
B Additional Analytical Results (Online Appendix)

This appendix describes the aggregate elasticity of substitution between capital and labor in a
variety of environments. Web Appendix B.1 describes local elasticities of substitution and Web
Appendix B.2 derives a preliminary result under the assumption each plant’s production function
is homothetic. The assumption of constant returns to scale is relaxed in Web Appendix B.3. Web
Appendix B.4 introduces misallocation frictions. Web Appendix B.5 generalizes the demand system
to allow for arbitrary elasticities of demand and imperfect pass-through. Web Appendix B.6 relaxes
the assumption that production functions are homothetic.

As in Appendix A, we use the following notation for relative factor prices: ω ≡ w
r and q ≡ q

r . In
addition, we define pni ≡ Pni/r and pn ≡ Pn/r to be plant i’s and industry n’s prices respectively
normalized by the rental rate. It will also be useful to define i’s cost function (normalized by r) to
be

zni(Yni, ω, q) = min
Kni,Lni,Mni

Kni + ωLni + qMni subject to Fni(Kni, Lni,Mni) ≥ Yni

As in Appendix A, two results will be used repeatedly. First, Shephard’s lemma implies that for
each i:

(1− sMni )(1− αni) =
zniω(Yni, ω, q)ω

zni(Yni, ω, q)
(23)

sMni =
zniq(Yni, ω, q)q

zni(Yni, ω, q)
(24)

Second, αn =
∑

i∈In αniθni, so for any quantity κn,∑
i∈In

(αni − αn)κnθni = 0 (25)

B.1 Locally-Defined Elasticities

In our baseline analysis we assumed that plant i produced using a nested CES production function
of the form

Fni(Kni, Lni,Mni) =

([
(AniKni)

σ−1
σ + (BniLni)

σ−1
σ

] σ
σ−1

ζ−1
ζ

+ (CniMni)
ζ−1
ζ

) ζ
ζ−1

In that context, σ was i’s elasticity of substitution between capital and labor and ζ was i’s elasticity
of substitution between materials and i’s capital-labor bundle.

When i’s production function does not take this parametric form, we define local elasticities of
substitution. Suppose that i produces using the production function Yni = Fni(Kni, Lni,Mni) with
corresponding cost function zni. We define σni and ζni to satisfy

σni − 1 =
d ln αni

1−αni
d lnω

∣∣∣∣
Yni is constant

(αni − αM )(ζni − 1) =
d ln

1−sMni
sMni

d lnω

∣∣∣∣∣∣
Yni is constant
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σni and ζni measure how i’s relative factor usage changes in response to changes in relative factor
prices holding i’s output fixed (as one moves along an isoquant). That output remains fixed is
relevant only if production functions are non-homothetic, in which case a change in a plant’s scale
would alter its relative factor usage. This section derives expressions for σni and ζni in terms of i’s
cost function.

Claim 1 σni and ζni satisfy

(αni − αM )ζni = − 1

1− sMni

[
zniqωω

zniq
+
zniqqq

zniq
(1− αM )

]
σni = − 1

αni

{
zniωωω

zniω
+
zniωqq

zniω
(1− αM ) +

sMni
1− sMni

[
zniqωω

zniq
+
zniqqq

zniq
(1− αM )

]}
Proof. Differentiating equation (24) and equation (23) with respect to ω gives

d ln sMni
d lnω

=

{
zniqY Yni
zniq

d lnYni
d lnω +

zniqωω
zniq

+
zniqqq
zniq

d ln q
d lnω + d ln q

d lnω

− zniY Yni
zni

d lnYni
d lnω −

zniωω
zni
− zniqq

zni
d ln q
d lnω

}
d ln(1− sMni )

d lnω
+
d ln(1− αni)

d lnω
=

{
zniωY Yni
zniω

d lnYni
d lnω + zniωωω

zniω
+

zniωqq
zniω

d ln q
d lnω + 1

− zniY Yni
zni

d lnYni
d lnω −

zniωω
zni
− zniqq

zni
d ln q
d lnω

}

Imposing d lnYni
d lnω = 0, d ln q

d lnω = 1− αM , and Shephard’s lemma, these equations can be written as

d ln sMni
d lnω

=
zniqωω

zniq
+
zniqqq

zniq
(1− αM ) + (1− αM )− (1− sMni )(1− αni)− sMni (1− αM )

d ln(1− sMni )
d lnω

+
d ln(1− αni)

d lnω
=

zniωωω

zniω
+
zniωqq

zniω
(1− αM ) + 1− (1− sMni )(1− αni)− sMni (1− αM )

Simplifying yields

d ln sMni
d lnω

=
zniqωω

zniq
+
zniqqq

zniq
(1− αM ) + (1− sMni )(αni − αM )

d ln(1− sMni )
d lnω

+
d ln(1− αni)

d lnω
=

zniωωω

zniω
+
zniωqq

zniω
(1− αM ) + αni − sMni (αni − αM )

Using
d ln 1−sMni
d lnω = − sMni

1−sMni
d ln sMni
d lnω and plugging the first into the second yields

d ln(1− αni)
d lnω

=
zniωωω

zniω
+
zniωqq

zniω
(1− αM ) +

sMni
1− sMni

[
zniqωω

zniq
+
zniqqq

zniq
(1− αM )

]
+ αni

Finally, the definitions of the elasticities imply σni− 1 = − 1
αni

d ln(1−αni)
d lnω and (αni−αM )(ζni− 1) =

− 1
1−sMni

d ln sMni
d lnω , so that

(αni − αM )ζni = − 1

1− sMni

[
zniqωω

zniq
+
zniqqq

zniq
(1− αM )

]
σni = − 1

αni

{
zniωωω

zniω
+
zniωqq

zniω
(1− αM ) +

sMni
1− sMni

[
zniqωω

zniq
+
zniqqq

zniq
(1− αM )

]}
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B.2 Industry Substitution and Within-Plant Substitution

We now define i’s local returns to scale to be γni =
[
zniY Yni
zni

]−1
. The next lemma characterizes the

within-plant components of industry substitution.

Lemma 1 Suppose that plant i produces using the homothetic production function Fni. The in-
dustry elasticity of substitution for industry n, σNn , can be written as

σNn = (1− χn)σ̄n + χn
¯sMn ζ̄n +

∑
i∈In(αni − αn)θni

1
γni

d lnYni
d lnω

αn(1− αn)

where ζ̄n ≡
∑

i∈In
(αni−αn)(αni−αM )sMni∑

j∈In (αnj−αn)(αnj−α
M )sMnj

ζni and s̄Mn ≡
∑

i∈In
(αni−αn)(αni−αM )∑

j∈In (αnj−αn)(αnj−α
M )
sMni

Proof. Following the steps of the proof of Proposition 1′, we have

σNn = (1− χn)σn +

∑
i∈In(αni − αn) dθnid lnω

αn(1− αn)
+ χn (26)

θni =
rKni + wLni∑

j∈In rKnj + wLnj
=

(1− sMni )zni∑
j∈In(1− sMnj)znj

d ln(1− sMni )
d lnω

= sMni (ζni − 1)(αni − αM )

The change in i’s expenditure on all inputs depends on its return to scale and its expenditure
shares:

d ln zni(Yni, ω, q)

d lnω
=

YnizniY
zni

d lnYni
d lnω

+
zniωω

zni
+
zniqq

zni

d ln q

d lnω

=
1

γni

d lnYni
d lnω

+ (1− sMni )(1− αni) + sMni (1− αM )

=
1

γni

d lnYni
d lnω

+ (1− αni) + sMni (αni − αM ) (27)

Putting these pieces together, since
∑

i∈In(αni − αn)θni
d ln

∑
j∈In (1−s

M
nj)znj

d lnω = 0, we have

∑
i∈In

(αni − αn)θni
d ln θni
d lnω

=
∑
i∈In

(αni − αn)θni

[
d ln 1− sMni
d lnω

+
d ln zni
d lnω

]

=
∑
i∈In

(αni − αn)θni

[
sMni (ζni − 1)(αni − αM ) + 1

γni
d lnYni
d lnω

+(1− αni) + sMni (αni − αM )

]
=

∑
i∈In

(αni − αn)θni

[
sMni ζni(αni − αM ) +

1

γni

d lnYni
d lnω

+ (1− αni)
]
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Using the definitions of ζ̄n and s̄Mn , this becomes∑
i∈In

(αni − αn)θni
d ln θni
d lnω

=
∑
i∈In

(αni − αn)θni

[
s̄Mn ζ̄n(αni − αM ) +

1

γni

d lnYni
d lnω

+ (1− αni)
]

Using the fact that for any constant κ,
∑

i∈In(αni − αn)θniκ = 0, we can write this as

∑
i∈In

(αni − αn)θni

[
s̄Mn ζ̄n(αni − αn) +

1

γni

d lnYni
d lnω

− (αni − αn)

]
Finally, we can plug this back into equation (26) to get

σNn = (1− χn)σ̄n + χns̄
M
n ζ̄n +

∑
i∈In(αni − αn)θni

1
γni

d lnYni
d lnω

αn(1− αn)

B.3 Returns to Scale

This section relaxes the assumption that each plant’s production function exhibits constant returns
to scale.

Claim 2 Suppose that i produces using the production function Yni = Fni (Kni, Lni,Mni) = Gni(Kni, Lni,Mni)
γ,

where Gni has constant returns to scale and γ ≤ εn
εn−1 . Let x = εn

εn+γ(1−εn) . Then the industry elas-
ticity of substitution is

σn = (1− χn)σ̄n + χn
[
s̄Mn ζ̄n + (1− s̄Mn )x

]
and the revenue-cost ratio is PniYni

rKni+wLni+qMni
= x

x−1 .

Proof. i’s optimal price is pni = εn
εn−1zniY (Yni, ω, q), so differentiating yields

d ln pni
d lnω

=
zniY Y Yni
zniY

d lnYni
d lnω

+
zniY ωω

zniY
+
zniY qq

zniY

d ln q

d lnω

The production function implies that zniY Y Yni
zniY

= 1
γ−1, zniY ωωzniY

= (1−αni)(1−sMni ), and
zniY qq
zniY

= sMni ,
so this can be written as

d ln pni
d lnω

=

(
1

γ
− 1

)
d lnYni
d lnω

+ (1− αni)(1− sMni ) + sMni (1− αM )

The change in i’s output is then

d lnYni
d lnω

= −εn
d ln pni
d lnω

+
d lnYnp

εn
n

d lnω

= −εn
(

1

γ
− 1

)
d lnYni
d lnω

− εn
[
(1− αni)(1− sMni ) + sMni (1− αM )

]
+

[
d lnYnp

εn
n

d lnω

]
This can be rearranged as

d lnYni
d lnω

= γx
[
(αni − αn)− sMni (αni − αM )

]
+
xγ

εn

[
d lnYnp

εn
n

d lnω
− εn(1− αn)

]
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Using Lemma 1 and the fact that
∑

i∈In(αni − αn)θni

[
d lnYnp

εn
n

d lnω − εn(1− αn)
]

= 0 gives

σNn = (1− χn)σ̄n + χns̄
M
n ζ̄n +

∑
i∈In(αni − αn)θnix

[
(αni − αn)− sMni (αni − αM )

]
αn(1− αn)

= (1− χn)σ̄n + χns̄
M
n ζ̄n +

∑
i∈In(αni − αn)θnix

[
(αni − αn)− s̄Mn (αni − αM )

]
αn(1− αn)

where the second line uses the definition of s̄Mn . The desired result follows using
∑

i∈In(αni −
αn)θnis̄

M
n (αM − αn) = 0 and the definition of χn.

Finally, since pni = εn
εn−1zniY , the revenue cost ratio is

PniYni
rKni + wLni + qMni

=
pniYni
zni

=
εn

εn − 1

zniY Yni
zni

=
εn

εn − 1

1

γ
=

x

x− 1

B.4 Adjustment costs and Misallocation Frictions

Suppose that {TKni, TLni, TY ni}i∈In represent wedges that are paid while {τKni, τLni, τY ni}i∈In rep-
resent wedges that are unpaid. Then, for example, if w is the overall wage level then plant i pays
a wage of TLniw, but its shadow cost of labor is τLniTLniw. Then i acts as if it maximizes

τY niTY niPniYni − τKniTKnirKni − τLniTLniwLni

subject to Yni ≤ Fni(Kni, Lni) and Yni ≤ YnP
εn
n DniP

−εn
ni . We define, αni, θni, αn, and zni as

summarizing payments to factors

zni = TKniKni + ωTLniLni

αni =
TKnirKni

TKnirKni + TLniwLni

αn =

∑
i∈In TKnirKni∑

i∈In TKnirKni + TLniwLni
=
∑
i∈In

αniθni

θni =
TKnirKni + TLniwLni∑

j∈In TKnjrKnj + TLnjwLnj
=

zni∑
j∈In znj

We define the same variables with hats to summarize shadow costs:

ẑni = τKniTKniKni + τLniTLniωLni

α̂ni =
τKniTKnirKni

τKniTKnirKni + τLniTLniwLni

α̂n =

∑
i∈In TKnirKni∑

i∈In TKnirKni + TLniwLni

Claim 3 Suppose each Fni has a constant elasticity of substitution between capital and labor, σni.
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The industry elasticity of substitution, which satisfies σNn − 1 =
d ln

∑
i∈In TKniKni∑
i∈InTLniωLni
d lnω , is

σNn = (1− χ̂n)σ̄n + χ̂nεn

where χ̂n ≡
∑

i∈In
(αni−αn)(α̂ni−α̂n)θni

αn(1−αn)

Proof. To compute the industry elasticity of substitution we have

d lnαni
d lnω

=

d ln
TKniKni
TLniωLni
TKniKni
TLniωLni

+1

d lnω
=

TLniωLni
TKniKni + TLniωLni

d ln TKniKni
TLniωLni

d lnω
= (1− αni)(σni − 1)

and similarly

d lnαn
d lnω

=
d ln

[∑
i∈In TKniKni∑
i∈In TLniωLni

/
(∑

i∈In TKniKni∑
i∈In TLniωLni

+ 1
)]

d lnω
= (1− αn)(σNn − 1)

Using dαn =
∑

i∈In θnidαni + αnidθni, we can use the same logic as the benchmark case to write

σNn − 1 =
1

αn(1− αn)

∑
i∈In

[
αni(1− αni)(σni − 1)θni + (αni − αn)θni

d ln θni
d lnω

]
(28)

Before computing d ln θni
d lnω , note that

zni
ẑni

=
TKniKni + TLniωLni

τKniTKniKni + τLniTLniωLni
= τ−1Kniα̂ni + τ−1Lni(1− α̂ni)

Since
d ln

ˆαni
1− ˆαni

d lnω =
d ln

τKniTKniKni
τLniTLniωLni
d lnω = σni − 1, we can differentiate to get

d ln zni
d lnω

− d ln ẑni
d lnω

= αni
d ln α̂ni
d lnω

+ (1− αni)
d ln 1− α̂ni
d lnω

= αni(1− α̂ni)(σni − 1)− (1− αni)α̂ni(σni − 1)

= (αni − α̂ni)(σni − 1)

Constant returns to scale and Shephard’s lemma imply that

d ln ẑni
d lnω

=
d lnYni
d lnω

+ (1− α̂ni)
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Thus we have∑
i∈In

(αni − αn)θni
d ln θni
d lnω

=
∑
i∈In

(αni − αn)θni
d ln zni
d lnω

=
∑
i∈In

(αni − αn)θni

[
d ln ẑni
d lnω

+ (αni − α̂ni)(σni − 1)

]
=

∑
i∈In

(αni − αn)θni

[
d lnYni
d lnω

+ (1− α̂ni) + (αni − α̂ni)(σni − 1)

]
=

∑
i∈In

(αni − αn)θni

[
d lnYni
d lnω

+ (α̂n − α̂ni) + (αni − α̂ni)(σni − 1)

]
Combining this with equation (28) gives

σNn − 1 =
1

αn(1− αn)

∑
i∈In

{
αni(1− αni)(σni − 1)θni

+(αni − αn)θni

[
d lnYni
d lnω + (α̂n − α̂ni) + (αni − α̂ni)(σni − 1)

] }

=

∑
i∈In {αni(1− αni) + (αni − αn)(αni − α̂ni)} θni(σni − 1)

αn(1− αn)

+

∑
i∈In

{
(αni − αn)θni

d lnYni
d lnω + (α̂n − α̂ni)

}
αn(1− αn)

This can be simplified to

σNn − 1 = (1− χ̂n)(σni − 1) +

∑
i∈In

{
(αni − αn)θni

d lnYni
d lnω + (α̂n − α̂ni)

}
αn(1− αn)

or more simply

σNn = (1− χ̂n)σni +

∑
i∈In(αni − αn)θni

d lnYni
d lnω

αn(1− αn)

To get at d ln θni
d lnω , we can use Yni = YnP

εn
n DniP

−εn
ni and pni = 1

τY niTY ni
εn
εn−1 ẑniY to write

d ln pni
d lnω

=
d ln ẑniY
d lnω

= 1− α̂ni

We thus have ∑
i∈In(αni − αn)θni

d lnYni
d lnω

αn(1− αn)
=

∑
i∈In(αni − αn)θni(−εn)d ln pnid lnω

αn(1− αn)

= εn

∑
i∈In(αni − αn)θni(αni − α̂n)

αn(1− αn)

= χ̂nεn

With this we have two results. First, if unpaid wedges do not distort any plant’s capital-labor
ratio (τKni/τLni = 1 for each i) then χ̂n = χn, and the formula for the aggregate elasticity is exactly
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the same.
Second, in Section 4.4 we describe a thought experiment in which all variation in cost shares

of capital is due to unpaid wedges. To do this, we first compute the impact of unpaid wedges as
follows: Define α∗ni to be the i’s hypothetical capital cost share is there were no unpaid wedges.
Thus {K∗ni, L∗ni} = arg minKni,Lni TY niPniYni−TKnirKni−TLniwLni subject to Yni ≤ Fni(Kni, Lni)

and Yni ≤ YnP
εn
n DniP

−εn
ni . This would satisfy αni

1−αni =
(
τKni
τLni

)−σn α∗ni
1−α∗ni

and α̂ni
1−α̂ni = αni

1−αni
τKni
τLni

,

which together imply

α̂ni
1− α̂ni

=

(
αni

1− αni

)1− 1
σn
(

α∗ni
1− α∗ni

) 1
σn

In the thought experiment, we set α∗ni equal to the mean industry capital share and compute the
resulting industry and aggregate elasticities. In practice, this procedure can generate extremely
large and unrealistic wedges; we thus Windsorize all wedges using the 2nd and 98th percentiles.

B.5 Demand

In this section we generalize the demand system to a class of homothetic demand systems in which
demand for each good is strongly separable. While this class nests Dixit-Stiglitz demand, it allows
for arbitrary demand elasticities and pass through rates. An industry aggregate Yn is defined to
satisfy

1 =
∑
i∈In

Hni (Yni/Yn) (29)

where each Hni is positive, smooth, increasing, and concave. If Pn is the ideal price index associated

with Yn, then cost minimization implies Pni
Pn

= H ′ni

(
Yni
Yn

)
. Define the inverse of H ′ni to be hni(·) =

H ′−1ni (·). i faces a demand curve; to find its elasticity of demand, we can differentiate:

d lnYni/Yn = −εni(Pni/Pn)d lnPni/Pn (30)

where the elasticity of demand is εni(x) ≡ −h′ni(x)x
hni(x)

. The optimal markup chosen by i will satisfy

µni(Pni/Pn) = εni(Pni/Pn)
εni(Pni/Pn)−1 . It will be useful to define bni to be i’s local relative rate of pass

through: the responsiveness of Pni to a change in i’s marginal cost. Since Pni = µ(Pni/Pn)×mcni,

then d lnPni
d lnmcni

=
Pni/Pnµ

′
ni

µni
d lnPni
d lnmcni

+ 1, so that bni(x) ≡ 1

1−
xµ′
ni

(x)

µni(x)

.

Lastly, we define αPn ≡ 1 − d ln pn
d lnω to be the response of the ideal price index to a change in

relative factor prices. The following claim describes the industry elasticity of substitution.

Claim 4 Suppose that each Fni exhibits constant returns to scale and the demand structure in
industry n satisfies equation (29). Then the industry elasticity is

σNn = (1− χn)σ̄n + χns̄
M
n ζ̄n + χn(1− s̄Mn )x̄n

where

x̄n ≡
∑

i∈In(αni − αn)θni
[
(αni − αPn )− sMni (αni − αM )

]
εnibni∑

i∈In(αni − αn)θni
[
(αni − αPn )− sMni (αni − αM )

]
αPn =

∑
i∈In PniYniεnibni

[
αni − sMni (αni − αM )

]∑
i∈In PniYniεnibni
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Proof. Optimal price setting implies pni = µi(pni/pn)zniY . Taking logs and differentiating gives

d ln pni/pn
d lnω

=
µ′i(pni/pn)pni/pn

µi(pni/pn)

d ln pni/pn
d lnω

+
d ln zniY
d lnω

− d ln pn
d lnω

Constant returns to scale implies d ln zniY
d lnω = (1−αni)(1−sMni )+sMni (1−αM ) = (1−αni)+sMni (αni−

αM ), so this can be written as

d ln pni/pn
d lnω

= bni
[
sMni (αni − αM )− (αni − αPn )

]
(31)

The change in output is then

d lnYni/Yn
d lnω

= −εni
d ln pni/pn
d lnω

= εnibni
[
(αni − αPn )− sMni (αni − αM )

]
To get at the aggregate elasticity, we compute the following∑

i∈In

(αni − αn)θni
d lnYni
d lnω

=
∑
i∈In

(αni − αn)θni
d lnYni/Yn
d lnω

=
∑
i∈In

(αni − αn)θniεnibni
[
(αni − αPn )− sMni (αni − αM )

]
=

∑
i∈In

(αni − αn)θnix̄n
[
(αni − αPn )− sMni (αni − αM )

]
=

∑
i∈In

(αni − αn)θnix̄n
[
(αni − αPn )− s̄Mn (αni − αM )

]
=

∑
i∈In

(αni − αn)θnix̄n
[
(αni − αn)− s̄Mn (αni − αn)

]
= αn(1− αn)χn(1− s̄Mn )x̄n

where the third equality uses the definition of x̄n and the fourth uses the definition s̄Mn . This
expression and Lemma 1 give the desired result.

It remains only to compute αPn . Since
∑

i∈In
PniYni
PnYn

d lnYni/Yn
d lnω = 0, we can use equation (30) and

equation (31) to write

0 =
∑
i∈In

PniYni
PnYn

εnibni
[
sMni (αni − αM )− (αni − αPn )

]
which simplifies to

αPn =

∑
i∈In PniYniεnibni

[
αni − sMni (αni − αM )

]∑
i∈In PniYniεnibni

B.6 Non-Homothetic Production

This section analyzes how the industry elasticity of substitution is altered if production is non-
homothetic. This requires a more careful definition of the elasticities of substitution. A change in
factor prices will have a direct effect on a plant’s choice of capital-labor ratio, and may have an
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indirect impact if the change in factor prices alters a plant’s scale. We pursue an approach similar
to Joan Robinson: we define a plant’s elasticity of substitution to be how a change in relative factor
prices alters the plant’s capital-labor ratio holding output fixed. Similarly, an industry’s elasticity
of substitution is the response of the industry’s capital labor ratio to a change in relative factor
prices holding fixed the industry aggregate, Yn.

We first characterize the plant-level elasticity of substitution, and then derive an expression
for the industry level elasticity. In the interest of space, we restrict attention to the case in which
plants do not use materials.

Just as 1− αni
(

= zniωω
zni

)
is the labor share of i’s cost, we define α̃ni so that 1− α̃ni = zniY ωω

zniY
,

the labor share of i’s marginal cost.
Since 1− αni = zniω(Yni,ω)ω

zni(Yni,ω)
, we have

d ln(1− αni) =
zniωY Yni
zniω

d lnYni +
zniωωω

zniω
d lnω + d lnω − zniY Yni

zni
d lnYni −

zniωω

zni

Since zniωY Yni
zniω

= zniωY ω
zniY

zniY Yni
zni

, this can be arranged as

d ln(1− αni) =

(
zniωωω

zniω
+ 1− (1− αni)

)
d lnω +

(
1− α̃ni
1− αni

− 1

)
1

γni
d lnYni

Using d ln αni
1−αni = − 1

αni
d ln(1− αni), we have

d ln
αni

1− αni
=

(
− 1

αni

zniωωω

zniω
− 1

)
d lnω +

α̃ni − αni
αni(1− αni)

1

γni
d lnYni

By definition, σni − 1 is the change in αni
1−αni holding Yni fixed. The plant level elasticity of substi-

tution is

σni = − 1

αni

zniωωω

zniω

and

d ln
αni

1− αni
= (σni − 1)d lnω +

α̃ni − αni
αni(1− αni)

1

γni
d lnYni (32)

Claim 5 The industry elasticity is

σNn = (1− χn)σ̄n + χ̃nx̄n

where χn and σ̄n are defined as in Lemma 1 and

χ̃n ≡
∑
i∈In

(α̃ni − αn)(α̃ni − αPn )θni
αn(1− αn)

x̄n ≡

∑
i∈In(α̃ni − αn)(α̃ni − αPn )θni

εn/γni

1+εn
zniY Y Yni
zniY∑

i∈In(α̃ni − αn)(α̃ni − αPn )θni

and αPn is defined to satisfy 1− αPn = d ln pn
d lnω .
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Proof. Following the same logic as in the benchmark, we have

d ln
αn

1− αn
=
∑
i∈In

αni(1− αni)θni
αn(1− αn)

d ln
αni

1− αni
+
∑
i∈In

(αni − αn)

αn(1− αn)
θnid ln θni

Using equation (32), this becomes

d ln
αn

1− αn
=

∑
i∈In

αni(1− αni)θni
αn(1− αn)

(σni − 1)d lnω +
∑
i∈In

(α̃ni − αni)θni
αn(1− αn)

1

γni
d lnYni +

∑
i∈In

(αni − αn)

αn(1− αn)
θnid ln θni

= (1− χn)(σ̄n − 1)d lnω +
∑
i∈In

(α̃ni − αni)θni
αn(1− αn)

1

γni
d lnYni +

∑
i∈In

(αni − αn)

αn(1− αn)
θnid ln θni

where the second line used the definitions of σ̄n and χn. Since θni = zni/
∑

j∈In znj , we have

∑
i∈In

(αni − αn)θnid ln θni =
∑
i∈In

(αni − αn)θni

zniY Yni
zni

d lnY +
zniωω

zni
d lnω − d ln

∑
j∈In

znj


=

∑
i∈In

(αni − αn)θni

[
1

γni
d lnY + (1− αni)d lnω

]
Plugging this in and combining coefficients gives

d ln
αn

1− αn
= (1− χn)(σ̄n − 1)d lnω +

∑
i∈In

(α̃ni − αn)θni
αn(1− αn)

1

γni
d lnYni +

∑
i∈In

(αni − αn)

αn(1− αn)
θni(1− αni)d lnω

One can easily verify that
∑

i∈In
(αni−αn)(αni−1)

αn(1−αn) θni = χn. This and d ln αn
1−αn = d lnKn/Ln− d lnω

imply

d lnKn/Ln = (1− χn)σ̄nd lnω +
∑
i∈In

(α̃ni − αn)θni
αn(1− αn)

1

γni
d lnYni (33)

Finally we need to address the changes in scale. i’s price is pni = εn
εn−1zniY , so the change in i’s

price is

d ln pni =
zniY Y Yni
zniY

d lnYni +
zniY ωω

zniY
d lnω

=
zniY Y Yni
zniY

d lnYni + (1− α̃ni)d lnω

If the change in the industry price index satisfies d ln pn = (1−αPn )d lnω, then the change in output
is

d lnYni = −εnd ln
pni
pn

+ d lnYn

= −εn
(
zniY Y Yni
zniY

d lnYni + (1− α̃ni)d lnω − (1− αPn )d lnω

)
+ d lnYn

=
εn(α̃ni − αPn )d lnω + d lnYn

1 + εn
zniY Y Yni
zniY
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Using the definition of x̄n and χ̃n, we therefore have that

d lnKn/Ln = (1− χn)σ̄nd lnω +
∑
i∈In

(α̃ni − αn)θni
αn(1− αn)

1

γni

εn(α̃ni − αPn )d lnω + d lnYn

1 + εn
zniY Y Yni
zniY

= (1− χn)σ̄nd lnω + χ̃nx̄nd lnω +
∑
i∈In

(α̃ni − αn)θni
αn(1− αn)

1/γni

1 + εn
zniY Y Yni
zniY

d lnYn

Since σNn is defined to be the change in Kn/Ln in response to a change in ω holding fixed Yn, we
have

σNn = (1− χn)σ̄n + χ̃nx̄n
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C Data Notes (Online Appendix)

C.1 Census of Manufactures

We use the 1987 and 1997 Census of Manufactures to estimate plant elasticities of substitution and
demand. We remove all Administrative Record plants because these plants do not have data on
output or capital. We also eliminate a set of outliers and missing values from the dataset. We first
remove all plants born in the given Census year, as well as a small set of plants with missing age
data. We then remove plants with zero or missing data on the following variables: average revenue
product of capital, average revenue product of labor, capital share, capital labor ratio, and plant
level wage. We also remove plants above the 99.5th percentile or below the 0.5th percentile of their
4-digit SIC industry on these variables to remove plants with potential data problems.

For capital costs, we multiply capital stock measures by rental rates of capital. In the 1987
Census, the Census asked plants to report the book value of structures capital separately from
equipment capital. Thus, we construct the capital stock for structures capital separately from
equipment capital for 1987. Because the book value reported in the Census is a historical gross
cost measure (although it accounts for capital retirements), we multiply the book value of capital
by a current net cost to historical gross cost deflator based upon estimates of the current net value
of capital and historic gross value of capital constructed by the Bureau of Economic Analysis at
the 2-digit SIC level. Because this deflator is not base 1987, we then use investment deflators to
convert each capital stock to 1987 dollars.

In the 1997 Census, the Census only asked plants to report the total value of capital. We
construct capital deflators and rental rates for both structures and equipment capital using the
same procedure as 1987. We then average both the capital deflator and rental rate of capital for
structures and equipment capital, weighting each type of capital by its share of overall capital based
upon data for the plant’s 4-digit SIC industry from the NBER Productivity Database.

C.2 Local Wages

We construct measures of the local wage in order to estimate the elasticity of substitution across
plants, using two different datasets to measure the local area wage. The primary dataset that we
use in the Census 5 percent samples of Americans. The Population Censuses have data on both
wages and MSA geographic location for a large sample of workers.

To obtain the local wage, we first calculate the individual wage for prime age men (with age
between 25 and 55) who are employed in the private sector as workers earning a wage or salary.
We calculate the wage as an hourly wage, defined as total yearly wage and salary income divided
by total hours worked. We measure total hours worked as weeks worked per year multiplied by
hours worked per week. We remove all individuals with zero or missing income or zero total hours
worked. For 1990, incomes above the Census top code of $140,000 are set to the state median
of wage and salary income above the top code. For 2000, incomes above the Census top code of
$175,000 are set to the state mean of wage and salary income above the top code.

Before calculating local area wages, we adjust measures of local wages for differences in worker
characteristics through regressions with the individual log wage as a dependent variable. We in-
clude education through a set of dummy variables based upon the worker’s maximum educational
attainment, which include four categories: college, some college, high school degree, and high school
dropouts. We define experience as the individual’s age minus an initial age of working that depends
upon their education status, and include a quartic in experience in the regression. We also have
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data on the race of workers and so include three race categories of white, black, and other. We
include six occupational categories: Managerial and Professional; Technical, Sales, and Adminis-
trative; Service, Farming, Forestry, and Fishing; Precision Production, Craft, and Repairers; and
Operatives and Laborers. Finally, we include thirteen industrial categories: Agriculture, Forestry,
and Fisheries; Mining; Construction; Manufacturing; Transportation, Communications and Other
Public Utilities; Wholesale Trade; Retail Trade; Finance, Insurance, and Real Estate; Business
and Retail Services; Personal Services; Entertainment and Recreation Services; Professional and
Related Services; and Public Administration. We then calculate the local area wage as the MSA
average of residual wages from a regression that includes all of these characteristics, with separate
regressions by year. Because the Economic Census is conducted in different years from the Pop-
ulation Censuses, we match the 1987 Census of Manufactures to wages from the 1990 Population
Census, and the 1997 Census of Manufactures to wages from the 2000 Population Census.

The second dataset that we use for robustness checks is the Longitudinal Business Database,
which contains data on payroll and employment for all US establishments. We construct the
establishment wage as total payroll divided by total employment. We measure the local wage as
the mean log wage at the county level. We match the 1987 Longitudinal Business Database to the
1987 Census of Manufactures and the 1997 Longitudinal Business Database to the 1997 Census of
Manufactures.

C.3 Instruments

We use labor demand instruments for the local wage for robustness checks on our estimates of the
elasticity of substitution, based upon the differential impact of national level shocks to industry
employment across locations. Positive national shocks to an industry should increase labor demand
and wages, more in areas with high concentrations of that industry. Formally, the predicted growth
rate in employment for a given location is the sum across industries of the product of the local
employment share of this industry and the 10 year change in national level employment for that
industry. We use the Longitudinal Business Database, which contains all US establishments, to
construct these instruments.

The implicit assumption here is that changes in industry shares at the national level are inde-
pendent of local manufacturing plant productivity. To help ensure that this assumption holds, we
exclude manufacturing industries from the labor demand instrument. We calculate the instrument
defining locations by MSAs and industries at the SIC 4 digit level. For 1987, we use the instrument
from 1976-1986 because the SIC 4 digit industry definitions change significantly from 1977 to 1987.

C.4 Annual Survey of Manufactures

The Annual Survey of Manufactures tracks about 50,000 plants over five year panel rotations that
are more heavily weighted towards large plants. We use the ASM to calculate the heterogeneity
indices and materials shares. The ASM has data on plant investment over time as well as book
values of the stock of capital, which we use to construct perpetual inventory measures of capital.

We also take into account retirements of the capital stock until 1987, as data on retirements of
capital stock are available from 1977-1987 excepting 1986. For 1973-1976 and 1986 we can calculate
an imputed value for retirements as end of year capital subtracted from beginning year capital and
yearly investment; we lower investment if this value is negative. Plants retire their capital stock
at a rate of about 4 percent a year, which is concentrated in a few plants retiring a lot of capital
stock. Since firms retiring capital deduct the retirement values from their book value, the book
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value incorporates depreciation from retirements.
We calculate perpetual inventory measures of capital through the following capital accumulation

equation, as in Caballero et al. (1995):

Kt = (1− δa)Kt−1 + It −Rt

where Kt is period t capital stock, It is period t investment, Rt is period t retirements, and δa is
the in use depreciation rate. We build separate capital stocks for structures and equipment capital.
To calculate the in use depreciation rate δa, we first calculate δr the average yearly rate of capital
retirements (total retired capital stock divided by beginning gross capital stock) across plants from
1977 to 1985 by 2 digit SIC industry. We then initially define the in use depreciation rate as:

δa = δ − δr

where δ is the overall 2 digit SIC depreciation rate calculated by the BLS minus this yearly retire-
ment rate.

We account for retirements by building a set of capital vintages for each year that the plant
exists in the dataset. Retirements are taken out of the gross capital stock of the earliest vintages of
capital, as we assume FIFO retirement of capital. We initialize capital stock by the initial sample
year book value, so for the first year that the plant exists in the dataset, capital is set to book
value of capital. We deflate this book value by a net current cost to gross historical cost deflator.
In subsequent years, each vintage is investment deflated through the investment deflator. Real
investment is added to capital, and in use depreciation subtracted from capital. After this process,
we recalculate the retirement depreciation rate as capital retired net of in use depreciation divided
by net overall capital stock, and then recalculate all of the capital vintages to construct an overall
capital measure.

After 1987, retirements are no longer recorded so we calculate perpetual inventory measures of
capital without retirements, as in the following capital accumulation equation:

Kt = (1− δ)Kt−1 + It

where δ is the overall depreciation rate. After 1992, the Census no longer records book values
for structures and equipment separately, although they do record investment separately by capital
type. When we only have a total book value of capital for a plant, we use earlier data from the plant
on the share of equipment capital to form separate capital stocks for structures and equipment. If
no earlier data from the plant is available, we use the share of equipment capital for the 4 digit
industry from the NBER productivity database.

The ASM plant samples also have data on the value of non monetary compensation given to
employees, such as health care or retirement benefits, which we use to better measure payments to
labor.

C.5 Rental Rates

We define the rental rate using the external real rate of return specification of Harper et al. (1989).
The rental rate for industry n is defined as:

Ri,t = Ti,t(pi,t−1ri,t + δi,tpi,t)
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where ri,t is a constant external real rate of return of 3.5 percent, pi,t is the price index for capital
in that industry, δi,t is the depreciation rate for that industry, and Ti,t is the effective rate of capital
taxation. We calculate Ti,t following Harper et al. (1989) as:

Ti,t =
1− utzi,t − ki,t

1− ut

where zi,t is the present value of depreciation deductions for tax purposes on a dollar’s investment
in capital type i over the lifetime of the investment, ki,t is the effective rate of the investment tax
credit, and uit is the effective corporate income tax rate. We obtained zi,t, uit, and ki,t from Dale
Jorgenson at the asset year level; we then used a set of capital flow tables at the asset-industry
level to convert these to the industry level.

To calculate depreciation rates δi,t, we take depreciation rates from NIPA at the asset level and
use the capital flow tables to convert them to the industry level. Our primary source of prices of
capital pi,t are from NIPA, which calculates separate price indices for structures and equipment
capital. As an alternative, we also develop a set of rental rates based upon the investment price
series of Cummins and Violante (2002).

The capital flow tables and investment price series depend upon the industry definition; because
the US switches from SIC basis to NAICS basis during this period, we construct separate rental
price series for SIC 2 digit industries and NAICS 3 digit industries. Finally, when we examine the
aggregate we have to aggregate all of the rental price series; we do so by calculating Tornqvist
indices between equipment and structures capital for each industry, and then a Tornqvist index
across rental rates for each industry. The Tornqvist indices allow for the share of equipment capital
in industry capital and for the share of different industries in manufacturing capital to change over
this period.

C.6 Homogeneous Product Industries

We follow a similar process to Foster et al. (2008) in constructing data on homogeneous product
industries for robustness checks on the elasticity of demand. We use six homogeneous products:
Boxes, Bread, Coffee, Concrete, Processed Ice and Plywood.41 All of the products are defined as in
Foster et al. (2008). We use data from 1987-1997 as capital data was imputed before 1987 for non-
ASM plants, although we do not use data for 1992 for Processed Ice (because of data errors), 1987
for Boxes (because of a product definition change), and 1997 for Concrete (because quantity data
was not recorded). We remove Census balancing codes imputed by the Census to make product
level data add up to overall revenue data in cases where we can identify them. We also remove
receipts for contract work, miscellaneous receipts, resales of products, and products with negative
values.

We then remove all plants for which the product’s share of plant revenue (measured after
removing the balancing codes and other items mentioned above) is less than 50 percent. For
each product, we have measures of both total quantity produced and revenue, which allows me to
calculate product price as revenue over quantity. We delete all plants for which the ratio of product
price to median product price is between .999 and 1.001, as these plants likely have quantity data
imputed by the Census. We also remove plants with prices greater than ten times the median price
or less than one-tenth the median price as potential mismeasured outliers.

41Foster et al. (2008) examine 5 additional products: Carbon Black, Flooring, Gasoline, Block Ice, and
Sugar; small samples in the years we study preclude this analysis.
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C.7 Cross Country Data

We obtain plant-level data for Chile, Colombia, and India from national plant-level manufacturing
censuses. The Chilean data spans 1986 to 1996 with about 5,000 plants per year, the Colombian
data from 1981 to 1991 with about 7,000 plants per year, and the Indian data from 2000 to 2003
with about 30,000 plants per year.42 The Chilean and Colombian data cover all manufacturing
plants with at least ten employees, while the Indian data are a sample of all plants with at least
ten employees (twenty if without power), with plants with at least one hundred workers sampled
with certainty. We define industries at a similar level to two digit US SIC; for Chile and Colombia
this is at the three digit ISIC level, and for India at the two digit NIC level.

Capital costs are the most involved variable to construct. For each country, a capital stock is
constructed for each type of capital. Capital services is the sum of the stock of each type multiplied
by its rental rate plus rental payments. To account for utilization (and especially entry and exit),
we multiply capital services by the fraction of the year the plant was open. The capital rental rate
is composed of the real interest rate R, depreciation rate δ for that type of capital, and effective
corporate tax rate τ :

r =
R+ δ

1− τ

For corporate tax rates, we use the one year effective tax rate collected by Djankov et al. (2010).
Djankov et al. (2010) derive effective tax rates for fiscal year 2004 by asking a major accounting
firm to calculate the tax rate for the same fictitious corporation in 85 countries.

Across countries, there are some differences in the construction of capital stocks and depreciation
rates. For Chile, we use capital stocks constructed by Greenstreet (2007). Greenstreet (2007)
constructed capital stocks for each type of capital using a permanent inventory type procedure.
We use his depreciation rates of 5 percent for buildings, 10 percent for equipment, and 20 percent
for vehicles.

For Colombia and India, we construct measures of capital services. To construct capital for
Colombia, we broadly follow the perpetual inventory procedure of Tybout and Roberts (1996).
Because the Indian data is not panel, we use book values of capital for each type of capital. For
both Colombia and India, we match the depreciation rates we calculate for US industries to the
equivalent industries in Colombia and India for structures and equipment, while for transportation,
we follow Greenstreet (2007) and set the depreciation rate to 0.20.43

We base the real interest rate on private sector lending rates reported in the IMF Financial
Statistics. For Colombia, we have capital deflators over time and so construct separate real interest
rates for each type of capital by deducting the realized inflation rates for each type of capital from
the lending rate. For India, we do not have investment deflators and so use the GDP deflator.

We then use the average real interest rate over our sample period for the rental rates. For labor
costs, we use the available wages and benefits data for each country.

To construct rental rates of capital for our policy experiments, we require real interest rates,
corporate tax rates, and depreciation rates for each country at the same point in time. For the
real interest rate, we adjust the nominal private sector lending rate for each country from the IMF

42We have data from Chile going back until 1979, but we only use the later years to avoid the Chilean
financial crisis in the early 1980s.

43The US depreciation rates are based on NIPA data on depreciation rates of assets; we then use asset-
industry capital tables to construct depreciation rates for structures and equipment for each industry.
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International Financial Statistics for inflation, and then average from 1992 to 2011.44 For corporate
tax rates, we again use the one year effective tax rate collected by Djankov et al. (2010). Finally,
we set the depreciation rate to 9.46 percent based upon US manufacturing data.

D Additional Empirical Results (Online Appendix)

D.1 Micro Capital–Labor Elasticity Estimates

This section includes tables of plant capital-labor substitution elasticity estimates.

Table VI Elasticities of Substitution between Labor and Capital for Two Digit Industries

Industry 1987 1997 N
20: Food Products 0.67 (0.10) 0.87 (0.11) ≈ 10,000
22: Textiles 0.70 (0.16) 0.30 (0.24) ≈ 3,500
23: Apparel 0.82 (0.11) 0.40 (0.09) ≈ 12,000
24: Lumber and Wood 0.23 (0.12) 0.48 (0.11) ≈ 15,000
25: Furniture 0.42 (0.14) 0.18 (0.17) ≈ 6,000
26: Paper 0.20 (0.16) 0.20 (0.15) ≈ 4,000
27: Printing and Publishing 0.57 (0.05) 0.50 (0.08) ≈ 26,000
28: Chemicals 0.41 (0.15) 0.51 (0.21) ≈ 6,500
29: Petroleum Refining 0.70 (0.23) 0.53 (0.28) ≈ 1,500
30: Rubber 0.64 (0.13) 0.42 (0.14) ≈ 8,500
31: Leather 0.43 (0.28) 0.46 (0.36) ≈ 1,000
32: Stone, Clay, Glass, Concrete 0.47 (0.11) 0.80 (0.16) ≈ 9,000
33: Primary Metal 0.42 (0.17) 0.26 (0.19) ≈ 4,000
34: Fabricated Metal 0.33 (0.09) 0.25 (0.09) ≈ 20,000
35: Machinery 0.54 (0.08) 0.52 (0.11) ≈ 25,000
36: Electrical Machinery 0.48 (0.12) 0.51 (0.12) ≈ 8,000
37: Transportation Equip 0.65 (0.16) 0.77 (0.16) ≈ 5,000
38: Instruments 0.74 (0.10) 0.71 (0.13) ≈ 4,500
39: Misc 0.43 (0.13) 0.38 (0.12) ≈ 6,500

Note: All regressions include 4 digit SIC industry fixed effects, age fixed effects, and a multiunit
status indicator and have standard errors clustered at the two digit industry-area level. Wages are
as defined in the text.

D.2 Demand Elasticity Estimates

This section includes tables of plant demand elasticity estimates.

44We employ a discrete time correction as some countries have high inflation rates, so R = it−πt
1+πt

for
lending rate it and inflation rate πt. We use the change in the GDP deflator for inflation.
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Table VII Elasticities of Demand for Two Digit Industries

Industry 1987 1997 N
20: Food Products 3.96 (0.001) 3.63 (0.002) ≈ 10,000
22: Textiles 4.92 (0.006) 5.22 (0.011) ≈ 3,500
23: Apparel 3.68 (0.001) 3.73 (0.001) ≈ 12,000
24: Lumber and Wood 4.20 (0.002) 4.86 (0.001) ≈ 15,000
25: Furniture 3.90 (0.001) 4.07 (0.002) ≈ 6,000
26: Paper 4.73 (0.003) 4.58 (0.003) ≈ 4,000
27: Printing and Publishing 3.20 (0.000) 3.53 (0.000) ≈ 26,000
28: Chemicals 3.05 (0.001) 2.94 (0.001) ≈ 6,500
29: Petroleum Refining 4.26 (0.016) 4.60 (0.042) ≈ 1,500
30: Rubber 3.78 (0.001) 3.63 (0.001) ≈ 8,500
31: Leather 4.01 (0.009) 3.71 (0.009) ≈ 1,000
32: Stone, Clay, Glass, Concrete 4.00 (0.001) 3.81 (0.001) ≈ 9,000
33: Primary Metal 4.76 (0.005) 3.97 (0.004) ≈ 4,000
34: Fabricated Metal 3.99 (0.000) 3.74 (0.000) ≈ 20,000
35: Machinery 3.93 (0.000) 3.82 (0.000) ≈ 25,000
36: Electrical Machinery 3.45 (0.001) 3.33 (0.001 ≈ 8,000
37: Transportation Equip 4.34 (0.003) 4.29 (0.004) ≈ 5,000
38: Instruments 3.02 (0.001) 2.91 (0.001) ≈ 4,500
39: Misc 3.58 (0.001) 3.43 (0.001) ≈ 6,500

Note: All estimates are based upon inverting the average markup across plants in an industry;
the markup over marginal cost is equal to ε

ε−1 . We define the markup as sales divided by the sum
of costs from capital, labor, and materials.
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D.3 Local Content of Materials

In our baseline estimates of the elasticity of substitution between materials and non-materials, ζ,
we assume that the local wage does not affect the materials price the plant faces. As a robustness
check, we examine how sensitive our estimates are to correlation between materials prices and
local wages due to local content of materials. The local wage would affect labor costs for locally
sourced materials. We use the 1993 Commodity Flow Survey to construct the local content of
shipments for every industry included in the survey, defining local as a shipment within 100 miles
of the originating factory. We then use the 1992 Input-Output tables to construct the average local
content of materials for every manufacturing industry. Assuming that every input industry has
the same materials and labor shares and fraction of local content of materials, the elasticity of the
materials price with respect to the wage is:

d log qi
d logw

= (1− αn)
1− sMn lc

1− (1− sMn )lc

where lc is the measure of local content.
We therefore estimate ζ using the regression

log
rKi + wLi

qMi
= (1− ζ)

(1− αi)
(1− αn) 1−sMn lc

1−(1−sMn )lc

(logwi) + CONTROLS + εi

As we report in the text, we find only slightly lower estimates in estimated elasticities after ac-
counting for the local content of materials.

D.4 Cross Industry Demand Elasticity

The cross industry elasticity of demand characterizes how industry level demand responds to a
change in the overall industry price level. To estimate this elasticity, we use panel data on quantity
and price at the industry level from the NBER productivity database from 1962 to 2009.

Since least squares estimates conflate demand and supply, we have to instrument for price
using supply side instruments that capture industry productivity. The two instruments that we
examine is the average product of labor, defined as the amount of output produced per worker, and
the average real cost per unit of output produced, which is the appropriate measure of industry
productivity in our model. We thus have the following regression specification:

log qn,t = −η log pn,t + αn + βt + CONTROLS + εn
where qn,t is quantity produced for industry n in period t, pn,t is the price for industry n in

period t, αn are a set of industry fixed effects, and βt are a set of time fixed effects.
We then examine the cross industry demand elasticity, defining industry at both the four digit

and two digit SIC levels. We have 459 four digit industries and 20 two digit industries.45 For each
industry definition, we develop specifications with extra sets of controls to account for potential
trends over time that could be correlated with changes in prices. In the four digit specifications,

45Since the underlying data is at the four digit industry level, we develop two digit SIC prices and quantities
using a Fisher ideal index with base year 1987. We also exclude eight 4 digit industries which disappear
because they are excluded after the Census shifts to NAICS basis manufacturing, the most prominent of
which is Newspaper Publishing.
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these extra controls include either 2 digit industry-year fixed effects, or 4 digit industry linear
trends. In the two digit specifications, these extra controls include 2 digit industry linear trends.

Table VIII below contains these estimates, as well as the OLS estimate. As would be expected
from simultaneity bias, OLS estimates are lower in magnitude than IV estimates. The IV estimates
using four digit industries range between 1.2 and 2.2 and are slightly above estimates using two
digit industries. This pattern is consistent with two digit industry varieties being less substitutable
than four digit industry varieties.

The two digit industry IV estimates range from 0.75 to 1.15, with three of the four estimates
close to one. Because we define industries in our aggregation analysis at the two digit level, the two
digit industry estimates are more appropriate. We thus set the cross industry demand elasticity to
one. Our results are not extremely sensitive to this elasticity; increasing the elasticity from 1 to
1.5 would increase the US aggregate elasticity by about 0.01.

Table VIII Cross Industry Elasticity of Demand for the Manufacturing Sector

Industry Definition:
Instrument Four Digit Two Digit
None 0.99

(0.02)
1.06
(0.01)

0.57
(0.02)

0.91
(0.03)

0.37
(0.05)

APL 1.30
(0.01)

1.28
(0.01)

2.12
(0.03)

1.14
(0.04)

1.05
(0.06)

Avg Cost 1.19
(0.01)

1.22
(0.01)

1.58
(0.02)

1.04
(0.03)

0.77
(0.05)

Industry-Year Controls None Two
Digit
FE

Four
Digit
Trends

None Two
Digit
Trends

Note: Standard errors are in parentheses. The first row contains coefficients from OLS regressions,
while the second and third row are IV regressions with either the average product of labor or average
real cost per unit produced as instruments. The first three columns are on four digit SIC industries;
all regressions contain four digit SIC industry and year fixed effects. The second column also includes
two digit industry-year fixed effects and the third column also includes four digit industry linear time
trends. The last two columns are on two digit SIC industries; all regressions contain two digit SIC
industry and year fixed effects. The last column also includes two digit industry linear time trends.

D.5 Aggregate Elasticity Over Time

Our baseline approach to examining the change in the aggregate elasticity over time fixes plant
demand and production elasticities at their 1987 values. In this section, we show how these estimates
change if we instead use the production and demand elasticities from 1997. Figure 10 depicts the
aggregate elasticity of substitution over time both using the 1997 micro elasticities, in dashed blue,
and using the 1987 elasticities in solid red. The 1997 elasticities lower all of the estimates by about
0.01. Almost all of this change is due to the elasticity of materials to non-materials falling from
0.90 to 0.67; just changing the plant demand elasticities and capital-labor substitution elasticities
has almost no effect on the aggregate estimates.
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Figure 10 Aggregate Elasticity of Substitution Across Time Using 1997 Production and
Demand Elasticities

Note: The figure displays the manufacturing level elasticity of substitution by Census year from
1972-2007. The red solid line is based on the 1987 plant demand and substitution elasticities, and
the blue dashed line is based on the 1997 elasticities.

D.6 Labor Share Decomposition

D.6.1 Derivation of Decomposition

This section describes the how the theory is used to execute the decomposition of equation (13).
Labor’s share of value added is sv,L =

∑
n vns

vL
n , where sv,Ln is labor’s share of added in industry

n and vn is industry n’s share of total value added. Changes in labor’s share of value added can
come from changes in labor’s share within industries or changes between industries:

dsv,L =
∑
n

sv,Ln dvn +
∑
n

vnds
L
n

=
∑
n

(
sv,Ln − sv,L

)
dvn +

∑
n

vnds
v,L
n

We can decompose each into the components that responded to price changes, a within-industry
residual, and a between-industry residual.

dsv,L =
∂sv,L

∂w/r
d lnw/r +

∑
n

(
sv,Ln − sv,L

)(
dvn −

∂vn
∂ lnw/r

)
d lnw/r +

∑
n

vn

(
dsv,Ln − ∂sv,Ln

∂ lnw/r
d lnw/r

)

where ∂sv,L

∂ lnw/r =
∑

n

(
sv,Ln − sv,L

)
∂vn

∂ lnw/r +
∑

n vn
∂sv,Ln
∂ lnw/r .
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We now derive expressions for ∂sv,Ln
∂w/r and ∂vn

∂w/r . To get at these we will use

∂ ln(1− αn)

∂ lnw/r
= α(1− σn)

∂ ln
(
1− sMn

)
∂ lnω

= sMn
(
1− ζNn

)
(αM − αn)

Define µn = εn
εn−1 . Since sv,Ln = (1− αn) rKn+wLnV An

= (1− αn) 1−sMn
µn−sMn

. We then have

∂sv,Ln
∂w/r

= sv,Ln

{
∂ ln 1− αn
∂ lnw/r

+
µn − 1

µn − sMn
∂ ln

(
1− sMn

)
∂ lnw/r

}

= sv,Ln

{
αn
(
1− σNn

)
+

µn − 1

µn − sMn
sMn
(
1− ζNn

) (
αM − αn

)}
To get at the between terms, note that

vn =
V An
V A

=
(
µn − sMn

)(rKn + wLn + qMn

rK + wL+ qM

)(
rK + wL+ qM

V A

)
Since

∑
n vn(sv,Ln − sv,L) = 0, we have

∑
n

vn(sv,Ln − sv,L)
∂ ln vn
∂ lnw/r

=
∑
n

vn
(
sv,Ln − sv,L

) [∂ ln
(
µn − sMn

)
∂ lnw/r

+
∂ ln rKn+wLn+qMn

rK+wL+qM

∂ lnw/r

]

Since η = 1,
∂ ln rKn+wLn+qMn

rK+wL+qM

∂ lnw/r = 0. Thus

∑
n

vn(sv,Ln − sv,L)
∂ ln vn
∂ lnw/r

=
∑
n

vn
(
sv,Ln − sv,L

) 1− sMn
µn − sMn

∂ ln
(
1− sMn

)
∂ lnw/r

=
∑
n

vn
(
sv,Ln − sv,L

) (1− sMn ) sMn
µn − sMn

(
1− ζNn

) (
αM − αn

)

D.6.2 Labor Share from Production Data

Our benchmark analysis decomposed labor’s share of income as measured in the national accounts.
This data is built from manufacturing firms. Alternatively, we could analyze the changes in labor
share as measured from production data built from manufacturing plants. We will briefly describe
the advantages of each and why the analysis based on national accounts is our preferred measure.

The national accounts is built from firm data, so it includes all establishments (including non-
manufacturing establishments) of manufacturing firms. This data contains measures of overall labor
compensation.

The production data from the NBER CES production database is built from the same manu-
facturing plant database that we used to compute the aggregate elasticity. Because the aggregate
production data does not include benefits, in each year we adjust the payments to labor by the
ratio of total compensation to wages and salaries for manufacturing from NIPA.

We prefer using the labor share from the national accounts for two reasons. First, it makes
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our study comparable to the rest of the literature that has studied the labor share. Second, the
production data only includes expenses incurred at the plant level, such as energy and materials
costs. It does not include expenses such as advertising, research and development not conducted at
the plant, and all expenses at the corporate headquarters. The absence of these expense means that
value added, and hence our residual “profit”, are both overstated and may have different trends
over time.

Nevertheless, Table IX displays the change in the labor share and its components under two
alternatives. First, we perform the same analysis as in the text, decomposing the change in the
labor share of value added as measured in the production data. Second, we decompose the change
in labor’s share of the total expenditure on capital and labor, d sl

sl+sk
, into the contribution from

factor prices and the contribution from biased technical change. We believe the latter is more
comparable across the two sources.

Table IX Contributions to Labor Share Change using Production Data

Annual Contribution Cumulative Contribution
Labor Factor Labor Factor

Period Share Prices Bias Share Prices Bias

Labor’s Share of Value Added
1970-1999 -0.51 0.09 -0.60 -15.19 2.67 -17.86
2000-2009 -0.57 0.08 -0.65 -5.67 0.80 -6.47

Labor’s Share of Capital and Labor Cost
1970-1999 -0.17 0.13 -0.30 -5.19 3.86 -9.06
2000-2009 -0.75 0.13 -0.88 -7.52 1.29 -8.82

Note: The factor price and bias contributions are as defined in the text. Annual Contributions
are in percentage points per year and Cumulative Contributions are in percentage points.

Labor’s share of value added in the production data declined at about the same rate between
1970-1999 and in the 2000s. Labor’s share of capital/labor cost falls much faster in the 2000s,
and is more consistent both qualitatively and quantitatively with the overall pattern using national
accounts. The decline of the labor share accelerated since 2000, which is mostly accounted for by
an acceleration of the bias.

D.6.3 Alternative Rental Prices

Our rental prices are based upon official NIPA deflators for equipment and structures capital. How-
ever, Gordon (1990) has argued that the NIPA deflators underestimate the actual fall in equipment
prices over time. We examine how this critique might change our results on the bias of technical
change by using an alternative rental price series for equipment capital that Cummins and Violante
(2002) developed by extending the work of Gordon (1990). Their series extends to 1999, so we
compare our baseline to these rental prices during the 1970-1999 period. Using the Cummins and
Violante (2002) equipment prices implies that the wage to rental price ratio has increased by 3.8
percent per year, instead of 2.0 percent per year with the NIPA deflators. This change increases
the contribution of factor prices to the labor share from 0.08 percentage points per year to 0.14
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percentage points per year. Given our estimate of the aggregate elasticity of substitution, changes
in factor prices have not been the driving force behind the declining labor share.

Table X Contributions to Labor Share Change with Alternative Rental Price Series

Annual Contribution Cumulative Contribution
Annual Labor Factor Labor Factor

Deflator w
r

Change Share Prices Bias Share Prices Bias

NIPA 2.02 -0.26 0.08 -0.34 -7.69 2.39 -10.08
GCV 3.80 -0.26 0.14 -0.40 -7.69 4.32 -12.00

Note: The factor price and bias contributions are as defined in the text. Annual Contributions are
in percentage points per year and Cumulative Contributions are in percentage points. Data covers
1970-1999.

D.7 Aggregate Time–Series Approach

We now compare our methodology to the approach that jointly estimates the aggregate capital-
labor elasticity of substitution and bias of technical change using aggregate time series data. This
approach uses the following econometric model:

sv,L

1− sv,L
= β0 + (σagg − 1) log

r

w
+ log φ+ ε (34)

where d log φ is the bias of technical change and ε is interpreted as measurement error that is
orthogonal to log r

w . It is well known that estimates depend critically on what assumptions are
placed on the bias of technical change. Under an assumption of Hicks neutral technical change
(d log φ = 0), the aggregate elasticity is precisely estimated at 1.91. The elasticity is considerably
above one because the labor share fell and wages rose relative to capital prices during the sample
period.

Once we allow for biased technical change, however, estimates of both the bias and aggregate
elasticity become imprecise, as shown in Figure 11. The first way we introduce biased technical
change is through a constant rate of biased technical change (d log φ is constant). This constant
rate of bias becomes a time trend in the aggregate regression. The elasticity is then identified by
movements in relative factor prices around the trend; short run movements in factor prices are
assumed to be uncorrelated with movements in technology. Given a constant bias, the estimate of
the aggregate elasticity using least squares regressions is 0.56; the 95 percent confidence interval
ranges from 0.05 to 1.07.

Our evidence for a rising rate of biased technical change over time motivates the use of a
more flexible specification for the bias. We use a Box–Cox transformation of the time trend, as in
Klump et al. (2007), which allows the bias to vary monotonically over time.46 With the Box–Cox
specification, the aggregate elasticity is 0.69, close to our baseline estimates. Again, the range of
the confidence interval is large.

46The Box–Cox transformation implies that d log φ = γtλ; λ allows the rate of biased technical change to
vary over time.
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Each methodology provides a measure of the contribution of the bias of technical change to the
decline in the labor share, depicted in Figure 11.47 Assuming a constant rate of biased technical
change, the average contribution of bias is about −0.5 percentage points per year and is larger than
our average contribution. More importantly, this average misses the timing of the large changes in
the contribution of bias over time. The Box–Cox specification implies that the contribution of bias
to the labor share has accelerated over time, but does not display the sharp drop at 2000 that the
bias estimates from our method have.

Figure 11 Elasticity and Bias Estimates from Aggregate Data

Note: The left plot displays the point estimate and 95 percent confidence interval for the aggregate
elasticity of substitution from regressions based on equation (34). Specifications differ in assumptions
on the bias of technical change. Technical change is respectively assumed to have no trend, follow a
linear time trend, or follow a Box–Cox transformation of the time trend. The right plot displays the
contribution to the labor share from the bias of technical change, from either aggregate regressions
with a linear or Box-Cox specification of the time trend or from our method that estimates the
aggregate elasticity from the micro data.

47For the aggregate time series method, the contribution of bias is sv,L(1− sv,L)d log φ; thus, the contri-
bution to the labor share can vary over time even if the bias is constant.
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