+1)

]
.

Aggregate Resource Constraint. The aggregate production function (in terms of

detrended output) is

yt = Ht. (A.23)

The intermediate goods producers’ dividend payments to the households are given by

Dt =
(
1− Φp(πt)

)
Yt − wtHt. (A.24)
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Combining the household budget constraint and the government budget constraint

and detrending all variables leads to the aggregate resource constraint

ct + ζyt =
(
1− Φp(πt)

)
yt − w̃tytΦw(πt∆wt),

where ∆wt = ∆w̃tγ exp(zt).

The model economy has a unique steady state in terms of the detrended variables

that is attained if the innovations εR,t, εg,t, and εz,t are zero at all times. The steady-

state inflation π equals the target rate π∗ and

R =
γ

β
π∗, µ = λp, c =

(
(1− λp)(1− λw)g−

1
ν

χH

) 1
τ+1/ν

, y = gc̃, H = y, w̃ = (1−λp).

B.3 Posterior Simulator

We first estimate a log-linearized version of the DSGE model using the random walk

Metropolis (RWM) algorithm described in An and Schorfheide (2007). Using the

same covariance matrix for the proposal distribution as for the linearized DSGE

model, we then run the RWM algorithm based on the likelihood function associated

with the second-order approximation of the DSGE model. The covariance matrix of

the proposal distribution is scaled such that the RWM algorithm has an acceptance

rate of approximately 50%. We use 80,000 particles to approximate the likelihood

function of the nonlinear DSGE model, while the variance of measurement errors

is set to 10% of the sample variance of the observables. We generate 120,000 draws

from the posterior distribution of the nonlinear DSGE model. The summary statistics

reported in Table 3 in the main paper are based on the last 100,000 draws of this

sequence.
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Table A-8: Posterior Estimates for DSGE Model Parameters: Linear Model

1960:Q1 to 2007:Q4 1984:Q1 to 2007:Q4

Parameter Mean 90% Interval Mean 90% Interval

400
(

1
β
− 1
)

0.48 [0.06, 1.01] 1.31 [0.60, 2.17]

πA 3.46 [2.94, 3.97] 2.80 [2.33, 3.29]

γA 1.86 [1.39, 2.34] 1.88 [1.53, 2.24]

τ 6.54 [4.37, 9.24] 4.78 [2.57, 8.70]

ν 0.09 [0.06, 0.13] 0.08 [0.03, 0.15]

κ(ϕp) 0.01 [0.01, 0.02] 0.18 [0.09, 0.30]

ϕw 62.33 [44.48, 83.14] 14.89 [6.15, 25.88]

ψw N/A

ψp N/A

ψ1 1.45 [1.24, 1.68] 2.67 [2.10, 3.30]

ψ2 0.80 [0.54, 1.09] 0.76 [0.41, 1.11]

ρr 0.77 [0.73, 0.82] 0.71 [0.61, 0.79]

ρg 0.97 [0.96, 0.98] 0.96 [0.93, 0.98]

ρz 0.26 [0.10, 0.41] 0.07 [0.01, 0.19]

ρp 0.99 [0.98, 0.99] 0.93 [0.87, 0.98]

100σr 0.18 [0.14, 0.22] 0.18 [0.13, 0.25]

100σg 0.65 [0.44, 0.95] 0.76 [0.39, 1.34]

100σz 0.75 [0.64, 0.85] 0.47 [0.37, 0.56]

100σp 15.28 [12.66, 18.18] 7.63 [5.96, 9.48]

Notes: Estimation sample is 1984:Q1 to 2010:Q4. For 90% credible interval we are

reporting the 5th and 95th percentile of the posterior distribution.


