
Computational Appendix of “Safe Assets”

Abstract

This appendix presents the equilibrium conditions of the model in the main part of

the paper, explains the solution method, and references the MATLAB codes that replicate

the results.

1 The Model

The economy consists of one Lucas tree and two types of agents, denoted i ∈ {1, 2}. The

total size of the population is 2. The population share of type 1 agents is denoted N1 and

the population share of type 2 agents is, therefore, 1−N1.

The utility of agent i, denoted Uit, is given by:

U1−θ
it =

ρ

1 + ρ
C1−θ

it +
1

1 + ρ
Et

(

U1−γi
i,t+1

)
1−θ
1−γi . (1)

Agent i’s budget constraint is:

Cit + PtKit +Bit = (Yt + Pt)Kit−1 +Rf
t Bit−1, (2)

where Cit, Kit, and Bit denote consumption, equity shares, and bonds determined in period

t, Pt is the stock price and Rf
t+1 is the risk-free interest rate paid in t + 1.

In equilibrium, aggregate consumption equals aggregate output, the aggregate stock of

equity is 1, and the aggregate stock of bonds is 0:

2N1C1t + 2 (1−N1)C2t = Yt (3)

2N1K1t + 2 (1−N1)K2t = 1 (4)

2N1B1t + 2 (1−N1)B2t = 0. (5)

1



Aggregate output follows the exogenous process:

log Yt+1 = log Yt + g − bdt+1,

where dt+1 is a stochastic disaster shock with distribution:

dt =

{

0 1− p

1 p
. (6)

The disaster probability is given by p and is assumed to be fixed.

The Euler conditions of agent i are given by:

Et

(

Mit+1R
f
t+1

)

= 1

Et

(

Mit+1

Yt+1 + Pt+1

Pt

)

= 1,

where Mit+1 denotes the stochastic discount factor of agent i, defined by:

Mit+1 =
1

1 + ρ

C−θ
it+1

C−θ
it

Uθ−γi
it+1

(

EtU
1−γi
it+1

)

θ−γi
1−γi

. (7)

1.1 Random type changes

At the end of each period, agents’ types change randomly with probability ν. Agents who

change type become type 1 with probability N1 and type 2 with probability 1−N1. Hence,

the population shares remain constant over time. The possibility of a type change does not

affect agents’ optimal decisions.

The type changes impose a transfer of assets between the two types of agents (we ig-

nore distributional effects within types). Specifically, the number of type 1 agents that

become type 2 is 2N1ν (1−N1). This is also the number of type 2 agents that become

type 1. Hence, the amount of equity shares that is transferred from type 1 to type to

is 2N1ν (1−N1) (K1t −K2t). Per capita, the equity shares of type 1 agents decrease by

ν (1−N1) (K1t −K2t). Substituting in this expression the aggregate condition (4), we find

that the per capita equity shares of agent 1 decrease by ν (K1t − 0.5). Similar calculations

imply that the per capita bond holdings of agent 1 decrease by νB1t.

Let K∗

1t and B∗

1t denote equity and bond holdings of type 1 agents after the type change.

It follows that:

2



K∗

1t = K1t − ν (K1t − 0.5) (8)

B∗

1t = B1t − νB1t. (9)

Thus, K∗

1t and B∗

1t comprise the portfolio of agent 1 at the beginning of period t + 1. In

the next pages, we omit the ∗ notation, with the understanding that beginning of period

variables should be interpreted as ex post the type change and end of period variables should

be interpreted as ex ante the change.

1.2 Detrending

Define the risk-free assets held by agent 1 at the beginning of the period by A1t:

A1t = Rf
t B1t−1.

Define the price of the risk-free asset by:

qft =
1

Rf
t+1

.

We normalize the nonstationary variables by output. This gives the following equilibrium

3



conditions:

log
Yt+1

Yt

= g − bdt+1

C1t

Yt

+
Pt

Yt

K1t + qft
A1t+1

Yt

=

(

1 +
Pt

Yt

)

K1t−1 +
A1t

Yt−1

·
Yt−1

Yt

C2t

Yt

+
Pt

Yt

K2t + qft
A2t+1

Yt

=

(

1 +
Pt

Yt

)

K2t−1 +
A2t

Yt−1

·
Yt−1

Yt

Et

(

M1t+1R
f
t+1

)

= 1

Et

(

M2t+1R
f
t+1

)

= 1

Et

(

M1t+1

Pt+1

Yt+1
+ 1

Pt

Yt

·
Yt+1

Yt

)

= 1

Et

(

M2t+1

Pt+1

Yt+1
+ 1

Pt

Yt

·
Yt+1

Yt

)

= 1

K2t =
1

2 (1−N1)
−

N1

1−N1

K1t

A2t

Yt−1

= −
N1

1−N1

A1t

Yt−1

together with the Epstein-Zin block for each i = 1, 2:

θ = 1 : log

(

Uit

Yt

)

=
ρ

1 + ρ
log

(

Cit

Yt

)

+
1/(1 + ρ)

1− γi
logEt

(

(

Uit+1

Yt+1

)1−γi

·

(

Yt+1

Yt

)1−γi
)

(10)

θ 6= 1 :

(

Uit

Yt

)1−θ

=
ρ

1 + ρ

(

Cit

Yt

)1−θ

+
1

1 + ρ

[

Et

(

(

Uit+1

Yt+1

)1−γi

·

(

Yt+1

Yt

)1−γi
)]

1−θ
1−γi

Mit+1 =
1

1 + ρ

(

Cit+1

Yt+1

)

−θ

(

Cit

Yt

)

−θ
·

(

Yt+1

Yt

)

−θ

(

Uit+1

Yt+1

)θ−γi

·
(

Yt+1

Yt

)θ−γi

[

Et

(

(

Uit+1

Yt+1

)1−γi

·
(

Yt+1

Yt

)1−γi
)]

θ−γi
1−γi

. (11)

1.3 Change of variables

For notational simplicity, define: C̃it = Cit

Yt
, P̃t = Pt

Yt
, Ũit = Uit

Yt
. In addition, denote:

Ŷt =
Yt

Yt−1
and Â1t =

A1t

Yt−1
. Last, the utility variables are scaled down and the time discount

rate is given by β = 1

1+ρ
. This yields the following system:

4



log Ŷt+1 = g − bdt+1 (12)

C̃1t + P̃tK1t + qft Â1t+1 =
(

1 + P̃t

)

K1t−1 + Â1t/Ŷt (13)

C̃2t + P̃tK2t + qft Â2t+1 =
(

1 + P̃t

)

K2t−1 + Â2t/Ŷt (14)

Et

(

M1t+1R
f
t+1

)

= 1 (15)

Et

(

M2t+1R
f
t+1

)

= 1 (16)

Et

(

M1t+1

P̃t+1 + 1

P̃t

· Ŷt+1

)

= 1 (17)

Et

(

M2t+1

P̃t+1 + 1

P̃t

· Ŷt+1

)

= 1 (18)

K2t =
1

2 (1−N1)
−

N1

1−N1

K1t (19)

Â2t = −
N1

1 −N1

Â1t, (20)

and the Epstein-Zin/Weil block that holds for each agent i = 1, 2:

F 1−γi
it = Et

(

(

Ũit+1/Ũi

)1−γi

·
(

Ŷt+1

)1−γi
)

(21)

θ = 1 : log
(

Ũit/Ũi

)

= (1− β) log
(

C̃it/C̃i

)

+ (1− β) log

(

C̃i

Ũi

)

+ β logFit (22)

θ 6= 1 :
(

Ũit/Ũi

)1−θ

= (1− β)
(

C̃it/C̃i

)1−θ

(

C̃i

Ũi

)1−θ

+ βF 1−θ
it

Mit+1 = β

(

C̃it+1

)

−θ

(

C̃it

)

−θ
·

(

Ũit+1/Ũi

)θ−γi

·
(

Ŷt+1

)

−γi

F θ−γi
it

. (23)

Ũi and C̃i are scaling parameters for agent i. They are calibrated by the non-stochastic steady

state values of the respective variables.

5



2 Computational Details

We cast the model into the following form:

Etf (yt+1, yt, xt+1, xt) = 0,

xt+1 = h (xt) + ηǫt+1,

yt = g (xt)

h (xt) =

(

h̃ (xt)

Φ (x2
t )

)

, η =

(

0

η̃

)

.

yt is a vector of control variables and xt =
(

x1
t

x2
t

)

is a vector of state variables, where x1
t denotes

the predetermined endogenous state variables and x2
t denotes the exogenous variables. η is a

known matrix and ǫt+1 is a vector of zero-mean shocks. The first rows of η that correspond to

the predetermined state variables must be zero. The function Φ denotes the expected value

of x2
t+1. This function is known, because we have the law of motion of the exogenous state

variables. The unknown functions are g and h̃ which provide the decision rules of yt and x1
t+1.

In our model, we define the model variables as:

xt =







K1t−1

Â1t

dt






, yt =























F1t

F2t

log C̃1t

log C̃2t

log qft

log P̃t























, Φ = p, η =







0

0

1






, ǫt+1 =

{

−p 1− p

1− p p
.

The state vector xt contains two endogenous state variables and one exogenous variable (dt).
1

The total number of endogenous variables is 8 (two state variables and 6 control variables).

The other model variables can be expressed in terms of these variables through the model

conditions.

2.1 Solution algorithm

The model is solved by the “Taylor projection” method described in Levintal (2016) and

Fernández-Villaverde and Levintal (2016). Specifically, we approximate the policy functions g

1Note that the binary shock ǫt+1 is demeaned. This will be useful to obtain a perturbation solution that
will be used as an initial guess.

6



and h̃ by complete 4th-order polynomials and plug them into the model conditions to get the

residual function R (x,Θ), where Θ denotes the vector of unknown polynomial coefficients.

We evaluate R at the point of interest x0 and use the Newton method to find Θ that zeros

R and all its derivatives up to order k at x0. Consequently, the 4th-order Taylor series of R

about x0 is zero, which implies that R is approximately zero in the neighborhood of x0. Hence,

Θ is an approximate solution to the model in this neighborhood. The approximate solution

can be used as an initial guess for solving the model at a new point x1 6= x0. Proceeding this

way, we solve the model at different points of interest.

2.2 Initial guess

Finding Θ requires solving a nonlinear problem. We use the Newton method, for which

we need a good initial guess. Usually, a perturbation solution is a good initial guess in the

neighbourhood of the non-stochastic steady state. Hence, it is recommended to solve the

model first at the non-stochastic steady state using the perturbation solution as an initial

guess. Once the model is solved at the non-stochastic steady state, the solution can be used

as an initial guess for solving the model at a different point in the state space.

The challenge that we face, however, is that the non-stochastic model (i.e., with zero

volatility) does not have a stable perturbation solution because the wealth share of the two

agents is indeterminate. To face this difficulty, we introduce a small cost parameter µ > 0

into the optimization problem of agent 1, which pins down the non-stochastic steady state

and yields a stable perturbation solution. We use this solution as an initial guess for the true

model with µ = 0.

Specifically, we change the budget constraint (2) of agent 1 as follows:

Cit + PtKit +Bit + .5µPt

(

K1t − K̄1

)2
+ .5µqft Yt

(

B1t

qft Yt

−
¯̂
A1

)2

= (Yt + Pt)Kit−1 +Rf
tBit−1,

where K̄1 and
¯̂
A1 are parameters. Consequently, the budget constraint and the Euler condi-

tions of agent 1, given by equations (13), (15) and (17), change into:

C̃1t + P̃tK1t + qft Â1t+1 + .5µP̃t

(

K1t − K̄1

)2
+ .5µqft

(

Â1,t+1 −
¯̂
A1

)2

=
(

1 + P̃t

)

K1t−1 + Â1t/Ŷt

Et

(

M1t+1R
f
t+1

)

= 1 + µ
(

Â1,t+1 −
¯̂
A1

)

Et

(

M1t+1

P̃t+1 + 1

P̃t

· Ŷt+1

)

= 1 + µ
(

K1t − K̄1

)

.

Under this specification, the non-stochastic steady state equity and bond shares of agent 1 are

7



K̄1 and
¯̂
A1, respectively. By choosing K̄1 = 0.5 and

¯̂
A1 = 0, the non-stochastic steady state

equity shares are equal across the two agents and bond issues are zero. The perturbation

solution is stable, and we can employ it as an initial guess for solving the nonlinear problem

at the initial point of the simulation, where we set µ = 0 to remove the investment costs.

2.3 Simulations

To simulate the model we follow these steps:

1. We solve the model at the non-stochastic steady state (using a perturbation solution

as an initial guess).

2. Starting at the non-stochastic steady state, the model is simulated along a path of no

realized disasters. We check the accuracy of the solution along the simulation (measured

by the model residuals) and solve the model again whenever accuracy falls below a

threshold.

3. When the model reaches a fixed point, denoted x0, the simulation is stopped. The fixed

point x0 is where the model converges in the absence of realized disasters. Hence, a

simulation with disasters is likely to be in the neighborhood of x0.

4. In addition, we solve the model at other points that the simulation is likely to visit.

For instance, the state after a disaster hits (starting at x0) is a point of high likelihood.

Similarly, the state after a second disaster hits could also be likely.

5. Having solved the model at several points, we interpolate the solution of the model

at a given point xt using the available solutions. A simple Shepard’s interpolation

method performs well in this role. Specifically, suppose we want to approximate the

value of yt at xt, given by the function g (xt). The model has already been solved at N

different points x0, . . . , xN−1, which implies that we have N different polynomials that

approximate g (xt). We take a weighted average of these N approximations, where the

weights are the inverse of the distance of xt from the solution points x0, . . . , xN−1.

6. Finally, we simulate the model with realized disasters, starting at x0, for 2,000 years and

compute the simulation moments reported in the main text. We monitor the accuracy

of the solution by computing mean and max model residuals across the simulation. The

accuracy measures are reported in Tables 1-3 below.

8



Table 1: Accuracy measures for Table 1 in the paper

γ1 mean errors max errors

log10
1 -15.5 -14.9
1.5 -10.7 -10.6
2 -9.1 -8.9
2.5 -8.0 -7.9
3 -12.9 -12.7
3.5 -11.7 -11.5
4 -10.6 -10.4
4.5 -9.6 -9.5
5 -8.7 -8.6
5.5 -7.9 -7.7
6 -7.0 -6.9

The table presents accuracy measures for Table 1 in the main text. The accuracy measures are
the mean and maximum model residuals (presented in log10 units) across the simulations.

9



Table 2: Accuracy measures for Table 2 in the paper

γ1 mean errors max errors

log10
3.86 -10.9 -10.7
3.6 -5.7 -3.2
3.4 -5.1 -2.6
3.3 -4.4 -2.3
3.2 -3.3 -1.3
3.1 -2.6 -0.6

The table presents accuracy measures for Table 2 in the main text. The accuracy measures are
the mean and maximum model residuals (presented in log10 units) across the simulations.

10



Table 3: Accuracy measures for Table 3 in the paper

θ = .5 θ = 2 ν = .05 p = .02 N1 = .25

γ1 mean max mean max mean max mean max mean max

log10
3.6 -5.6 -3.2 -5.4 -3.3 -5.3 -3.3 -5.8 -3.3 -5.6 -3.1
3.4 -5.0 -2.8 -4.5 -2.7 -4.6 -2.9 -5.4 -2.9 -4.3 -2.6
3.2 -4.1 -2.2 -1.3 0.0 -2.9 -1.2 -4.4 -2.2 -2.9 -0.9

The table presents accuracy measures for Table 3 in the main text. The accuracy measures are
the mean and maximum model residuals (presented in log10 units) across the simulations.

11



3 Matlab codes

The companion Matlab package, available at http://economics.sas.upenn.edu/~jesusfv/Matlab_Codes_Safe

solves the model by Taylor projection and replicates the results of the paper. Detailed in-

stallation instructions are described in the readme file. For a more general description of the

Taylor projection algorithm and a simple example read the enclosed user guide.

References

Fernández-Villaverde, J., and O. Levintal (2016): “Solution Methods for Models

with Rare Disasters,” Manuscript, University of Pennsylvania.

Levintal, O. (2016): “Taylor Projection: A New Solution Method for Dynamic General

Equilibrium Models,” Manuscript, Interdisciplinary Center Herzliya.

12

http://economics.sas.upenn.edu/~jesusfv/Matlab_Codes_Safe_Assets.zip

	The Model
	Random type changes
	Detrending
	Change of variables

	Computational Details
	Solution algorithm
	Initial guess
	Simulations

	Matlab codes

