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Section 9 contains additional results on the paper, in particular on setups with heterogeneous

agents, endogenous attention, and mental accounts. Section 10 gives much more detail on the

Mirrlees model. Section 11 contains proofs not included in the main paper. Sections 12 and 13

gives complements to consumer theory, with linear and nonlinear budget constraints respectively.

9 Additional Results

9.1 Complements on optimal tax with heterogeneous agents

9.1.1 Calibration: Optimal Ramsey tax with heterogeneous agents

Here we provide details to the calibration done in Section 3.1

With heterogeneous agents, the misperception is distributed as a 2-point distribution with the

following properties:

mh
i =

1 with probability p

a with probability 1− p

with a ∈ [0, 1], and

E[mh
i ] =p× 1 + (1− p)× a = 0.25

E[(mh
i )

2] =p× 1 + (1− p)× a2 = 0.252 + 0.13.

These equations are satisfied at p = .1877 and a = .0767. We then take equation (11), with

Shi =− chi ψi
qhi

qhi =1 +mh
i τi

chi =(qhi )−ψi .

This yields:
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τ ∗i
pi

=
(
∑

h πhc
h
i )(1−

γ
λ
)

ψi
∑

h πh[m
h
i
chi
qhi

(1− (1−mh
i )

γ
λ
)]
,

where πh ∈ {p, (1−p)} is the fraction of agents of each type. Assume values 1− γ
λ

= Λ = 1.25% and

ψi = 1. Then, under the case with heterogeneity (p = .1877 and a = .0767), we have
τ∗i
pi

= 0.073, or

7.3%. Under homogeneity with the same average misperception mh
i = .25 for all agents,

τ∗i
pi

= 20.28,

for a ratio.2028/.073 = 2.78. When the taxes are fully salient, so mh
i = 1 for all agents, then the

optimal tax is 1.27%, giving a ratio .0127/.073 = .174.

9.1.2 Optimal taxes with default tax perceptions and heterogeneous agents

Agent h has utility uh(c) = ch0 +
∑

i U
h(chi ), with quadratic utility Uh(chi ) =

ahchi −
1
2

(chi )2

Ψh
. Agents

are heterogeneous in attention mh
i and default taxes τ d,hi . In particular, agent h perceives tax as

τ s,hi = mh
i τi + (1−mh

i )τ
d,h
i . Each agent has the same social welfare weight γ.

The demand for good i is chi (τi) = ah −Ψh(pi + τ s,hi (τi)).

The Ramsey planning problem is

max
τ

L(τ)

where

L(τ) =
H∑
h=1

γ
n∑
i=1

(
Uh(chi (τi))− (pi + τi)c

h
i (τi) + λτic

h
i (τi)

)
First-order condition

∂L

∂τi
= γ

H∑
h=1

(
Uh
chi

∂chi
∂τi
− (pi + τi)

∂chi
∂τi
− chi (τi) +

λ

γ
chi (τi) +

λ

γ
τi
∂chi
∂τi

)
= 0

Let Λ′ ≡ λ/γ − 1, and note that ∂chi /∂τi = Ψhmh
i , we can rewrite the FOC as:

∂L

∂τi
= γ

H∑
h=1

((
ah − chi (τi)

Ψh
− pi + Λ′τi

)
(−Ψhmh

i ) + Λ′chi (τi)

)

= γ

H∑
h=1

((
τ s,hi + Λ′τi

)
(−Ψhmh

i ) + Λ′[ah −Ψh(pi + τ s,hi (τi))]
)

= γ

H∑
h=1

(
−Ψhmh

i (m
h
i + Λ′)τi −Ψhmh

i (1−mh
i )τ

d,h
i + Λ′[ah −Ψhpi]− Λ′Ψhmh

i τi − Λ′Ψh(1−mh
i )τ

d,h
i

)
= γ

H∑
h=1

(
−Ψhmh

i (m
h
i + 2Λ′)τi −Ψh(1−mh

i )(m
h
i + Λ′)τ d,hi + Λ′[ah −Ψhpi]

)
= −γH

(
E[Ψhmh

i (m
h
i + 2Λ′)]τi + E[Ψh(1−mh

i )(m
h
i + Λ′)τ d,hi ]− Λ′E[ah −Ψhpi]

)
= 0
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We can solve explicitly for optimal Ramsey tax in this case:

τi =
Λ′E[ah −Ψhpi]− E[Ψh(1−mh

i )(m
h
i + Λ′)τ d,hi ]

E[Ψhmh
i (m

h
i + 2Λ′)]

(43)

9.1.3 Pigouvian Nudges with heterogeneous agents

We start with the Pigouvian example of Section 3.2. There is only one taxed good n = 1. We use

the specialization of the general model developed in Section 2.7. We assume no redistribution or

revenue-raising motives (γh = βh = λ).

We model the nudge as a psychological tax, as in Section 2.4. Agent h’s demand is given by

arg maxc U (c) −
(
p+ ηhχ

)
c, where χ is the nudge and ηh is the agent’s nudgeability. We use

quadratic utilities, exactly as in the Pigouvian taxes of Section 3.2. The demand of a consumer

can then be expressed as ch (τ, χ) = ah−Ψ
(
p+ ηhχ

)
, where ηh is the nudgeability of agent h. We

apply the optimal nudge formula (9).

When the nudge is the only instrument, the optimal nudge is

χ =
E
[
ξhηh

]
E
[
ηh2
] =

E
[
ξh
]
E
[
ηh
]

+ cov
(
ξh, ηh

)
E [ηh]2 + var [ηh]

, (44)

where again E denotes the average over agents h.67

Heterogeneities in nudgeability determine how well targeted the nudge is to the internality/externality.

The optimal nudge is stronger when it is well-targeted, in the sense that nudgeable agents are also

those with high internality/externality (higher cov
(
ξh, ηh

)
). The optimal nudge is weaker when

there is more heterogeneity in nudgeability (higher var
[
ηh

2
]
).68

9.1.4 Nudges vs. Taxes with Redistributional Concerns

Jointly optimal nudges and taxes We next consider the optimal joint policy using both

nudges and taxes. We only highlight a few results; more results can be found in the online appendix

(Section 9.1.4). We again normalize pi = 1. One can show that

∂2L

∂τ∂χ
= − 1

Ψ
E
[(
λ− γh

(
1−mh

))
ηh
]
.

As a result, if γh = λ so that there are no revenue raising or redistributive motives, then taxes and

nudges are substitutes. Taxes and nudges are complements if and only if E
[(
λ− γh

(
1−mh

))
ηh
]
≤

0. Nudges and taxes can be complement if social marginal utility of income γh and nudgeability

67The intermediate steps are as follows. Using chχ = −Ψηh, τ = 0, τ b,h = τX,h − χηh, we get ∂L
∂χ (τ , χ) =∑

h

[
λτ − λτ ξ,h − βhτ b,h

]
· chχ = λ

∑
h

[
0− τX,h + χηh

]
Ψηh.

68Some recent studies study the demographic covariates of nudgeability (Chetty et al. (2014), Beshears et al.
(2016)), and it would be good to measure the covariance between nudgeability and internality.
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ηh are positively correlated. Loosely speaking, if poor agents (with a high γh) are highly nudge-

able, then taxes and nudges can become complements, because in that case, nudges reduces the

consumption of poor nudged agents, thereby improving the redistributive incidence of the tax. We

next state the exact values of taxes and nudges, in the case γh = λ.69

Proposition 9.1 Assume γh = λ. Then jointly optimal nudges and taxes are given by the following

formulas

τ =
E
[
(ηh)2

]
E
[
τX,hmh

]
− E

[
ηhmh

]
E
[
τX,hηh

]
E [(ηh)2]E [(mh)2]− (E [ηhmh])2 ,

χ =
E
[
τX,hηh

]
E
[
(mh)2

]
− E

[
τX,hmh

]
E
[
ηhmh

]
E [(ηh)2]E [(mh)2]− (E [ηhmh])2 .

The more powerful the nudge is for high-internality agents (the higher is E
[
τX,hηh

]
, keeping

all other moments constant), the more optimal policy relies on the nudge and the less it relies

on the tax (the higher is χ, the lower is τ). Symmetrically, if the better perceived is the tax by

high-internality people (the higher is E
[
τX,hmh

]
), the more optimal policy relies on the tax and

the less it relies on the nudge.

The more heterogeneity there is in the perception of taxes (the higher is E
[
(mh)2

]
, holding all

other moments constant), the less targeted the tax is to the internality/externality, and, as a result,

the lower is the optimal tax τ , and under certain conditions, the higher the optimal nudge χ.70

Similarly, the more heterogeneity there is in nudgeability (the higher is E
[
(ηh)2

]
, holding all other

moments constant), then lower is the optimal nudge χ, and, under similar conditions, the higher is

the optimal tax τ .

Nudges vs. taxes We now ask how to choose, if one must, between nudges and taxes. We

could analyze this question using the model outlined just above, comparing the relative merits of

nudges and taxes in terms of internality targeting and redistributive incidence. Instead, we choose

to investigate this question in the context of a model with no heterogeneity, but where the nudges

are potentially aversive.

69In the general case, with the notation σY,Z = cov (Yh, Zh) :

τ =
E
[
γhηh

2
]
E
[
λτX,hmh − σγ,c/Ψ

]
− E

[
γhηhm

h
]
E
[
λτX,hηh

]
E
[
γhηh

2
]
E
[
γhmh2 − σγm

]
− E [γhηhmh]E [γhηhmh − σγ,η]

,

χ =
E
[
λτX,hηh

]
E
[
γhm

h2 − σγm
]
− E

[
λτX,hmh − σγ,c/Ψ

]
E
[
γhηhmh − σγ,η

]
E
[
γhηh

2
]
E
[
γhmh2 − σγm

]
− E [γhηhmh]E [γhηhmh − σγ,η]

.

70The condition is E
[
τX,hmh

]
E
[
ηh

2
]
≥ E

[
τX,hηh

]
E
[
ηhmh

]
. It is verified if ηh,mh, τX,h are independent.
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We augment the example of Section 3.4 with aversive nudges. We use the same quadratic utility

functions as in Section 3.5. We use the nudge as a tax model developed in Section 2.4. We again

normalize pi = 1.

For concreteness, we interpret the harmful good (good 1) as cigarettes. We extend the model

to account for the possibility that the nudge may directly create an aversive reaction (perhaps via

a disgusting image of a cancerous lung), which we capture as a separable utility cost ιhχci so that

experienced utility is now

uh (c, χ) = uh (c)− ιhχci,

where ιhχci is the nudge aversion term. And we assume that there is no heterogeneity across agents.

The next proposition formalizes how nudge aversion changes the relative attractiveness of nudges

vs. taxes. The planner must choose between two instruments to discourage cigarette consumption:

a weakly positive tax (τ ≥ 0) or an aversive nudge (χ ≥ 0).

Proposition 9.2 (“Nudge the poor, tax the rich”) Consider a good with a “bad” internality (e.g.

cigarettes). Suppose that at most one of two instruments (nudges and nonnegative taxes) can be

used to correct this internality. And suppose that there is no heterogeneity across agents. Then an

optimal tax is superior to an optimal nudge if and only if

λ− γh

mh
>
−ιhγh

ηh
. (45)

This proposition captures a new interesting trade-off between taxes and nudges. Both taxes and

nudges correct internalities. But taxes also raise revenues on the agents consuming the good under

consideration, which is desirable if λ > γh but undesirable if λ < γh. Nudges do not raise revenues,

and instead directly reduce utility.

When λ > γh, taxes dominate nudges as taxes have desirable side effects by raising revenues

while nudges have adverse side effects by reducing utility. But when λ < γh taxes and nudges

both have undesirable side effects. Taxes dominate nudges when the desire to redistribute income

towards agents consuming the good associated with the internality is weak (γh−λ is low), and when

these agents are attentive to the tax (mh is high). Nudges dominate taxes when nudge aversion is

low (ιh is low) and when agents are easily nudged (ηh is high).

See section 9.5.4 for more details on optimal nudges and taxes.

9.1.5 Discouragement formula

In the traditional model without behavioral biases we can use the symmetry of the Slutsky matrix

Sr,h to write τ · Sr,hi =
∑

j τjS
r,h
ji as τ · Sr,hi =

∑
j τjS

r,h
ij . We can then rewrite the optimal tax
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formula of Proposition 2.1 in “discouragement” form as

−
∑

h,j τjS
r,h
ij

ci
= 1− γ̄

λ
− cov(

γh

λ
,
Hchi
ci

), (46)

The left-hand side is the discouragement index of good i, which loosely captures how much the con-

sumption of good i is discouraged by the taxes τj on all the different commodities j. The right-hand

side indicates that in the absence of distributive concerns (homogenous γh = γ), all goods should be

uniformly discouraged in proportion to the relative intensity 1− γ̄
λ

of the raising revenue objective.

With redistributive concerns (heterogenous γh), goods that are disproportionately consumed by

agents that society tries to redistribute towards (agents with a high γh) should be discouraged less.

9.2 Complements on Endogenous Attention: Attention as a good

9.2.1 Interpreting attention as a good

To capture attention and its costs, we propose the following reinterpretation of the general frame-

work. We imagine that we have the decomposition c = (C,m), where C is the vector of traditional

goods (champagne, leisure), andm is the vector of attention (e.g. mi is attention to good i). We call

IC (respectively Im) the set of indices corresponding to traditional goods (respectively attention).

Then, all the analyses and propositions apply without modification.

This flexible modeling strategy allows us to capture many potential interesting features of atten-

tion. The framework allows (but does not require) attention to be chosen and react endogenously

to incentives in a general way (optimally or not). It also allows (but does not require) attention to

be produced, purchased and taxed.

We find it most natural to consider the case where attention is not produced, cannot be pur-

chased, and cannot be taxed. This case can be captured in the model by imposing that pi = τi = 0

for i ∈ Im.

It is useful to consider two benchmarks. The first benchmark is “no attention cost in wel-

fare,” where attention is endogenous (given by a function m(q, w)) but its cost is assumed not

to directly affect welfare so that u (C,m) = U(C). For instance, as a decision vs. experi-

enced utility generalization of the example of the previous paragraph, we could have m (q, w) =

arg maxm us (C (q, w,m) ,m), where us (C,m) = U (C) − g (m), but still u (C,m) = U(C). In

that view, people use decisions heuristics that can respond to incentives, but the cost of those

decision heuristics is not counted in the utility function. In this benchmark, we have τ bi = 0 for

i ∈ Im.

The second benchmark is “attention cost in welfare”. For simplicity, we outline this case under

the extra assumption, which is easy to relax, that attention is allocated optimally. We suppose

that there is a primitive choice function C(q, w,m) for traditional goods that depends on attention
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m= (m1, ...,mA) so that c (q, w,m) = (C(q, w,m) ,m).71 Attention m= m (q, w) is then chosen

to maximize u (C (q, w,m) ,m). This generates a function c (q, w) = (C(q, w,m (q, w)),m(q, w)).

In that benchmark, attention costs are incorporated in welfare.72 For instance we might consider a

separable utility function u (C,m) = U (C)−g (m) for some cost function g (m). A non-separable

u might capture that attention is affected by consumption (e.g., of coffee) and attention affects

consumption (by needing aspirin).

The tax formula (7) has a term (τ−τ̃ b,h) ·SC,hi =
∑

k∈Im
⋃
Ic(τk− τ̃

b,h
k )SC,hki , a sum that includes

the “attention” goods k ∈ Im. As attention is assumed to have zero tax, we have τk = 0 for k ∈ Im.

The term τ̃ b,hk , which accounts for potential misoptimization in the allocation of attention, requires

no special treatment. However, two polar special cases are worth considering that simplify the

calculations. First, consider the “no attention cost in welfare” case. In this case we saw that τ̃ b,hk = 0

for k ∈ Im. Together with τk = 0 for k ∈ Im, this implies that (τ−τ̃ b,h)·SC,hi =
∑

k∈IC (τk−τ̃ b,hk )SC,hki

is the sum restricted to commodities. Second, consider the “optimally allocated attention” case.

Then (see Proposition 9.4) (τ − τ̃ b,h) · SC,hi =
∑

k∈IC (τkS
C,h
ki − τ̃

b,h
k SC,hki|m), where SC,hi|m is a Slutsky

matrix holding attention constant, which is in general different from SC,hi . For tax revenues, the full

Slutsky matrix, including changes in attention, matters (the term τkS
C,h
ki ). However, for welfare,

when attention is assumed to be optimally allocated, it is the Slutsky matrix holding attention

constant that matters (the term τ̃ b,hk SC,hki|m). This is a version of the envelope theorem.

Characterizing optimal allocation of attention Suppose that we have a constraint: c =c(p, w, θ)

for some parameter θ. For instance, suppose that c(p, w, θ) = (C (p, w,m (θ)) ,m (θ)); when

m (θ) = θ, we’re considering the potentially optimal allocation of attention, as attention affects

directly the choice of goods. If m= (m1,m2,m3) = (θ1, θ2, θ2), we captures that the attention to

goods 2 and 3 have to be the same.73

Proposition 9.3 (Characterizing optimal allocation of attention) The first order condition for the

optimal allocation of parameter θ (i.e., θ (p, w) = arg maxθ u (c (p, w, θ))) is:

τ b · cθ (p, w, θ) = 0. (47)

71For instance, in a misperception model, attention operates by changing the perceived price qs (q, w,m) which
in turn changes consumption as C(q, w,m) = Cs(q, qs (q, w,m) , w).

72The first order condition characterizing the optimal allocation of attention can be written as τ b ·cmj
(q, w,m) = 0

for all j ∈ {1, ..., A}. This condition can be re-expressed more conveniently by introducing the following no-
tation: we call k (i) the index k ∈ Im corresponding to dimension i ∈ {1, ..., A} of attention. We then get∑
i∈IC τ

b
iCmj

(q, w,m) + τ bk(j) = 0 for all j ∈ {1, ..., A}.
73In a model of noisy decision-making à la Sims (2003), the same logic exactly applies, except that quantities

are generally stochastic. The consumption is a random variable c (p, w, ε̃), where ε̃ indexes noise, rather than a
deterministic function. Then, utility is U (c (p, w)) = E [u (c (p, w, ε̃))], SH (p, w) is likewise a random variable. We
do not pursue this framework further here, at it is hard to solve beyond linear-quadratic settings, e.g. with Gaussian
distribution of prices – which in turn generates potentially negative prices.
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Proof The FOC is uccθ = 0. We note that Bc·cθ = 0 by budget constraint: B (c (p, w, θ)) = w.

So,

τ b · cθ =

(
Bc −

uc (c,p)

vw (p, w)

)
· cθ = −uc (c,p) · cθ

vw (p, w)
,

so that τ b · cθ = 0 if and only if uc · cθ = 0. �

Proposition 9.4 (Value ofDj when attention is optimal). When attention is of the form c (p, w, θ) =

(C (p, w,m (θ)) ,m (θ)), and is optimally chosen, then

−Dj = τ bC ·Cpj (p, w,m)|m=m(θ(p,w))

= τ bC · SHj|m (p, w,m)|m=m(θ(p,w)) = τ bC · SCj|m (p, w,m)|m=m(θ(p,w)) .

where τ bC = BC (C,p)− uC(C,m)
vw(p,w)

is the behavioral wedge restricted to goods consumption, and SHj|m
and SCj|m are the Slutsky matrices SHj and SCj holding attention constant, i.e. associated to decision

C (p, w,m) with constant m = m (θ (p, w)).

Proof We have

−Dj = τ b · cpj (p, w, θ) = τ b ·
[(
Cpj (p, w,m) ,0

)
+ cθ (p, w, θ) θpj (p, w)

]
= τ b ·

(
Cpj (p, w,m) ,0

)
as τ b · cθ = 0

=
(
τ bc, τ

b
m

)
·
(
Cpj (p, w,m) , 0

)
= τ bc ·Cpj (p, w,m) . = τ bc · SCj|m = τ bc · SHj|m.

“No attention cost in welfare” benchmark Another benchmark is the “no attention cost

in welfare”, i.e. the cost of attention is not taken into account in the welfare analysis. Suppose

that attention m just moves with prices, but as an automatic process whose “cost” is not counted:

that is, u (C,m) = u (C) and attention has 0 price, pm = 0. This is the way it is often done

in behavioral economic (see however Bernheim and Rangel (2009)): people choose using heuristics,

but the “cognitive cost” associated with a decision procedure isn’t taken into account in the agent’s

welfare (largely, because it is very hard to measure, and that revealed preference techniques do not

apply).

Proposition 9.5 (Value of Dj in the case of fixed attention, and the case of “No attention cost in

welfare”). In the “fixed attention” case and the “No attention cost in welfare”case

−Dj =
(
τ bC , 0

)
· SHj (p, w) =

n∑
i=1

τ bCiS
H
ij =

(
τ bC , 0

)
· SCj (p, w) =

(
τ bC , 0

)
· cj (p, w) .

This is, only the components of τ b and the Slutsky matrix linked to commodities matter.

Proof
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We have τ b =
(
τ bc, τ

b
m

)
=
(
τ bc, 0

)
as um = 0. So, −Dj = τ b · SHj (p, w) = τ bC · SHC,j. �

Misperception example In the misperception model with attention policy m (p, w), we

have:

c (p, w) = (Cs [p,ps (p, w,m (p, w)) , v (p, w)] ,m (p, w)) .

When attention is optimally chosen, we can apply Proposition 9.4 with m (θ) = θ. This gives:

−Dj = τ bC · S
H,m
Cj with

SHCj|m = Srpspj (p, w,m) , (48)

i.e. the Slutsky matrix has the sensitivity with fixed attention. Hence, we have both −Dj =

τ bC ·S
H,m
j when attention is optimal.

In the “no attention cost in welfare” case, τ bm = 0 and

−Dj = τ bC · SHCj.

When attention is not necessarily optimal, we also have (from (41)), using again decomposition

τ b =
(
τ bc, τ

b
m

)
:

−Dj = τ b · Sj = τ bC · SHCj + τ bm
∂m

∂pj
,

where SHCj =Sr ·pspj (p, w), where now the total derivative matters, including the variable attention.

9.2.2 Attention as a good: examples

In this subsection we normalize the pre-tax price to 1.

Optimal taxes with endogenous attention: the case of small taxes Given attention

m (τ), the perceived tax is τ s (τ) = τm (τ), and demand is c (τ) = y (1− ψm (τ) τ). We assume

that attention comes from an optimal cost-benefit analysis:

m (τ) = arg max
m
−1

2
ψyτ 2 (1−m)2 − g (m) .

The first term represents the private costs of misunderstanding taxes, −1
2
ψy (τ − τ s)2 , while the

term −g (m) is the psychic cost of attention, g (m) (see Gabaix (2014)). The planner’s problem is

maxτ L (τ) with

L (τ) = −1

2
ψym2 (τ) τ 2 − Ag (m (τ)) + Λτy,

where A = 1 in the “optimally allocated attention” case and A = 0 in the “no attention cost in

welfare” case. In the “fixed attention” case, m (τ) is fixed with m′ (τ) = 0, and g (m) = 0. The
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optimal tax satisfies

L′ (τ) = −ψym (τ) τ (m (τ) + τm′ (τ))− Ag′ (m (τ))m′ (τ) + Λy = 0.

In the “optimally allocated attention” case, we use the agent’s first order condition g′ (m (τ)) =

ψyτ 2 (1−m (τ)) and A = 1, and the optimal tax is

τm,∗ =
Λ/ψ

m (τ)2 + τm′ (τ)
. (49)

In the “no attention cost in welfare case,” A = 0, the optimal tax is

τm,0 =
Λ/ψ

m (τ)2 + τm (τ)m′ (τ)
. (50)

When attention is fixed, the optimal tax is

τm,F =
Λ/ψ

m (τ)2 . (51)

Proposition 9.6 In the interior region where attention has an increasing cost (τm (τ)m′ (τ) > 0),

the optimal tax is lowest when attention is chosen optimally and its cost is taken into account in wel-

fare; intermediate in the “no attention cost in welfare” case; and largest with fixed attention—τm,∗ <

τm,0 < τm,F .

When attention’s cost is taken into account, the planner chooses lower taxes τm,∗ < τm,0 to

minimize both consumption distortions and attention costs. 74 Plainly, the tax is higher when

attention is variable than when attention is fixed—this is basically because demand is more elastic

then (−p
c
∂c
∂τ

= −ψ (m (τ) + τm′ (τ))).

For more illustrations, see section 9.5.5 for completely worked out linear-quadratic and isoelastic

examples.

9.3 Complements on Mental Accounts

The optimal tax formulas in Propositions 2.1 and 2.2 corresponding to the many-person Ramsey

problem without and with externalities can be applied without modifications to this simple model

of mental accounting. However, it is also enlightening to write these formulas in a slightly different

way by leveraging the specific structure of the simple mental accounting model. We define the

74The example allows to appreciate the Slutsky matrix with or without constant attention. The Slutsky matrix

with constant m has SC11|m = ∂c(1+τ,m)
∂τ = −ψcm, while the Slutsky matrix with variable m has SC11 = dc(1+τ,m(τ))

dτ =

−ψc (m+ τm′ (τ1)). The online appendix (section 9.2.2) provides other illustrations.
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“income k-compensated” Slutsky matrix for the extended demand function as

SC,kj (q,ω) = cqj(q,ω) + cωk(q,ω)cj(q,ω). (52)

This Slutsky matrix corresponds to a decomposition of price effects into income of substitution

effects where the latter are compensated using with an adjustment of mental account k. In the tra-

ditional model without behavioral biases, this decomposition is independent of the mental account

k which is used for this decomposition, since the marginal utility of income is equalized across

all accounts: cωk(q,ω
r (q, w)) = cωk′ (q,ω

r (q, w)). It follows that the “income k-compensated”

Slutsky matrix is also independent of k.75 By contrast, with behavioral biases in mental ac-

counting, the marginal utility of income is not equalized across all accounts so that in general

cωk(q,ω (q, w)) 6= cωk′ (q,ω (q, w)). As a result, the decomposition of price effects on income effects

and substitution effects depends on which mental account k is used for this income compensation,

and the “income k-compensated” Slutsky matrix depends on k.76

Reintroducing h superscripts to index agent heterogeneity, we define the social marginal utility

of k-income for agent h as

γk,h = βk,h + λτ · chωk,h where βk,h = Wvhv
h
ωk,h .

We also define the income-k based behavioral wedges for the extended demand and utility function

as

τ b,k = q − uc
vwk

, τ̃ b,k,h = βk,hτ b,k.

Finally, for every commodity i, we denote by k (i) the mental account to which this commodity

is associated with. We can then rewrite the tax formula in the following way. Note that this is

simply a re-expression of Proposition 2.1.

Proposition 9.7 (Many-person Ramsey with mental accounting) If commodity i can be taxed, then

75However the “income k-compensated” Slutsky matrix SC,k,rj (q, ωr (q, w)) of the extended demand function is in

general different from the “income compensated” Slutsky matrix SC,rj (q, w) of the demand function, which is defined

as in Section 2.1. Indeed, the latter also reflects the subsitution effects associated with the adjustments ωk,rqj (q, w)
in the mental accounts in response to changes in the price qj of commodity j.

76The price theory concepts introduced in Section 2.1 are still defined in the same way. They can be related to
the corresponding concepts that we have introduced in this section. In particular, we have

cw(q, w) =
∑
k

ωkwcωk(q, ω),

and
SCj (q, w) = cqj (q, ω) +

∑
k

ωkqjcωk(q, ω) +
∑
k

ωkwcωk(q, ω)cj(q, ω).
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at the optimum

∂L (τ )

∂τi
= 0 with

∂L (τ )

∂τi
=
∑
h

[
(
λ− γk(i),h

)
chi + λ(τ − τ̃ b,k(i),h) · SC,k(i),h

i +
∑
k

γk,hωk,hqi ]. (53)

This alternative expression of the many-person Ramsey optimal tax formula for commodity i

features the “income k (i)-compensated” Slutsky matrix corresponding the mental account to which

commodity i is associated, the social marginal utilities of k-income γk.h, the k (i) based behavioral

wedges, and the price derivatives of the mental accounting functions ωk,hqi . Writing the optimal

tax formula in this way will prove useful to derive specific results below in the context of further

specializations of the model.

We could also derive a similar alternative expression for the many-person Ramsey optimal tax

formula in the presence of externalities along very similar lines. In the interest of space, we do not

include it in the paper.

9.3.1 Roy’s identity with mental accounts

We consider the extended indirect utility function v (p,ω) = u (c (p, ω)). The budget constraint is

B (c,p,ω) ≤ 0. A leading case is the linear budget constraint, B (c,p,ω) = maxkC
k · pk − ωk. We

define the behavioral wedge linked to account k as:

τ b,k = − uc
vwk
− Bc (c,p,ω)

Bwk (c,p,ω)
.

With the linear budget constraint

τ b,k = p− uc
vwk

.

Proposition 9.8 (Roy’s identity with mental accounts) With mental account, the modified Roy’s

identity is:
vpi (p,ω)

vwk (p,ω)
=

Bpi

Bwk
− τ b,k · cpi =

Bpi

Bwk
− τ b,k · SC,ki . (54)

With a linear budget constraint,

vpi (p,ω)

vwk (p,ω)
= −ci − τ b,k · SC,ki . (55)

9.3.2 Optimal taxes with rigid mental accounts: small taxes case

We consider the basic setup in Section 3.1 with no misperceptions (mi = 1 for all i) but with

rigid mental accounts instead. We make the further simplification that there is one commodity

per mental account. Consumption is therefore given by ci = ωi

qi
= ωi

1+τi
. We assume that before
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taxes, the optimal amount ωi is allocated to good i, so that U i′ (ωi) = pi, and that the rigid mental

account ωi does not adjust after the introduction of taxes.

We first derive the optimal Ramsey and Pigou tax rules with this rigid mental account with

one good per account. Recall that we denote by ψi = − U i′(ci)
ciU i′′(ci)

the inverse of the curvature of the

utility function U i for good i, which coincides with the demand elasticity of a rational agent.

Proposition 9.9 (Ramsey and Pigou formulas with rigid mental accounts) Suppose that agents

use a rigid mental account for good i. and the limit of small taxes. In the basic Ramsey problem,

the optimal tax is
τi
pi

= Λψi, (56)

while in the basic Pigou problem, it is

τi = ξiψi. (57)

The formula for the Ramsey problem is in stark contrast with the traditional Ramsey case where
τi
pi

= Λ
ψi

, and the misperception case where τi
pi

= Λ
m2
iψi

. With rigid mental accounts, a low (rational)

elasticity ψi leads to low taxes, not to high taxes, as in the basic Ramsey. The intuition is as follows:

if a good is very “necessary”, rational demand is very inelastic: ψi is low. But with a rigid mental

accounts, a tax τi leads to a consumption ci = ωi/pi
1+τi

. So, a high tax leads to a high distortion.

Hence, when (rational) demand is very inelastic, the tax should be low.

Likewise, the modified Pigou formula τi = ξiψi now features the rational elasticity of demand

ψi. This is in contrast to the traditional case, where τi = ξi, and to the case with misperception mi

where τi = ξi
mi

(Proposition 3.2).

To derive this result and understand it fully, it is useful to generalize it. From now on, in this

subsection, we normalize pi = 1. We denote by αi the elasticity of the demand for good i. In the

traditional model without behavioral biases, we have αi = ψi. But in the model with attention

mi to the tax, we had αi = miψi. With a rigid mental account for commodity i, given demand is

ci = ωi

1+τi
, the elasticity of the demand for good i is αi = 1. 77

Proposition 9.10 (Ramsey and Pigou formulas with arbitrary behavioral elasticity) Suppose that

the rational demand elasticity for good is ψi, and that the behavioral demand elasticity is αi. Con-

sider the limit of small taxes. Then, in the basic Ramsey problem, the optimal tax is

τi = Λ
ψi
α2
i

, (58)

while in the basic Pigou problem, it is

τi =
ξi
αi
ψi. (59)

77Proposition 9.9 is a consequence of Proposition 9.10 when αi = 1 of the following result. Propositions 3.1 (in
the limit of small taxes) and 3.2 are also an application, when αi = miψi.

64



Proof. We could use the general formulas, but to gain intuition we proceed as follows, in the

limit of small taxes. In the Ramsey problem, welfare can then be expressed as

L = −1

2

∑
i

α2
i

ψi
yiτ

2
i + Λ

∑
i

τiyi, (60)

Indeed, a small tax τi changes consumption by δci = −αiciτi. The associated distortion is 1
2

(δci)
2 U i′′ (ci) =

1
2

(−αiciτi)2 −U i′ (ci)
ciψi

= −1
2

α2
i

ψi
yiτ

2
i (recall that ψi = − U i′(ci)

ciU i′′(ci)
, and U i′ = pi = 1 at the optimum, with

yi = ci). Hence, the optimal tax is given by Lτi = 0, i.e. τi = Λψi
α2
i
.

In the Pigou problem, at the first best, the planner would like U i′ (ci) = 1 + ξi, as in the

traditional tax. This means that consumption should change by δci = −ψiξi after the tax. But as

the actual elasticity of demand is αi, the tax should satisfy: δci = −αiτi = −ψiξi, and τi = ξi
αi
ψi. �

In the Ramsey problem, for a given demand elasticity αi, a higher value of ψi pushes for higher

tax, while for a given ψi, a higher value of αi pushes for a lower tax. In the traditional model without

behavioral biases, αi = ψi and the resulting effect of a higher ψi is a lower tax. By contrast, in the

behavioral model with a rigid mental account, αi = 1 so that a higher ψi results in a higher tax.

9.3.3 How mental accounts modify demand elasticities

We take the quasilinear case u (c) = c0 + U1 (c1) + U (c2, ..., cn) with good 1 in its own mental

account, ω1, and default ωd1 . How much will be attributed to the mental account? We will have

c1 = ω1

q1

ω1 = arg max
ω1

U1

(
ω1

q1

)
− ω1 − g

(
ω1 − ωd1

)
(61)

c1 = arg max
c1

U1 (c1)− q1c1 − g
(
c1q1 − ωd1

)
.

Then, we can calculate the sensitivity to the tax.

Lemma 9.1 With a flexible mental account, the empirical elasticity is:

α1 = −q1

c1

∂c1

∂q1

=
1 + g′

(
ω1 − ωd1

)
+ ω1g′′

(
ω1 − ωd1

)
1
ψ1

+ ω1g′′
(
ω1 − ωd1

) ,

with ω1 = q1c1.

Proof The first order condition for consumption is:

f (c1, q1) = U1′ (c1)− q1 − q1g
′ (c1q1 − ωd1

)
= 0.
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Hence

α1 = −q1

c1

∂c1

∂q1

= −q1

c1

fq1
−fc1

=
q1

c1

1 + g′ + q1c1g
′′

−U ′′ + q2
1g
′′

=
1 + g′ + q1c1g

′′

− c1U ′′

q1
+ q1c1g′′

.

The rational elasticity is the one that would occur with g = 0,

ψ1 =
1

− c1U ′′1 (c1)

q1

, (62)

so

α1 =
1 + g′ + q1c1g

′′

1
ψ1

+ q1c1g′′
.

�

Next, we suppose that at q1 = p1, the account is optimal: ωd1 = arg maxω1 U
1
(
ω1

q1

)
− ω1. We

suppose that we are near ω1 = ωd1 , and g′ (0) = 0. We have

α1 =
1 + ω1g′′

(
ω1 − ωd1

)
1
ψ1

+ ω1g′′
(
ω1 − ωd1

) . (63)

In the traditional case, g′′ = 0, so α1 = ψ1. In the completely rigid case, g′′ = +∞, so α1 = 1

(indeed, we have then c1 =
ωd1
q1

, so the elasticity of demand is 1).

This allows to calculate the ω1
q1

, the derivative of the account value as a function of the price.

Starting from ω1 = q1c1, we have

ω1
q1

= c1 + q1
∂c1

∂q1

= c1 − c1α1 = c1

[
1−

1 + ω1g′′
(
ω1 − ωd1

)
1
ψ1

+ ω1g′′
(
ω1 − ωd1

)] ,
so finally

ω1
q1

= c1

1
ψ1
− 1

1
ψ1

+ ω1g′′
(
ω1 − ωd1

) . (64)

By the budget constraint (ω0 + ω1 = w) we have:

ω0
q1

= −ω1
q1
.

9.3.4 Summarizing the effects of misperceptions and mental accounts

We again normalize pi = 1. We call αi = − qi

ci
ciτi the empirical elasticity, which is αi = ψi in the

traditional model, and αi = miψi in the misperception model with attention mi to the tax. We call

ψi = − U i′(ci)
ciU i′′(ci)

, which is simply the inverse of the curvature of the utility function U i for good i.
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This is also the “rational” elasticity, the demand elasticity that the agent would have if he was fully

attentive; it might be the elasticity elicited in a careful procedure that makes the agent attentive

to the tax.

We have the following Lemma.

Lemma 9.2 As explained just above, call ψi the “rational” demand elasticity, and αi the “behav-

ioral” elasticity. In the limit of small taxes, welfare is:

L (τ)− L (0) = −1

2

∑
i

−α
2
i

ψi
yiτ

2
i + Λ

∑
i

τiyi + o
(
‖τ‖2)+ o (‖τ‖Λ) . (65)

This implies the following.

Proposition 9.11 In the basic Ramsey model, the optimal tax is

τi = Λ
ψi
α2
i

. (66)

where ψi is the underlying elasticity of true preferences, and αi is the behavioral elasticity.

Proof We can also use the general formulas (Proposition 2.1) to verify the result. However, it

is also instructive to use the following derivation. Maximizing over τi, the result from Lemma 9.2

L = −1

2

∑
i

α2
i

ψi
yiτ

2
i + Λ

∑
i

τiyi,

we find: τi = Λψi
α2
i

.�

For instance, in the traditional case αi = ψi, and we recover the traditional formula τi = Λ
ψi

.

Proposition 9.12 In the basic Pigou model, the optimal tax is τi = ξi
ψi
αi

.

Proof We would like this to be the first best allocation, so that u′ (ci) = 1 + ξi, i.e. ci =

cdi (1− ψiξi). The response to the tax is: ci = cdi (1− αiτi). So optimal tax satisfies: αiτi = ψiξi,

i.e. τi = ξi
ψi
αi

. �

The Table shows the link between different models. We use ωi = ciqi.
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Ramsey problem Pigou problem Elasticity αi to tax rate

General τi = Λψi
α2
i

τi = ξi
ψi
αi

αi = − qi

ci
ciτi

Traditional model τi = Λ
ψi

τi = ξi αi = ψi

Misperception model τi = Λ
m2
iψi

τi = ξi
mi

αi = miψi

Mental account: rigid τi = Λψi τi = ξiψi αi = 1

Mental account: flexible τi = Λ
ψi

(
1+ψiωig

′′
i

1+ωig′′i

)2

τi = ξi
1+ψiωig

′′
i

1+ωig′′i
αi =

1+ωig
′′
i

1
ψi

+ωig′′i

Hybrid model: Flexible mental

account with misperceptions
τi = Λ

ψi

1
m2
i

(
1+ψiωig

′′
i

1+ωig′′i

)2

τi = ξi
mi

1+ψiωig
′′
i

1+ωig′′i
αi = mi

1+ωig
′′
i

1
ψi

+ωig′′i

9.3.5 Derivation of the agent’s consumption in the mental accounting model of Section

3.6

The agent maximizes his perceived utility us (c1, c2) =
c
αs1
1 c

αs2
2

α
α1
1 α

α2
2

subject to the perceived budget

constraint B (c1, c2) = κ1

∣∣ωd1 − c1

∣∣ +
∑2

i=1 ci ≤ w, with ωd1 = αs1w + βb. The first order conditions

are

usc1 = µ (1− κ1η1)

usc2 = µ,

where η1 = sign
(
ωd1 − c1

)
is the sign of ωd1 − c1 if that quantity is non-zero, and otherwise is some

number in [−1, 1]. There are two cases.

Case 1. If ωd1 − c1 = 0 – this is the rigid mental account region. Consumption is:

c1 = ωd1 , c2 = ω − ωd1 .

Case 2. If ωd1 6= c1, then the agent has de facto a perceived price ps1 = 1 − κ1η1 and ps2 = 1.

Consumptions are ci = ω
αsi /p

s
i∑

j α
s
jpj/p

s
j

(Gabaix 2014, Example 4). In particular,

c1 =
αs1

1− αs2κ1η1

ω. (67)

We summarize the results, in the case b ≥ 0.

Proposition 9.13 (Consumption with mental accounts) Consumption of good 1 is as follows. For

0 ≤ b < b∗, c1 = ωd1 = αs1 (w∗ + b) + βb. For b ≥ b∗, c1 is given by (67) with η1 = 1. The cutoff b∗

is the value at which those two expressions are equal, i.e. it is the solution of:

αs1 (w∗ + b) + βb =
αs1

1− αs2κ1

(w∗ + b) . (68)

For a given voucher b, we are in the rigid account region if and only if κ1 ≥ κ∗1 where κ∗1 satisfies

68



(68).

9.4 Complements on Diamond-Mirrlees and Atkinson-Stiglitz (1972)

9.4.1 Diamond-Mirrlees: Concrete examples

To illustrate Proposition 5.1, consider the separable case u (c) = c0 + u (c1) in the misperception

case with τ s1 = τ p1 +m1τ
c
1 , 0 ≤ m1 ≤ 1 and τ p1 is exogenous (perhaps set to 0).

We represent the production function as follows—it takes C (y1) units of good 0 to produce y1

units of good 1. We define supply and demand to be S (p1) = C ′−1 (p1) and D (p1 + τ p1 +m1τ
c
1) =

u′−1 (p1 + τ p1 +m1τ
c
1) . We denote the corresponding supply and demand elasticities (corresponding

to a fully perceived change in p1) by εS > 0 and εD > 0 . Differentiating the equilibrium condition

S (p1) = D(p1 + τ p1 +m1τ
c
1) yields

εc11 = − εD
εS + εD

m1,

with εc11 = dp1

dτc1
. Compared to the traditional incidence analysis, because consumers are not fully

attentive to the tax on good 1 (m1 < 1), the burden of the tax is shifted to the consumer. This

echoes a result in Chetty et al. (2009).

We now turn to optimal taxes. We work in the limit of small taxes when Λ = λ− 1 is close to

0 as in Section 3.1. Then, the optimal tax τ c1 satisfies

0 =

(
Λc1 − τ s1

ψ1

p1

c1m1

)
+

(
Λc1 − τ s1

ψ1

p1

c1

)
εc11,

which we can rewrite as
Λ

ψ1

=
τ p1 +m1τ

c
1

p1

m1 + εc11

1 + εc11

.

As long as m1 < 1, the higher is the supply elasticity εS, the more the burden of the tax is shifted

to the consumer, the higher is εc11 < 0, and the lower is the optimal tax.78

We next provide an example to illustrate Proposition 5.2.

We now show that production efficiency can fail with a restricted set of commodity taxes τ p,

even if there is a full set of commodity taxes τ c. Consider the following example. There are two

consumption goods, 0 and 1, two types of labor, a and b, a representative agent with decision utility

us (c0, c1, la, lb) = c0 +U s (c1)− la− lb, and experienced utility us (c0, c1, la, lb) = u (c0, c1, la, lb)−ξ∗c1,

where ξ∗ > 0 indicates an internality. For instance, c1 could be cigarette consumption. Hence, the

government would like to discourage consumption of good 1.

78Another way to see this is as follows. Consider the optimal tax with infinitely elastic supply εS =∞ (a constant

price p1). It satisfies
(

Λc1 − τs1
ψ1

p1
c1m1

)
= 0. Now imagine that εS < ∞. Then at this tax

(
Λc1 − τs1

ψ1

p1
c1

)
< 0

so that
(

Λc1 − τs1
ψ1

p1
c1

)
εc11 > 0 and by implication

(
Λc1 − τs1

ψ1

p1
c1m1

)
+
(

Λc1 − τs1
ψ1

p1
c1

)
εc11 > 0 This implies that

increasing the tax improves welfare.
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The production function for good i is yi =
(
lia
αi

)αi (
lib

1−αi

)1−αi
, with αi ∈ (0, 1). As before, 0 is

the untaxed good, τ0 = 0. The government can set taxes τ1, τa and τb on good 1, labor of type

a and labor of type b, and tax the employment of type a labor in sector 1. We assume that the

consumer perfectly perceives taxes τa, τb, and prices p0, p1, pa, pb (the latter being the price of labor

of type a, b). In addition, the government can set a tax τ1a for the use of input a in the production

of good 1. Note that production efficiency is equivalent to τ1a = 0.

Proposition 9.14 If the consumer is fully inattentive to the tax τ1, then the optimal tax system

features production inefficiency: τ1a > 0. If the consumer is fully attentive to the tax τ1, then the

optimal tax system features production efficiency: τ1a = 0.

The essence is the following—the government would like to lower consumption of good 1, which

has a negative internality. However, agents do not pay attention to the tax τ1 on good 1, therefore

a tax on good 1 will not be effective. We assume that the government cannot use producer taxes.

Hence, the government uses a tax τ1a > 0 on the input use in the production of good 1 (lowering

production efficiency) to discourage the production of good 1, increase its price and discourage its

consumption.

9.4.2 Atkinson-Stiglitz (1972)

Atkinson and Stiglitz (1972) show uniform commodity taxation is optimal if preferences have the

form uh (c0, φ (C)), with C = (c1, ..., cn), φ homogeneous of degree 1, and c0 (the untaxed good)

might be leisure. We now investigate how to generalize this result with behavioral agents.

Proposition 9.15 Consider the decision vs. experienced utility model. Assume that decision utility

is of the form us,h (c0, φ
s (C)) and that experienced utility is of the form uh (c0, φ (C)) with φs and

φ homogeneous of degree 1. Then, if φs = φ, then uniform ad valorem commodity taxes are optimal

(even though decision and experienced utility represent different preference orderings), but, if φs 6= φ,

then uniform ad valorem commodity taxes are not optimal in general.

The bottom line is that with behavioral biases, it is no longer sufficient to establish empirically

that expenditure elasticities for (c1, ..., cn) are unitary.

Another relevant consideration has to do with time horizons. Consider a tax reform and as-

sume away any link between periods for simplicity (say because agents do not have access to asset

markets). Imagine a situation where, in the long-run, choices can be represented by a decision

utility us,h (c0, φ
s (C)) , and welfare can be evaluated with an experienced utility uh (c0, φ (C)) with

φ = φs. But, in the short-run as the tax code changes, agents misperceive taxes and, hence, make

different choices. Then optimal time-varying taxes might be uniform in the long run but not in

the short run. Likewise, if agents pay differential attention to taxes (at least in the short run), the

Atkinson and Stiglitz (1972)neutrality result will fail.
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9.5 Other extensions

9.5.1 Cross-Effects of Attention

We again normalize pi = 1. How does attention to one good affect the optimal tax on another?

To answer this question, we use the specialization of the general model developed in Section 2.7,

assuming a representative consumer (so that we drop the index h), no internality/externality so

that τX = 0, and in the limit of small taxes. Defining Λ = λ
γ
− 1, we can rewrite formula (11), in

the limit of small Λ, as

τ = −Λ (M ′SrM )
−1
c.

This is a generalization of Proposition 3.1, which assumed a diagonal matrix Sr.

To gain intuition, we take n = 2 goods, M = diag (m1,m2), we normalize prices to p1 = p2 = 1,

and we write the rational Slutsky matrix as Srii = −ciψi for i = 1, 2, and Sr12 = Sr21 = −
√
c1c2ψ1ψ2ρ.

Proposition 9.16 (Impact of cross-elasticities on optimal taxes with inattentive agents) With two

taxed goods, the optimal tax on good 1 is τ1 = Λ
m2

1ψ1

1−ρ

√
m2

1ψ1c2

m2
2ψ2c1

1−ρ2 . When attention to the tax of good 2

m2 falls, the optimal tax on good 1 increases (respectively decreases) if goods 1 and 2 are substitutes

(respectively complements).

Suppose for example that the goods are substitutes with ρ < 0.79 When m2 falls, the optimal

tax on good 2 increases by the effects in Proposition 3.1, and optimal taxes on substitute goods

also increase.80

9.5.2 Tax instruments with differential saliences

We elaborate on a remark we made at the end of section 3.7. As an extreme example, consider

again the basic Ramsey example outlined above, and assume that the two tax systems with salience

m and m′ can be used jointly. Consider the case where there is only one agent and only one (taxed)

good. With m′ > m, we get

0 = (λ− γ) c+ [λτ + γ(τ̄ s − τ̄)]mSr, 0 = (λ− γ) c+ [λτ + γ(τ̄ s − τ̄)]m′Sr,

where τ̄ s is the total perceived tax arising from the joint perception of the two tax instruments.

This requires λ = γ and with τ̄ s = 0. In other words, the solution is the first best. This is because

a planner can replicate a lump sum tax by combining a tax τ with low salience m and a tax −τ m
m′

79We have ρ2 < 1 since Sr is a 2× 2 negative definite matrix so that 0 < detSr = c1c2ψ1ψ2

(
1− ρ2

)
.

80Perhaps curiously, we can have ∂τ1
∂m1

> 0 with complement goods ρ > 0. This happens if and only if 2 <

m1

m2
ρ
√

ψ1c2
ψ2c1

. That latter condition is quite extreme, and would imply that τ1 < 0 even though the planner wants to

raise revenues. This is because the planner wants to increase consumption of the low elasticity (low m2, ψ2), good 2,
he wants to subsidize good 1 if it is a strong complement of good 2.
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with high salience m′ > m, generating tax revenues τ m
′−m
m′

per unit of consumption of the taxed

good with no associated distortion. This is an extreme result, already derived by Goldin (2015). In

general, with more than one agent and heterogeneities in the misperceptions of the two taxes, the

first best might not be achievable.

9.5.3 A different budget adjustment rule

When perceived prices qsj are different from the true prices qj, some adjustment is needed for the

budget constraint. Let us study a different rule, where a certain good n (“the last good”, imagining

a temporal order) bears the brunt of the budget adjustment (it’s a “shock absorber”). This leads

to

ci,s (q, qs, w) = ci,r (qs, w) for i 6= n (69)

cn,s (q, qs, w) =
1

qn

(
w −

∑
i 6=n

qic
i,s (q, qs, w)

)
. (70)

This is: for all goods but the last one, the consumer only pays attention to perceived prices. Only

for the last one does she see the budget constraint.81 We shall see in the next proposition that we

can also write

cn,s (q, qs, w) = cn,r (qs, w)− 1

qn
(q − qs) · cr (qs, w) , (71)

i.e. actual consumption of good n is planned consumption cn,r (qs, w) minus the adjustment for the

surprise(q − qs) · cr (qs, w) in the actual cost of the goods i < n that have been purchased before

good n.

For completeness, we record the Slutsky matrix properties of that rules. (Here we consider the

income-compensated matrix SC).

Proposition 9.17 (With the “last good adjusting for the budget” rule) Consider the model above,

with attention mj to price j. Evaluating at qs = q, the marginal propensity to consume out of

wealth isn’t changed:

∂wc
s
i (q, qs, w) = ∂wc

r
i (q, w) . (72)

However, the Slutsky matrix Ssij is changed as follows:

Ssij = Srijmj +

(
∂wc

r
i −

1

qn
1i=n

)
(1−mj) c

j, (73)

where Srij is the rational Slutsky matrix.

81Chetty et al. (2009) consider such a rule in a 2-good context. Gabaix (2016) consider such a rule when doing
dynamic programming, and the last good is “next period wealth”.
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Proof The term ∂wc
s
i is trivial, as it’s evaluate a qs = q. We move on to the Sij. First, take

i 6= n. Then, ci,s (q, qs, w) = ci,r (qs, w), hence:

Ssij = ∂qjc
i,r (qs, w) + ciwc

j

= ci,rqj (q, w)mj + ciwc
j =

(
Srij − ciwcj

)
mj + ciwc

j

= Srij + ciwc
j (1−mj) ,

which gives the announced result.

For good n, we rewrite:

qnc
n,s (q, qs, w) = w −

∑
i 6=n

qic
i,s (q, qs, w)

= qs · cr (qs, w)− (q · cr (qs, w)− qncn,r (qs, w))

= (qs − q) · cr (qs, w) + qnc
n,r (qs, w) ,

i.e. another useful expression:

cn,s (q, qs, w) = cn,r (qs, w) +
1

qn
(qs − q) · cr (qs, w) .

Its interpretation is that the consumption of the last good is the planned consumption (the first

term, cn,r (qs, w)), plus an adjustment for the “surprise” difference between planned and actual

expenditure (the last term).

Now, differentiate w.r.t. qj:

Snj =
(
∂qjc

n,r (qs, w) + cnwc
j
)

+ ∂qj

(
1

qn
(qs − q) · cr (qs, w)

)
.

By the earlier calculation of Sij, the first term is Srij +ciwc
j (1−mj) with i = n, by the earlier result,

and the last term is (as we evaluate at qs = q)

∂qj

(
1

qn

∑
i

(qsi − qi) ci (qs, w)

)
=

1

qn
(mj − 1) cj (qs, w) .

This gives the announced result.

�

Behavioral wedges We take a particular case, which is particularly tractable. There are

n − 2 goods, and good n is the “shock absorber” good. The price of goods 0 and n is normalized

to 1. There’s no tax on goods 0 and 2, for simplicity.
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Utility is:

u (c0, ..., cn) = c0 +
n∑
i=1

ui (ci) .

Good 0 has marginal utility of 1, which absorbs income effects, so vw = 1. Hence, τ b = q − uc
vw

is:

τ b0 = 0

τ bi = qi − qsi for i = 1, ..., n− 1

τ bn = 1− u′n (cn)

for ci = cri (qsi ) for 1 ≤ i < n and cn = crn +
∑

i<n (qsi − qi) ci (from 71).

Derivation of the optimal tax and Λi = Λ−(1−Λ)(1−mi)µ
1−(1−Λ)(1−mi)µ We first provide an intuitive proof.

We again normalize pi = 1. The distortion on good n is, from 71

cn − c∗n = −
∑
i<n

(1−mi) τici,

and the distortion on good 0 is − (cn − c∗n). Hence in the objective function we have

L = W +
∑
i<n

λτici − µ
∑
i<n

(1−mi) τici

= W +
∑
i<n

(λ− µ (1−mi)) τici,

where W =utility distortion all goods except 0 and n. Hence, we just replace λ by λ′ = λ −
µ (1−mi).

Remember that we write λ = 1
1−Λ

. Hence, this which corresponds to

Λ′ = 1− 1

λ′
= 1− 1

1
1−Λ
− (1−mi)µ

= 1− 1− Λ

1− (1− Λ) (1−mi)µ
=

Λ− (1− Λ) (1−mi)µ

1− (1− Λ) (1−mi)µ
.

We also provide a more computational proof, which we found also instructive. Take an i =

1, ..., n− 1. We have τ bi = (1−mi) τi and τ bn = 1− u′(cn) = −µ. We have Sii = −ψici
qsi
mi, while

Sni = − (1−mi) ci

(
1− ψi

τi
qsi
mi

)
.
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Plugging this into the general Ramsey optimal tax formula (7) gives:

0 = (λ− γ) ci + λ(τ − τ̃ b) · SCi

= (λ− 1) ci − λ
(
τi −

1

λ
(1−mi) τi

)
ψici
qsi

mi − λ
(

0 +
µ

λ

)
(1−mi) ci

(
1− ψi

τi
qsi
mi

)
= (λ− 1− µ (1−mi)) ci −

ψici
qsi

miτi (λ− (1−mi)− µ (1−mi)) ,

which is the expression with µ = 0, if we replace λ by λ′ = λ− (1−mi)µ.

Analysis of small taxes We analyze the case of small taxes. Compared to the first best,

distortions are:

ci − c∗i = −ψic∗imiτi

cn − c∗n = −
n−1∑
i=1

ci (1−mi) τi,

and a utility loss equal to LD such that:

−2LD =
∑

i

1

ψic∗2i
(ci − c∗i )

2 .

Hence we have the following generalization of the objective function in the simple Ramsey case with

small taxes (we normalized prices to pi = 1)

L = −1

2

n−1∑
i=1

τ 2
i ψm

2
i c
∗
i −

1

2

1

ψnc∗n

(
n−1∑
i=1

c∗i (1−mi) τi

)2

+ λ
∑
i

τic
∗
i . (74)

In particular, now the distortion is not just ψim
2
i as before, but there is another term, multiplied by

1
ψn

. Hence, attention is beneficial only if if risk aversion ( 1
ψn

) for the shock absorber good is small

enough (in the baseline model it is 0). The optimal tax is

τi =
Λi

m2
iψi

,

with

Λi = Λ− µ (1−mi) ,

and

µ =
1

ψnc∗n

n−1∑
i=1

ci (1−mi) τi,

which is the marginal distortion on good n.
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We can also study the variant in the done in the main body of the paper. A variant: u′2 (c2) ≤ 1

for c2 ≥ cd2 and 1 + µ > 1 for c2 < cd2. Then losses are:

L = −
n−1∑
i=1

(
1

2
ψim

2
i c
∗
i τ

2
i + µc∗i (1−mi) τi

)
+ λ

∑
i

τiyi

= −
n−1∑
i=1

(
1

2
ψim

2
i c
∗
i τ

2
i

)
+
∑
i

(λ− µ (1−mi)) τici,

so, optimal tax on good i is 0 iff µψi (1−mi) > λ.

Impact on Pigouvian taxes We revisit our simple model of Section 3.2, with an externality

on good 1. We have λ = 1, so that the government’s objective function is:

L = U (c1)− (p+ ξ) c1 + u2 (c∗2 − (1−m) c1τ) + (1−m) c1τ.

i.e. utility from good 1, utility from good 2 (which absorbs the shock (1−m) c1τ), and consumption

of good 0 is increased by the lump-sum rebate, which accounts for the last term. The consumer

chooses c1 according to U ′ (c1) = p+mτ .

We take utilityU (c) = Qc− c2

2Ψ
, so that demand is c1 = Ψ (Q− p−mτ) . We keep u′2 (c2) = 1+µ.

We have:

L′ (τ) = [p+mτ − (p+ ξ)] (−Ψm) + [− (1−m) (1 + µ) + (1−m)]
d

dτ
(c1τ)

= − (mτ − ξ) Ψm− (1−m)µ (c1 −Ψmτ)

= − (mτ − ξ) Ψm− (1−m)µ (Ψ (Q− p− 2mτ)) ,

which leads to:

τ =
ξ
m
− µ

(
1−m
m

)
(Q− p)

1− 2µ
(

1−m
m

)
=

ξ
m
− µ

(
1−m
m

) c01
Ψ

1− 2µ
(

1−m
m

) ,
where c0

1 = Ψ (Q− p) is the consumption of good 1 if there is no tax.

Hence, the government doesn’t tax the good if: ξΨ < µ (1−m) c0
1, i.e. if the externality is too

small.
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9.5.4 Precisions on jointly optimal taxes and nudges

We assume that
(
τ − τ ξh

)
· chw = 0, so that βh = γh. As in Section 2.7, we call ξh = τX,h =

γξ,h

λ
τ I,h + τ ξ,h as the sum of the internality plus externality.

ch
(
τ, τχ,h

)
= ch0 −Ψ

(
mhτ + τχ,h

)
.

Individual h creates an externality plus internality. We have successively:

Ξ = −E
[
βh′
]

= −E
[
γh′
]

= −λ

τ ξh =
−Ξ

λ
τ ξ,h = τ ξ,h

τ bh =
(
1−mh

)
τ + τ I,h − τχ,h

τ̃ b,ξ,h =
γξ,h

λ
τ b,h

λ
(
τ − τ ξ,h − τ̃ b,ξ,h

)
= λ

(
τ − τ ξ,h

)
− γh

((
1−mh

)
τ + τ I,h − τχ,h

)
=
(
λ− γh

(
1−mh

))
τ − λτX,h + γhτχ,h.

Proposition 2.2 gives, using SH,hi = −Ψmh,

∂L

∂τ
= E

∑
h

(λ− γh) ch − λ
(
τ − τ ξ,h − τ̃ b,ξ,h

)
Ψmh

∂L

∂τ
= E

∑
h

(λ− γh) ch −
[(
λ− γh

(
1−mh

))
τ − λτX,h + γhτχ,h

]
Ψmh. (75)

We use the notation

σY,Z = cov (Yh, Zh) .

UsingE
[
γh
]

= λ, we have:

−E
[(
λ− γh

)
mh
]

= E
[
γhmh

]
− E

[
γh
]
E
[
mh
]

= σγ,m.

Hence, using τχ,h = χηh

1

Ψ

∂L

∂τ
= −E

[(
λ− γh

(
1−mh

))
mh
]
τ − E

[
γhηhmh

]
χ+ E

[
(λ− γh)

ch

Ψ
+ λτX,hmh

]
= −E

[(
λ− γh

(
1−mh

))
mh
]
τ − E

[
γhηhmh

]
χ+ E

[(
λ− γh

) ch
Ψ

+ λτX,hmh

]
= −E

[
γhmh2 − σγm

]
τ − E

[
γhηhmh

]
χ+ E

[
λτX,hmh − σγ, c

Ψ

]
.
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Proposition 2.3 gives:

∂L

∂χ
=
∑
h

[
λ
(
τ − τ ξh

)
− βhτ b,ξ,h

]
chχ

= −E
∑
h

[
λ
(
τ − τX,h

)
− γh

((
1−mh

)
τ − τχ,h

)]
Ψτχ,hχ

∂L

∂χ
= −E

∑
h

[(
λ− γh

(
1−mh

))
τ − λτX,h + γhτχ,h

]
Ψτχ,hχ .

Using τχ,h = χηh gives τχ,hχ = ηh hence:

1

Ψ

∂L

∂χ
= −E

∑
h

[(
λ− γh

(
1−mh

))
τ − λτX,h + γhτχ,h

]
ηh

= −E
[
γhηhmh − σγ,η

]
τ − E

[
γhηh

2
]
χ+ E

[
λτX,hηh

]
.

This implies
1

Ψ

∂2L

∂τ∂χ
= −E

∑
h

[(
λ− γh

(
1−mh

))
ηh
]
.

Hence, at the optimum:

E
[
γhmh2 − σγm

]
τ + E

[
γhηhmh

]
χ = E

[
λτX,hmh − σγ,c/Ψ

]
E
[
γhηhmh − σγ,η

]
τ + E

[
γhηh

2
]
χ = E

[
λτX,hηh

]
.

Solving for the two unknowns τ and χ gives the following.

Proposition 9.18 The optimal tax and nudge satisfy

τ =
E
[
γhηh

2
]
E
[
λτX,hmh − σγ,c/Ψ

]
− E

[
γhηhm

h
]
E
[
λτX,hηh

]
E
[
γhηh2

]
E
[
γhmh2 − σγm

]
− E [γhηhmh]E [γhηhmh − σγ,η]

χ =
E
[
λτX,hηh

]
E
[
γhm

h2 − σγm
]
− E

[
λτX,hmh − σγ,c/Ψ

]
E
[
γhηhmh − σγ,η

]
E
[
γhηh2

]
E
[
γhmh2 − σγm

]
− E [γhηhmh]E [γhηhmh − σγ,η]

.

9.5.5 Worked out examples of endogenous attention

A linear-quadratic example To illustrate the situation, we work out completely a linear-

quadratic example. Take decision utility have us (c0, c1,m) = c0+U (c1)−g (m), with U (c) =
ac− 1

2
c2

Ψ

and attention technology ps1 (p1,m) = pd1 + mτ1, where τ1 is a tax. Full utility is u (c0, c1,m) =

c0 + U (c1) − Ag (m), where A = 0 in the “no attention cost in welfare” case, and A = 1 in the

“optimally allocated attention” case.
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We assume p0 = 1, Ψ > 0. Given attention m, demand satisfies U ′ (c1) = ps, so cr1 (ps) = a−Ψps.

The perceived tax is:

τ s1 = m (τ1) τ1,

and demand is

c1 = a−Ψ
(
pd1 +m (τ1) τ1

)
.

The losses from inattention are 1
2
uc1c1 (cr1 − c1)2 = −1

2
Ψτ 2 (1−m)2. (This is always true to the

leading order, and here this is exact as the function is quadratic). Hence, the optimal attention

problem is:

m (τ1) = arg max
m
−1

2
Ψτ 2

1 (1−m)2 − g (m) ,

whose first order condition is:

g′ (m) = Ψ (1−m) τ 2
1 . (76)

The Slutsky matrix with constant m has:

SH11|m =
∂c1

(
pd1 +mτ1,m

)
∂τ1

= −Ψm,

while with variable attention m (p), we have:

SH11 =
dc1

(
pd1 +mτ1,m (τ1)

)
dτ1

= −Ψ (m+ τm′ (τ1))

SH21 =
∂m

∂τ1

= m′ (τ1) .

Then, we have: τ b = (0, q − qs, Ag′ (m)) = (0, τ1 (1−m) , Ag′ (m)), and given τ = (0, τ1, 0), so

τ − τ b = (0, τ1m,−Ag′ (m))

SH1 = (0,−Ψ (m+ τ1m
′ (τ1)) ,m′ (τ1)) .

Applying Proposition 2.1 gives:

∂L (τ , w)

∂τ1

= (λ− γ) c1 + λ
(
τ − τ b

)
· SH1

= (λ− γ) c1 −Ψτ1m (m+ τ1m
′ (τ1))− Ag′ (m)m′ (τ1) .

Normalize λ = 1, γ = 1− Λ, and define ψ1 (c1) = Ψ/c1. First, when m1 is exogenous, we verify

our formula from Section 2
∂L (τ , w)

∂τ1

= Λc1 −Ψmτ s1 .

i.e. τ s1 = Λ
mψ1

, τ1 = Λ
m2ψ1

.
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Next, in the “no attention cost in welfare” case, A = 0

∂L (τ , w)

∂τ1

= Λc1 −Ψτ s1
dτ s1 (τ1,m1 (τ1))

dτ1

= Λc1 −Ψτ s1 (m1 + τ1m
′ (τ1)) ,

so

τ s1 =
−c1Λ

SH11

=
Λ

(m+ τ1m′ (τ1))ψ1

, τ1 =
Λ

(m2 + τ1mm′ (τ1))ψ1

.

Finally, in the “optimally allocated attention” case, A = 1. First, we verify:

−D1 = τ b · SH = (0, τ1 (1−m) , g′ (m)) · (0,−Ψ (m+ τ1m
′ (p)) ,m′ (p1))

= −Ψ (m+ τ1m
′ (p)) τ1 (1−m) + g′ (m)m′ (p1) = −Ψmτ1 (1−m) = − (τ1 − τ s1 ) Ψm

= τ sC · SHj|m (p, w,m) ,

with τ sC = τ1 − τ s1 = (1−m) τ1 and SHj|m (p, w,m) = −Ψm.

∂L (τ , w)

∂τ1

− Λc1 =
(
τ − τ b

)
· SH1 = τ · SH1 − τ b · SH1 = τ · SH1 − τ sC · SH1|m

= −Ψτ (m+ τ1m
′ (τ1)) + Ψτ (1−m)m = −Ψτ

(
m2 + τm′ (τ)

)
∂L (τ , w)

∂τ1

= Λc1 −Ψτ
(
m2 + τm′ (τ)

)
,

so

τ =
Λ/ψ1

m (τ)2 + τm′ (τ)
.

An isoelastic example We now work out completely an isolastic example. Take decision

utility have us (c0, c1,m) = c0 + U (c1) − g (m), with U (c) = c1−1/ψ−
1−1/ψ

and attention technology

ps1 (p1,m) = pd1 + mτ1, where τ1 is a tax. Full utility is u (c0, c1,m) = c0 + U (c1) − Ag (m), where

A = 0 in the “no attention cost in welfare” case, and A = 1 in the “optimally allocated attention”

case.

We assume p0 = 1. The perceived tax is:

τ s1 = m (τ1) τ1,

and demand is

c1 = (p1 +m (τ1) τ1)−ψ .

The Slutsky matrix with constant m has:

SH11|m =
∂c1 (p1 +mτ1,m)

∂τ1

= −Ψm,
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where (to leverage the calculations already done for the quadratic utility case) we define:

Ψ = ψ
c1

qs1
,

with qs1 = p1 +m1 (τ1), while with variable attention m (τ), we have:

SH11 =
dc1

(
pd1 +mτ1,m (τ1)

)
dτ1

= −Ψ (m+ τm′ (τ1))

SH21 =
∂m

∂τ1

= m′ (τ1) .

Then, we have: τ b = (0, q − qs, Ag′ (m)) = (0, τ1 (1−m) , Ag′ (m)), and given τ = (0, τ1, 0), and

τ̃ b =
(
1− β

λ

)
τ = (1− Λ) τ so

τ − τ̃ b = τ − (1− Λ) τ b = (0, τ1 (1− (1−m) (1− Λ)) ,− (1− Λ)Ag′ (m))

= (0, τ1 (m+ Λ (1−m)) ,− (1− Λ)Ag′ (m))

SH1 = (0,−Ψ (m+ τ1m
′ (τ1)) ,m′ (τ1)) .

Applying Proposition 2.1 gives (with λ = 1,γ = 1− Λ)

∂L (τ , w)

∂τ1

= (λ− γ) c1 + λ
(
τ − τ̃ b

)
· SH1

= Λc1 −Ψτ1 (m+ Λ (1−m)) (m+ τ1m
′ (τ1))− Ag′ (m)m′ (τ1) .

Define

ψ1 (c1) =
Ψ

c1

=
ψ

qs1
.

First, when m1 is exogenous, we verify our formula (13):

0 = Λ− ψ

qs1
τ1 (m+ Λ (1−m))m,

i.e. τ1
qs1

= Λ
ψ1(m+Λ(1−m))m

, which is equivalent to (13).

Next, in the “no attention cost in welfare” case, A = 0

∂L (τ , w)

∂τ1

= Λc1 −Ψτ1 (m+ Λ (1−m)) (m+ τ1m
′ (τ1))

= Λc1 −
ψ

1 +mτ
cτ (m+ Λ (1−m)) (m+ τm′ (τ)) ,

so

τ 0 =
Λ/ψ

m2 + τmm′ (τ) + Λ
(

(1−m) (m+ τm′)− m
ψ

) . (77)
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Finally, in the “optimally allocated attention” case, A = 1. First, we verify:

−D1 = τ b · SH = (0, τ1 (1−m) , g′ (m)) · (0,−Ψ (m+ τ1m
′ (p)) ,m′ (p1))

= −Ψ (m+ τ1m
′ (p)) τ1 (1−m) + g′ (m)m′ (p1) = −Ψmτ1 (1−m) = − (τ1 − τ s1 ) Ψm

= τ sC · SHj|m (p, w,m) .

with τ sC = τ1 − τ s1 = (1−m) τ1 and SHj|m (p, w,m) = −Ψm.

∂L (τ , w)

∂τ1

− Λc1 =
(
τ − τ̃ b

)
· SH1 = τ · SH1 − τ̃ b · SH1 = τ · SH1 − (1− Λ) τ sC · SH1|m

= −Ψτ (m+ τ1m
′ (τ1)) + (1− Λ) Ψτ (1−m)m = −Ψτ (m (m+ Λ (1−m)) + τm′ (τ))

∂L (τ , w)

∂τ1

= Λc1 −
ψc1

1 +mτ
τ (m (m+ Λ (1−m)) + τm′ (τ)) ,

so ∂L(τ ,w)
∂τ1

= 0 gives

τ 1 =
Λ/ψ

m2 + τm′ (τ) + Λ
(

(1−m)m− m
ψ

) . (78)

We can compare this to the following re-rewrite of the optimal tax in the no-attention in welfare

case:

τ 0 =
Λ/ψ

m2 + τ1m′ (τ1) + Λ
(

(1−m)m− m
ψ

)
− τ (1−m)m′ + Λ (1−m) τm′

(79)

=
Λ/ψ

m2 + τ1m′ (τ1) + Λ
(

(1−m)m− m
ψ

)
− (1− Λ) τ (1−m)m′

. (80)

Proposition 9.19 The optimal tax is lower in the “attention in welfare” case than in the “no

attention in welfare” case.

Proof. Suppose the opposite, i.e. τ 1 (m1) ≥ τ 0 (m0).

We observe that, for all m, (i) τ 0 (m) ≥ τ 1 (m) (ii) τ 1 (m) is decreasing in m, and (iii)m (τ) is

weakly increasing in τ ,

Then

τ 1 (m1) ≥ τ 0 (m0) ≥ τ 1 (m0) ,

hence, as τ 1is decreasing in m, we have m1 < m0. As m (τ)is increasing, this implies τ1 < τ0. We’ve

reached a contradiction.

There’s a function m (τ); it’s inverse is τ (m) we define

τ 1 (m) =
Λ/ψ

m2 + τm′ (τ (m)) + Λ
(

(1−m)m− m
ψ

) .
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For (ii) a sufficient condition is ψ ≥ 1 and τ (m)m′ (τ) weakly increasing in τ : then we have

m2 + τ1m
′ (τ1) + Λ

(
(1−m)m− m

ψ

)
= m2 (1− Λ) + τm′ +mΛ

(
1− 1

ψ

)
increasing in m.

For (iii), the problem is

max
m

u (c (p+mτ))− (p+ τ) c (p+mτ)− g (m)

g′ (m) = (u′ (c)− q) c′ (qs) τ = (qs − q) c′ (qs) τ = −c′ (qs) (1−m) τ 2.

In the isoelastic case,

f (m, τ) = ψ (1 +mτ)−ψ−1 (1−m) τ 2 − g′ (m) .

We have

f (m (τ) , τ) = 0.

Optimal tax with endogenous, optimally chosen attention There is just one taxed good.

The case with many, independent taxed goods follows.

Recall that the consumer chooses: m (τ) = arg min −1
2
ψyτ 2 (1−m)2 − κg1 (m) and the planner

chooses: τ (Λ) = arg maxτ L (τ,Λ) with

L (τ,Λ) = −1

2
ψym (τ)2 τ 2 − κg (m (τ)) + Λyτ.

A lemma on scaling We show that it is enough to compute the solution in the case ψ = y =

κ = 1.

Lemma 9.3 Suppose that when ψ = y = κ = 1 the optimal tax is τ ′ = f (Λ) and optimal attention

is m1 (τ ′). Then, in the general case it is:

τ (Λ) =

√
κ

ψy
f

(
Λ

√
y

κψ

)
,

and the attention is m (τ) = m1

(
τ
√

ψy
κ

)
.

For instance, in the basic rational case, f (Λ) = Λ and m1 (τ ′) = 1.
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Proof This is a simple scaling argument. We define

m1 (τ ′) = arg min
−1

2
τ ′2 (1−m)2 − g1 (m)

L1 (τ ′,Λ′) = −1

2
m1 (τ ′)

2
τ ′2 − g

(
m1 (τ ′)

)
+ Λ′τ ′

τ ′ = τ

√
ψy

κ

Λ′ = Λ

√
y

κψ
=

Λy

κ

τ

τ ′
.

Then, we have:

m (τ) = arg min
−1

2

ψy

κ
τ 2 (1−m)2 − g1 (m)

= m1 (τ ′)

L (τ,Λ) = −1

2
ψym (τ)2 τ 2 − κg (m) + Λyτ

= κ

[
−1

2

ψy

κ
τ 2m (τ)2 − g (m) +

Λy

κ
τ

]
= κL1 (τ ′,Λ′) .

Hence, as τ ′ = f (Λ′) at the optimum.�

Example with continuously adjusting attention We have g (m) = −κ ln (1−m), so that

attention is m (τ) =
(

1− 1√
ψyτ

)
+

. Indeed, arg min σ2

2
(1−m)2 + g (m) is m =

(
1− 1

σ

)
+

.

Proposition 9.20 In the above setup with optimal attention, the optimal tax is τi =
√

κ
ψiyi

f
(

Λ
√

yi
κψi

)
,

for the continuous function

f (Λ) =
Λ + 1 +

√
(Λ + 1)2 − 4

2
for Λ ≥ 1

= 1 for Λ < 1.

Also, m1 (τ ′) =
(
1− 1

τ ′

)
+

.

Proof. We first reason in the case ψ = y = κ = 1. Then,m (τ) =
(
1− 1

τ

)
+

and

L (τ) = −1

2
m (τ)2 τ 2 − g (m) + Λτ.
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Then, for τ > 1,

L′ (τ) = 1− 1

τ
− τ + Λ,

so τ is the greater root of:

τ +
1

τ
= Λ + 1,

which exists provided Λ ≥ 1, i.e.:

f (Λ) =
Λ + 1 +

√
(Λ + 1)2 − 4

2
for Λ ≥ 1

= 1 for Λ < 1.

�

An example with 0-1 attention A concrete example of attention choice is:

m (τ) = arg max
m
−1

2
ψτ 2 (1−m)2 − g (m) ,

with

g (m) =
1

2
κ2
[
1− (1−m)2] .

Then, the solution is

m (τ) = 1τ>τ∗ , τ∗ =
κ√
ψ
. (81)

As an aside, a fixed cost g (m) = κ2

2
1m>0 gives the same result.

Proposition 9.21 The optimal tax is τi =
√

κ
ψiyi

f
(

Λ
√

yi
κψi

)
, for f (Λ) = 1 if Λ ≤

√
2 + 1 and

f (Λ) = Λ if Λ >
√

2 + 1. Also, m1 (τ ′) = 1τ ′>1.

In that case, the optimal tax has a discontinuity. When Λ is low enough, the planner keeps the

taxes at τi =
√

κ
ψiyi

, just below the “detectability threshold” and agents do not pay attention to

the tax.

Proof We start with the case ψ = y = κ = 1. Then, m (τ) = 1τ>1. For τ ≤ 1, L (τ) = Λτ , so

the optimum for τ ∈ [0, 1] is τ = 1.

L (1) = Λ.

For τ > τ∗, m (τ) = 1, so L (τ) = −1
2
τ 2 − g (1) + Λτ , and the optimum is τ = Λ. We have

L (τ) =
Λ2 − 1

2
.

So L (τ) > L (τ∗) if and only if Λ2−1
2

> Λ, i.e. if and only ifΛ2−1
2

> Λ, i.e. if and only if Λ >
√

2+1.�
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9.5.6 Quadratic losses from imperfect tax instruments

We introduce the Lagrangian that allows for agent-specific lump-sum transfers wh and taxes τh, τ s,h

(we normalize pi = 1)

L
({
τh
}
,
{
τ s,h
}
,
{
wh
})

= W
(
vh
(
p+ τ, p+ τ s,h, wh, ξ

))
+λ
∑
h

[
τ · ch

(
p+ τ, p+ τ s,h, wh, ξ

)
− wh

]
,

with ξ = ξ
({
ch
})

as a fixed point. We also define:

g
({
τ s,h
})

= max
{wh}

L
({
τ s,h
}
,
{
τ s,h
}
,
{
wh
})
, (82)

which is the Lagrangian with rational agents perceiving τ s,h and with optimum agent-specific lump-

sum transfer.

The social utility achieved with agent-specific taxes τ s,h, and optimum agent-specific lump-sum

transfers, with a rational agent.

Proposition 9.22 In general, in the Ramsey problem with externalities and redistribution, the

social loss (realized social minus first best) is:

L = Ldistribution + Ldistortions,

with

Ldistribution =
1

2

∑
h,h′

(
γξ,h − γ

) (
Lww (w, τ)−1)

h,h′

(
γξ,h − γ

)
Ldistortions =

1

2

∑
h,h′

(
τ s,h − τ ∗s,h

)
gτs,hτs,h′

(
τ s,h′ − τ ∗s,h′

)
.

This reflects that at the optimum, the γξh should be the same (and equal to λ), and we should

have τ s,h − τ ∗s,h.

Understanding the redistribution term For instance, take the case: W =
∑
vh
(
q, qs,h, wh, ξ

)
and ξ is independent of wh, then Lwhwh′ = vhww, so that

Ldistribution =
1

2

∑
h,h′

(
γh − γ

)2

vhww
.

The losses come from the lack of equalization of γ’s.

Understanding the gτsτs better
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Lemma 9.4 We have

gτs,hτs,h′ = λShr
(

1h=h′ −
dτ ξ,h

dτ s,h′

)
.

When utility is quasi linear and the externality enters additively, u (c, ξ) = u (c1, ..., cn) + λc0 + 1
H
ξ,

we have:

gτhs τs,h′ = λSrh1h=h′ + Srhξchch′S
rh′ . (83)

10 The Nonlinear income tax problem

Here are the notations we shall use.

g (z) :social welfare weight

h (z) (resp. h∗ (z)): density (resp. virtual density) of earnings z

H (z): cumulative distribution function of earnings

n :agent’s wage, also the index of his type

q (z) = R′ (z): marginal retention rate, locally perceived

Q = (q (z))z≥0: vector of marginal retention rates

r0: tax rebate at 0 income

r (z) :virtual income

R (z) = z − T (z): retained earnings

T (z): tax given earnings z

z: pre-tax earnings

γ (z): marginal social utility of income

η: income elasticity of earnings

π :Pareto exponent of the earnings distribution

ζc: compensated elasticity of earnings

ζcQz∗ (z): compensated elasticity of earnings when the tax rate at z∗ changes.

ζu : uncompensated elasticity of earnings

10.1 Setup

Agent’s behavior There is a continuum of agents indexed by skill n with density f (n) (we

use n rather than h, the conventional index in that literature). Agent n has a utility function

un (c, z), where c is his one-dimensional consumption, z is his pre-tax income, and uz ≤ 0.82

The total income tax for income z is T (z), so that disposable income is R (z) = z − T (z). We

call q (z) = R′ (z) = 1 − T ′ (z) the local marginal “retention rate”, Q = (q (z))z≥0 the ambient

vector of all marginal retention rates, and r0 = R (0) the transfer given by the government to an

82If the agent’s pre-tax wage is n, L is his labor supply, and utility is Un (c, L), then un (c, z) = U
(
c, zn

)
. Note

that this assumes that the wage is constant (normalized to one). We discuss the impact of relaxing this assumption
in Sections 5.1 and 10.3.2.
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agent earning zero income. We define the “virtual income” to be r (z) = R (z)−zq (z). Equivalently

R(z) = q (z) z+r (z), so that q (z) is the local slope of the budget constraint, and r (z) its intercept.

We use a general behavioral model in a similar spirit to Section 2. The primitive is the income

function zn (q,Q, r0, r) , which depends on the local marginal retention rate q, the ambient vector of

all marginal retention rates Q, r0 = R (0) the transfer given by the government to an agent earning

zero income, and the virtual income r. In the traditional model without behavioral biases we have

zn (q,Q, r0, r) = arg maxz u
n (qz + r, z) , so that zn does not depend on Q and r0. With behavioral

biases, this is no longer true in general. The income function is associated with the indirect utility

function vn (q,Q, r0, r) = un (qz + r, z)|z=zn(q,Q,r0,r)
. The earnings z (n) of agent n facing retention

schedule R (z) is then the solution of the fixed point problem z = zn (q (z) ,Q, r0, r (z)). His

consumption is c (n) = R(z (n)) and his utility is v (n) = un (c (n) , z (n)).

Planning problem The objective of the planner is to design the tax schedule T (z) in order

to maximize the following objective function∫ ∞
0

W (v (n)) f (n) dn+ λ

∫ ∞
0

(z (n)− c (n)) f (n) dn.

Like Saez (2001), we normalize λ = 1. We call g (n) = W ′ (v (n)) vnr (q (z (n)) ,Q, r0, r (z (n))) the

marginal utility of income. This is the analogue of βh in the Ramsey problem of Section 2, and

we identify agents with their income level z (n) instead of their skill n. Most of the time, we leave

implicit the dependence of n (z) on z to avoid cluttering the notations. We now derive a behavioral

version of the optimal tax formula in Saez (2001).

10.2 Saez Income Tax Formula with Behavioral Agents

10.2.1 Elasticity Concepts

Recall that the marginal retention rate is q (z) = 1−T ′ (z). Given an income function z (q,Q, r0, r),

we introduce the following definitions. We define the income elasticity of earnings

η = qzr (q,Q, r0, r) .

We also define the uncompensated elasticity of labor (or earnings) supply with respect to the actual

marginal retention rate

ζu =
q

z
zq (q,Q, r0, r) .

Finally, we define the compensated elasticity of labor supply with respect to the actual marginal

retention rate

ζc = ζu − η.
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We also introduce two other elasticities, which are zero in the traditional model without behav-

ioral biases. We define the compensated elasticity of labor supply at z with respect to the marginal

retention rate q (z∗) at a point z∗ different from z:

ζcQz∗ =
q

z
zQz∗ (q,Q, r0, r) .

We also define the earnings sensitivity to the lump-sum rebate at zero income83

ζcr0 =
q

z
zr0 (q,Q, r0, r) .

We shall call ζcQz∗ a “behavioral cross-influence” of the marginal tax rate at z∗ on the decision of

an agent earning z. In the traditional model with no behavioral biases, ζcQz∗ = ζcr0 = 0, not so with

behavioral agents.84′85

All these elasticities a priori depend on the agent earnings z. As mentioned above, we leave this

dependence implicit most of the time.

Just like in the Ramsey model, we define the “behavioral wedge”

τ b(q,Q, r0, r) = −quc(c, z) + uz (c, z)

vr (q,Q, r0, r) |z=z(q,Q,r0,r),c=qz+r
.

We also define the renormalized behavioral wedge

τ̃ b (z) = g (z) τ b (z) .

In the traditional model with no behavioral biases, we have τ b (q,Q, r0, r) = τ̃ b (z) = 0. But this is

no longer true with behavioral agents.

We have the following behavioral version of Roy’s identity (proven in the online appendix,

Section 11.2.2):
vq
vw

= z − τ bz

q
ζc,

vQz∗
vw

= −τ
bz

q
ζcQz∗ . (84)

As in Section 2, the general model can be particularized to a decision vs. experienced utility

model, or to a misperception model.

Misperception model The agent may misperceive the tax schedule, including her marginal

tax rate. We call T s,n (q,Q, r0) (z) the perceived tax schedule, Rs,n (z) = z − T s,n(q,Q, r0) (z) the

83Formulas would be cleaner without the multiplication by q in those elasticities, but here we follow the public
economics tradition.

84For instance, in the misperception model, in general, the marginal tax rate at z∗ affects the default tax rate and
therefore the perceived tax rate at earnings z.

85In the language of Section 2.1, we use income-compensation based notion of elasticity, SC , rather than the
utility–compensation based notion SH .
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perceived retention schedule, and qs,n(q,Q, r0) (z) = dRs,n(q,Q,r0)(z)
dz

the perceived marginal retention

rate. Faced with this tax schedule, the behavior of the agent can be represented by the following

problem

smax
c,z|Rs,n(·)

un (c, z) s.t. c = R (z) .

This formulation implies that the agent’s choice (c, z) satisfies c = R (z) and

qs,n (z)unc (c, z) + unz (c, z) = 0,

instead of the traditional condition q (z)unc (c, z) + unz (c, z) = 0. This means that the agent cor-

rectly perceives consumption and income (c, z) but misperceives his marginal retention rate qs,n (z).

Together with c = R (z), this characterizes the behavior of the agent.86

Accordingly, we define zn (q, qs, r) to be the solution of qs,nunc (c, z) + unz (c, z) = 0 with c =

qz + r.87 The income z (n) of agent n is then the solution of the fixed point equation

z = zn (q (z) , qn,s(q,Q, r0) (z) , r (z)) ,

his consumption is c (n) = R(z (n)) and his utility is v (n) = un (c (n) , z (n)).

Summing up, in the misperception model, the primitives are a utility function u and a per-

ception function qs (q,Q, r0) (z). This yields an income function z (q, qs, r). The general function

z (q,Q, r0, r) is then z (q (z′) ,Q, r0, r) = z (q (z′) , qs (q,Q, r0) (z′) , r) for any earnings z′.

One concrete example of misperception is qs,n(q,Q, r0) = qs (q,Q, r0) with

qs(q,Q, r0) (z) = mq (z) + (1−m) [αqd (Q) + (1− α)
r0 +

∫ z
0
q (z′) dz′

z
],

where m ∈ [0, 1] is the attention to the true tax (hence retention) rate,
r0+

∫ z
0 q(z

′)dz′

z
is the average

retention rate (as in Liebman and Zeckhauser (2004)), and α ∈ [0, 1]. The default perceived

retention rate might be a weighted average of marginal rates, e.g. qd (Q) =
∫
q (z)ω (z) dz for some

weights ω (z).

As in the Ramsey case, it is useful to express behavioral elasticities as a function of an agent

without behavioral biases. Call zr (qs, r′) = arg maxz u (qsz + r′, z) the earnings of a rational agent

facing marginal tax rate qs and extra non-labor income r′. Then, z (q, qs, r) = zr (qs, r′) where r′

solves r′ + qszr (qs, r′) = r + qzr (qs, r′). We call Sr (qs, r′) = ∂zr

∂qs
(qs, r′) − ∂zr

∂r′
(qs, r′) zr (qs, r′) the

rational compensated sensitivity of labor supply (it is just a scalar). We also define ζcr = qSr

z
as

the compensated elasticity of labor supply of the agent if he were rational.

We define mzz = qsq (q,Q, r0) (z) as the attention to the own marginal retention rate and mzz∗ =

86This is a sparse max problem with a non-linear budget constraint, which generalizes the sparse max with a
linear budget constraint we analyzed in section 3.1. The true constraint is c = R (z), but the perceived constraint is
c = Rs,n (q,Q, r0) (z).

87If there are several solutions, we choose the one that yields the greatest utility.
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qsQz∗ (q,Q, r0) (z) as the marginal impact on the perceived marginal retention rate at z of an increase

in the marginal retention rate at z∗. Then, we have the following concrete values for the elasticities

of the general model (the derivation is in Section 11.2.2 of the appendix):

ζc =

(
1− ητ − τ

s

q

)
ζcrmzz, ζcQz∗ =

(
1− ητ − τ

s

q

)
ζcrmzz∗ , (85)

τ b =
τ − τ s

1− η τ−τs
q

. (86)

If the behavioral agent overestimates the tax rate (τ − τ s < 0), the term τ b is negative. Loosely,

we can think of τ b as indexing an “underperception” of the marginal tax rate. In the traditional

model without behavioral biases, mzz∗ = 1z=z∗ , τ
s = τ and τ b = 0.

Decision vs. experienced utility model In the decision vs. experienced utility model,

behavior is represented by the maximization of a subjective decision utility us (c, z) subject to the

budget constraint c = R (z). We then have ζcQz∗ = 0, and ζc and η are the elasticities associated

with decision utility us. The behavioral wedge is

τ b =

uc
usc
usz − uz
vr

. (87)

Other useful concepts and notations We next study the impact of the above changes on

welfare. Following Saez (2001), we call h (z) the density of agents with earnings z at the optimum

and H (z) =
∫ z

0
h (z′) dz′. We also introduce the virtual density h∗ (z) = q(z)

q(z)−ζczR′′(z)h (z).

We define the social marginal utility of income

γ (z) = g (z) +
η (z)

1− T ′ (z)

[
τ̃ b (z) +

(
T ′ (z)− τ̃ b (z)

) h∗ (z)

h (z)

]
. (88)

This definition is the analogue of the corresponding definition in the Ramsey model. It is

motivated by Lemma 11.2 in the online appendix, which shows that, if the government transfers a

lump-sum δK to an agent previously earning z, the objective function of the government increases

by δL (z) = (γ (z)− 1) δK. The social marginal utility of income γ (z) reflects a direct effect g (z) of

that transfer to the agent’s welfare, and an indirect effect on labor supply captured—to the leading

order as the agent receives δK, his labor supply changes by η(z)
1−T ′(z)δK, which impacts tax revenues

by η(z)
1−T ′(z)T

′ (z) δK and welfare by η(z)
1−T ′(z) τ̃

b (z) δK; the terms featuring h∗(z)
h(z)

(in practice often close

to 1) capture the fact that the agent’s marginal tax rate changes as the agent adjusts his labor

supply, which impacts tax revenues and welfare because misoptimization.
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10.2.2 Optimal Income Tax Formula

We next present the optimal income tax formula. The online appendix (section 11.2.1) presents the

intermediary steps used in the derivation of this formula.

Proposition 10.1 Optimal taxes satisfy the following formulas (for all z∗)

T ′ (z∗)− τ̃ b (z∗)

1− T ′ (z∗)
=

1

ζc (z∗)

1−H (z∗)

z∗h∗ (z∗)

∫ ∞
z∗

(1− γ (z))
h (z)

1−H (z∗)
dz (89)

−
∫ ∞

0

ζcQz∗ (z)

ζc (z∗)

T ′ (z)− τ̃ b (z)

1− T ′ (z)

zh∗ (z)

z∗h∗ (z∗)
dz.

This formula can also be expressed as a modification of the Saez (2001) formula

T ′ (z∗)− τ̃ b (z∗)

1− T ′ (z∗)
+

∫ ∞
0

ω (z∗, z)
T ′ (z)− τ̃ b (z)

1− T ′ (z)
dz (90)

=
1

ζc (z∗)

1−H (z∗)

z∗h∗ (z∗)

∫ ∞
z∗

e−
∫ z
z∗ ρ(s)ds

(
1− g (z)− η τ̃ b (z)

1− T ′ (z)

)
h (z)

1−H (z∗)
dz,

where ρ (z) = η(z)
ζc(z)

1
z

and

ω (z∗, z) =

(
ζcQz∗ (z)

ζc (z∗)
−
∫ ∞
z′=z∗

e−
∫ z′
z∗ ρ(s)dsρ (z′)

ζcQ
z
′ (z)

ζc (z∗)
dz′

)
zh∗ (z)

z∗h∗ (z∗)
.

The first term 1
ζc(z∗)

1−H(z∗)
z∗h∗(z∗)

∫∞
z∗

(1− γ (z)) h(z)
1−H(z∗)

dz on the right-hand side of the optimal tax

formula (89) is a simple reformulation of Saez’s formula, using the concept of social marginal utility

of income γ (z) rather than the marginal social welfare weight g (z) The link between the two is

in equation (88)). The second term − 1
z∗

∫∞
0

ζcQz∗
(z)

ζc(z∗)
T ′(z)−τ̃b(z)

1−T ′(z) z h∗(z)
h∗(z∗)

dz on the right-hand side is new

and captures a misoptimization effect together with the term −τ̃b(z∗)
1−T ′(z∗) on the left-hand side.

The intuition is as follows. First, suppose for concreteness that ζcQz∗ (z) > 0, then increasing the

marginal tax rate at z∗ leads the agents at another income z to perceive higher taxes on average,

which leads them to decrease their labor supply and reduces tax revenues. Ceteris paribus, this

consideration pushes towards a lower tax rate, compared to the Saez optimal tax formula. Second,

suppose for concreteness that τ̃ b (z) < 0, then increasing the marginal tax rate at z∗ further reduces

welfare. This, again, pushes towards a lower tax rate.

The modified Saez formula (90) uses the concept of the social marginal welfare weight g (z)

rather than the social marginal utility of income γ (z). It is easily obtained from formula (89) using

equation (88). When there are no income effects so that η = ρ (z) = 0, the optimal tax formula (89)

and the modified Saez formula (90) are identical. They coincide with the traditional Saez formula

when there are no behavioral biases so that ζcQz∗ (z) = ω (z∗, z) = τ̃ b (z) = 0. In this case, the

left-hand side of (90) is simply T ′(z∗)
1−T ′(z∗) so that the formula solves for the optimal marginal tax rate
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T ′ (z∗) at z∗.

The formula is expressed in terms of endogenous objects or “sufficient statistics”: social marginal

welfare weights g (z), elasticities of substitution ζc (z), income elasticities η (z), and income distri-

bution h (z) and h∗ (z). With behavioral agents, there are two differences. First, there are two ad-

ditional sufficient statistic, namely the behavioral wedge τ̃ b(z) and the behavioral cross-elasticities

ζcQz∗ (z). Second, it is not possible to solve out the optimal marginal tax rate in closed form. In-

stead, the modified Saez formula (90) at different values of z∗ form a system of linear equations

in the optimal marginal tax rates T ′ (z) for all z. The formula simplifies greatly in the case where

behavioral biases can be represented by a decision vs. experienced utility model. Indeed, we then

have ω (z∗, z) = 0 and τ̃ b (z) = g (z)
uc

usz
usc
−uz

vr
, so that there is no linear system of equations to solve

out to recover T ′ (z).

10.2.3 Marginal Tax Rate for Top Incomes

We start by revisiting the classic result that if the income distribution is bounded at zmax, then

the top marginal income tax rate should be zero. In our model, this needs not be the case. One

simple way to see that is to consider the case of decision vs. experienced utility. The tax formula

(89) prescribes T ′ (zmax) = τ̃ b (zmax) which is positive or negative depending on whether top earners

overperceive or underperceive the benefits of work (underperceive or overperceive the costs of work).

We now derive a formula for the marginal rate at very high incomes when the income distribution

is unbounded at the top. It proves convenient to consider a (high) z0 above which we consider

that incomes are “top incomes”, and the marginal rate is constant. We consider tax systems

with constant marginal tax rates for z ≥ z0. We assume that g (z) = g for z ≥ z0. We call

ζcq (z) =
∫∞
z0
ζcQz∗ (z)dz∗ the sensitivity to the asymptotic tax rate. This is the elasticity of earnings

of an individual at earnings z < z0 to an increase to the top rate, arising perhaps because of

a misperception of the tax environment. Concretely, think of the recent case of France where

increasing the top rate to 75% might have created an adverse general climate with the perception

that even earners the top income would pay higher taxes.

We call η, g, ζ
c

the asymptotic values for large incomes and π the Pareto exponent of the

earnings distribution (i.e. when z is large, 1 − H (z) ∝ z−π). We define the weighted means:

Ez [φ (z)] =
∫
φ(z)h(z)zdz∫
φ(z)zdz

and E∗
[
ζcq
]

=

∫
ζcq(z)

T ′(z)−τ̃b(z)
1−T ′(z) h∗(z)dz∫ T ′(z)−τ̃b(z)

1−T ′(z) h∗(z)dz
.

Proposition 10.2 (Optimal tax rate for top incomes) The optimal marginal rate τ for top incomes

is

τ =
1− g − β + ζ

c
πgτ b

1− g − β + ζ
c
π + η

, (91)

where

β = Ez
[
T ′ (z)− τ̃ b (z)

1− T ′ (z)

]
π

E [z]

E [z1z≥z0 ]
E∗
[
ζcq
]
.
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This generalizes the Saez (2001) formula which can be recovered in the particular case where

β = τ b = 0. The intuition is as follows—the β term reflects not only the fact that the top marginal

tax rate affects not only top earners, but also the tax perceived by agents at all points of the income

distribution with associated effects on tax revenues. The more increasing the top tax rate lowers

all incomes (the higher ζcq (z)), the higher β, and the lower the optimal top tax rate.

The τ b terms are positive (resp. negative) when top earners overperceive (resp. underperceive)

the marginal benefits of effort or underperceive (resp. overperceive) taxes. These terms lead to

higher (resp. lower) optimal top rates compared to the Saez formula.

Consider the typical Saez calibration with ζc (∞) = 0.2, η = 0 and π = 2. If the typical tax

is T ′ (z) ' 1
3

so that Ez
[

T ′(z)
1−T ′(z)

]
' 1

2
, we take z0 to be at the top 1% quantile of the income

distribution. Piketty and Saez (2003) (updated 2015) report that the income share of the top 1% is

20%, so that E[z]

E[z1z≥z0 ]
= 1

0.2
. This implies that β = Ez

[
T ′(z)−τ̃b(z)

1−T ′(z)

]
π E[z]

E[z1z≥z0 ]
E∗
[
ζcq
]

= 1
2
2 1

0.2
E∗
[
ζcq
]

=

5E∗
[
ζcq
]
. Also, we take top earnings to be well calibrated, i.e. τ b = 0.

The average cross-influence E∗
[
ζcq
]

does not appear to have ever been measured. It is assumed

to be 0 in the traditional model. We propose the following thought experiment to gauge its po-

tential magnitude. Suppose that increasing the top rate by 10% will decrease earnings outside

the top bracket by x = 1%. Then, E∗
[
ζcq
]

= (1− T ′ (z))
zq
z

=
(
1− 1

3

)
x

0.1
= 6.7x, which gives an

interpretable benchmark that we now use.

Take first the case where g = 0, i.e. where the top optimal tax rate maximizes revenues raised

from top earners. With rational agents (x = 0), the top marginal tax rate is τ = 71%. If x = 1%,

then τ = 62%, and if x = 2%, then τ = 45%. If x = −1%, then τ = 77%.88 When the weight

on top earnings is higher, say g = 0.2, the corresponding numbers for the top rate are: 67%, 53%,

25%, and 74%. This illustrates the potentially large importance of the behavioral cross-impact of

the top tax rate, a sufficient statistic that is assumed to be zero in traditional analyses.

The behavioral wedge τ b does not affect the optimal tax rate when g = 0. When g = 0.5, the

optimal top rate increases from 56% to 67% when the internality goes from no misperception of

taxes by top earners (τ b = 0) to underperception of taxes by top earners (τ b = 0.5).

10.2.4 Possibility of Negative Marginal Income Tax Rates

In the traditional model with no behavioral biases, negative marginal income tax rates can never

arise at the optimum. With behavioral biases negative marginal income tax rates are possible at the

optimum. To see this, consider for example the decision vs. experienced utility model with decision

utility us and assume that us is quasilinear so that there are no income effects us (c, z) = c−φκ (z).

We take experienced utility to be u (c, z) = θc − φ (z). Then the modified Saez formula (90)

88We thank Thomas Piketty for suggesting to us that if workers are happier, and strike less, because taxes on the
wealthy are high, then x < 0.
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becomes
T ′ (z∗)− τ̃ b (z∗)

1− T ′ (z∗)
=

1

ζc (z∗)

1−H (z∗)

z∗h∗ (z∗)

∫ ∞
z∗

(1− g (z))
h (z)

1−H (z∗)
dz,

where τ̃ b (z) = −g (z)φ′ (z) θ−1
θ

by (87). When θ > 1, we have τ̃ b (z∗) < 0, and it is possible for this

formula to yield T ′ (z∗) < 0. This occurs if agents undervalue the benefits or overvalue the costs

from higher labor supply. For example, it could be the case that working more leads to higher human

capital accumulation and higher future wages, but that these benefits are underperceived by agents,

which could be captured in reduced form by θ > 1. Such biases could be particularly relevant at

the bottom of the income distribution (see Chetty and Saez (2013) for a review of the evidence). If

these biases are strong enough, the modified Saez formula could predict negative marginal income

tax rates at the bottom of the income distribution. This could provide a behavioral rationale for

the EITC program.89 In parallel and independent work, Gerritsen (2016) and Lockwood (2017)

derive a modified Saez formula in the context of decision vs. experienced utility model.Lockwood

(2017) zooms in on the EITC program and provides an empirical analysis documenting significant

present-bias among EITC recipients and shows that a calibrated version of the model goes a long

way towards rationalizing the negative marginal tax rates associated with the EITC program.

This differs from alternative rationales for negative marginal income tax rates that have been

put forth in the traditional literature. For example, Saez (2002) shows that if the Mirrlees model

is extended to allow for an extensive margin of labor supply, then negative marginal income tax

rates can arise at the optimum. We refer the reader to the online appendix (section 10.3.1) for a

behavioral treatment of the Saez (2002)extensive margin of labor supply model.

10.3 Complements on the Mirrlees problem

10.3.1 Mirrlees problem with extensive margin

We provide a behavioral enrichment to Saez (2002). We take his simplest framework (Proposition

1). Activity 0 is unemployment, and there are I other activities. One type i of agent chooses

between working and not working: working gives utility uh (ci, i), not working utility uh (c0, 0),

where ci = zi − T (zi). If the agent is rational, he solves

i∗ = arg max
i∗∈{0,i}

uh (ci, i) ,

but our behavioral agent may make a mistake. E.g., in the misperception model, he might perceive

csi , so that he decides according to

i∗ = arg max
i∗∈{0,i}

uh,b (csi , i) .

89The EITC program itself could be misperceived, see Chetty et al. (2013).
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In general, we will simply model the choice as some i∗ (h, {Tj}). We say that an agent is “at the

margin for tax i” if the agent changes activity as tax i changes B+
i = {m s.t. ∂i∗ (h, {Tj}) /∂Ti < 0}

(which is the set of agent moving into active employment if the tax rate on activity i falls) and

B−i = {m s.t. ∂i∗ (h, {Tj}) /∂Ti > 0} (which is the set of agent moving out of active employment if

the tax rate on activity i falls). The normal case is that B−i is an empty set. The derivative is in

the sense of distributions, and simply indicates a change in agent’s behavior.

Suppose that the government increases tax Ti on activity i by dTi. That induces a quantity dHj

of people to switch to employment, where

dHj = −Hjηji
dTi

ci − c0

.

We have hj ({Tk}) =number of agents of type j who work.

Each h has a potential earnings level j (h). We call

τ bji = −
∑

ε∈{−,+}

E
[
εµm

(
uh (cj, j)− uh (c0, 0)

)
| j (h) = j and h ∈ Bε

i

]
.

We have
∂Hj

∂Ti
= −

∑
ε∈{−,+}

∫
ε1{j(h)=j and h∈Bεi }dν (m) .

The change in welfare from dTi is then

dL = (1− gi)HidTi −
∑
j

∑
ε∈{−,+}

∫
ε
[
Tj − T0 + µm

(
uh (cj, j)− uh (c0, 0)

)]
1{j(h)=j and h∈Bεi }dν (m)

= (1− gi)HidTi +
∑
j

(Tj − T0)
∂Hj

∂Ti
−
∑
j

∑
ε∈{−,+}

∫
ε
[
µm
(
uh (cj, j)− uh (c0, 0)

)]
1{j(h)=j and h∈Bεi }dν (m)

= (1− gi)HidTi +
∑
j

(
Tj − T0 − τ bji

) ∂Hj

∂Ti

= (1− gi)HidTi −
∑
j

(
Tj − T0 − τ bji

)
Hjηji

dTi
ci − c0

.

Hence, at the optimum: ∑
j

Tj − T0 − τ bji
ci − c0

Hj

Hi

ηji = (1− gi) .

For instance, suppose that people overestimate taxes, i.e. underperceive the benefits from

working: csi < ci, and no cross-effects. Then,

τ bji = −1j=i
∑

ε∈{−,+}

E
[
εµm

(
uh (ci, i)− uh (c0, 0)

)
| j (h) = j and h ∈ Bε

i

]
.
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10.3.2 Supply Elasticities: Mirrlees case

We now verify that the logic of section 5.1 applies to the Mirrlees case: with behavioral agent, the

supply elasticities generally are featured in the optimal income tax formula. To make the point,

take the case where the aggregate constraint is: Φ
(∫

nL (n) f (n) dn
)
≤ g +

∫
c (n) f (n) dn, where

Φ (L) is an aggregate production function. Indeed, recall that in the Mirrlees framework an agent

of productivity n is considered to supply n units of effective labor. Call w = Φ′ (L) the wage

rate. We can extend the analysis of section 4, with an index w (which can be thought as being

normalized to w = 1 in that section). Then, we can write the agents’ utility function problem as

un (c, z, w) = U
(
c, z

nw

)
and the earnings supply as zn (q,Q, r0, r, w) = wnLn (q,Q, r0, r, w). Other

functions acquire a w term, e.g. indirect utility becomes vn (q,Q, r0, r, w). Given a tax system, the

equilibrium wage w satisfies:

w = Φ′
(∫

zn (q,Q, r0, r, w)

w
f (n) dn

)
, (92)

which defines an equilibrium wage w (Q, r0)

The objective function is:

L (Q, r0, w) =

∫
W (v (n)) f (n) dn+ λ

[
Φ

(∫
z (n)

w
f (n) dn

)
−
∫
c (n) f (n) dn

]
,

and we can define L (Q, r0) = L (Q, r0, w (Q, r0)) when taking into account the equilibrium wage w.

Proposition 10.3 In the Mirrlees model, suppose that the production function is imperfectly elas-

tic. Then, the optimum tax features Lqz∗ (Q, r0) = 0, with

LQz∗ (Q, r0) = LQz∗ (Q, r0, w) + Lw (Q, r0, w)wQz∗ (Q, r0) . (93)

The term LQz∗ (Q, r0, w), with fixed wage, was calculated in Proposition 11.1 (with the normalization

w = 1). Hence, the optimal tax formula wQz∗ (Q, r0) generally depends on production elasticity, and

does not coincide with the one in Section 5.1.

When agents are rational, one can verify that Lw (Q, r0, w) = 0 at the optimum (see the proof of

Proposition 10.3). Hence, in the traditional analysis, the supply elasticity (captured by wQz∗ (Q, r0))

doesn’t appear in the optimal tax formula. This is not true any more with a behavioral model.

Proof of Proposition 10.3 The tax formula in the Proposition follows from the Chain rule.

Next, we verify that when agents are rational, Lw = 0 at w = w0. We normalize w0 = 1 for

simplicity. Suppose a given value of w and R (z). Define R̃ (z′, w) = R (z′w). Then, as zn =

97



arg maxz U
n
(
R (z) , z

nw

)
, i.e.

z

w
= arg maxUn

(
R̃
( z
w
,w
)
,
z

nw

)
.

So L (R (·) , w) = L
(
R̃ (·, w) , 1

)
. That is, the welfare is the same as if we had a different

tax system R̃, and a wage w = 1. Thus, given we started at an optimum tax system (R0 (·) =

arg maxR(·) L (R (·) , 1)), we have LR̃

(
R̃, 1

)
= 0, hence Lw = 0.�

11 Proofs not included in the paper

11.1 General proofs

Proof of Proposition 2.2 We observe that a tax τi modifies the externality as:

dξ

dτi
=
∑
h

ξch

[
chqi (q, w, ξ) + chξ

dξ

dτi

]
,

so dξ
dτi

=
∑
h ξchc

h
qi

1−
∑
h ξchc

h
ξ
. The term 1

1−
∑
h ξchc

h
ξ

represents the “multiplier” effect of one unit of pollution

on consumption, then on more pollution. So, calling ∂L
∂τi

no ξ
the value of ∂L

∂τi
without the externality

(that was derived in Proposition 2.1)

∂L

∂τi
− ∂L

∂τi

no ξ

=
dξ

dτi

{∑
h

Wvhv
h
w

vhξ
vhw

+ λ
∑
h

τ · chξ (q, w, ξ)

}
=
dξ

dτi

∑
h

[
βh
vhξ
vhw

+ λτ · chξ

]

=

∑
h ξchc

h
qi

1−
∑

h ξchc
h
ξ

∑
h

[
βh
vhξ
vhw

+ λτ · chξ

]
= Ξ

∑
h

ξchc
h
qi
.

Using Proposition 2.1,

∂L

∂τi
=
∑
h

[(λ− γh)chi + λτ · SC,hi − βhτ b,h · SC,hi + Ξξch · (−chwchi + SC,hi )]

=
∑
h

[(λ− γh − Ξξch · chw)chi + λ(τ +
Ξ

λ
ξch) · SC,hi − βhτ b,h · SC,hi ].

Proof of Proposition 2.4 We have, from Proposition 13.5

τ b,h = us,hC
(
Ch
)
− uhC

(
Ch
)

+ p− ps,h + τ − τ s,h = τ I,h + τ − τ s,h = τ I,h +
(
I −Mh

)
τ ,
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hence

τ − τ ξ,h − γξ,h

λ
τ b,h = τ − τ ξ,h − γξ,h

λ

(
τ I,h +

(
I −Mh

)
τ
)

= [I −
(
I −Mh

) γξ,h
λ

]τ − τX,h.

Hence, Proposition 2.2 implies:

∑
h

(1− γ
ξ,h

λ
)ch = −

∑
h

(
SH,h

)′ (
τ − τ ξh − τ̃ b,ξ,h

)
= −

∑
h

Mh′Sh,r[[I −
(
I −Mh

) γξ,h
λ

]τ − τX,h].

(94)

�

Proof of Proposition 3.1

We start from the Ramsey planning problem in (12). Define

L = γ
n∑
i=1

[
(ci(τi))

1−1/ψi − 1

1− 1/ψi
− (pi + τi)ci(τi)

]
+ λ

n∑
i=1

τici(τi)

where ci = (pi +miτi)
−ψi . The first-order condition with respect to τi is:

Lτi = γ

[
[(ci(τi))

−1/ψi − (pi + τi)]
∂ci
∂τi
− ci(τi)

]
+ λ

[
ci(τi) + τi

∂ci
∂τi

]
= 0

Note that ci(τi)
−1/ψi = pi +miτi and ∂ci/∂τi = −ψi ci

pi+miτi
mi, we can rewrite the FOC as:

Lτi = γ

[(
λ

γ
− 1 +mi

)
τi
−ψici(τi)mi

pi +miτi

]
+ (λ− γ)ci(τi)

= −λ
(

Λ +
γ

λ
mi

) ψiτici(τi)mi

pi +miτi
+ λΛci(τi) = 0

Simplifying gives us: (
Λ +

γ

λ
mi

)
ψiτimi = Λ(pi +miτi)

which gives an explicit expression for τi:

τi
pi

=
Λ

ψimi

1

Λ + (1− Λ)mi − Λ/ψi
=

Λ

ψim2
i

1

1 + Λ
(

1−mi−1/ψi
mi

)
Derivation of (14), the approximate loss from taxation of inattentive agents We give

two proofs of this result. The first, and most elementary one, is that this is a Corollary to Lemma

9.2, using the behavioral elasticity αi = miψi.

The other proof is as follow. Because utility is quasilinear, v (p,ps, w) = w + v (p,ps, 0), so
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e (p,ps, 0) = −v (p,ps, 0). We have

L (τ ) = u (c) + λτ · c
= v (p+ τ ,p+ τ s, w) + λτ · c (p+ τ ,p+ τ s, w)

= w − e (p+ τ ,p+ τ s, 0) + (1 + Λ) τ · c (p+ τ ,p+ τ s, w) .

By Taylor expansion, around (τ , τ s) = (0, 0), using Propositions 12.1 and 12.5, we have:

e (p+ τ ,p+ τ s, 0)− e (p,p) = [epτ + epsτ
s] +

[
1

2
τeppτ + τep,psτ

s +
1

2
τ s′epspsτ

s

]
+ o

(
‖τ‖2)

=
[
cdτ + 0 · τ s

]
+

[
0 + τSrτ s +

1

2
τ s′Srτ s

]
+ o

(
‖τ‖2)

= cdτ + τSrτ s +
1

2
τ s′Srτ s + o

(
‖τ‖2) .

Using Proposition 12.3,

τ · c (p+ τ ,p+ τ s, w) = τ ·
(
cd + cpτ + cpsτ

s
)

= τ ·
(
cd + 0 + Srτ s + o (‖τ‖)

)
= τcd + τ ′Srτ s + o

(
‖τ‖2)

L (τ )− L (0) = − [e (p+ τ ,p+ τ s, 0)− e (p,p)] + (1 + Λ) τ · c (p+ τ ,p+ τ s, w)

= −cdτ − τSrτ s − 1

2
τ s′Srτ s + (1 + Λ)

(
τcd + τ ′Sr · τ s

)
+ o

(
‖τ‖2)

= Λ
(
τcd + τ ′Sr · τ s

)
− 1

2
τ s′Srτ s + o

(
‖τ‖2)

= Λτcd − 1

2
τ s′Srτ s + o

(
‖τ‖2)+O

(
‖τ‖2 Λ

)
.

�

Proof of Proposition 3.3 We now assume that there are several consumers, indexed by

h = 1...H. Agent h maximizes uh
(
ch0 , c

h
)

= ch0 + Uh
(
ch
)
. The associated externality/internality is

ξhch. He pays an attention mh to the tax so that perceived taxes are τ sh = mhτ . The government

is utilitarian, so that the government planning problem is∑
h

Uh
(
ch
)
−
(
p+ ξh

)
ch. (95)

We call c∗h = arg maxch U
h
(
ch
)
−
(
p+ ξh

)
ch the quantity consumed by the agent at the first best.
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To make things transparent, we specify

Uh (c) =
ahc− 1

2
c2

Ψ
,

which using Uh
c = ah−c

Ψ
= qs, implies a demand function ch (qs) = ah −Ψqs.90

After some algebraic manipulations, social welfare compared to the first best can be written as

L (τ) = −Ψ

2

∑
h

(
mhτ − ξh

)2
. (96)

The first best cannot be implemented unless all agents have the same ideal Pigouvian tax, ξh/mh.

Heterogeneity in attention creates welfare losses.

Optimal Pigouvian tax. At the optimum, Uh′ (ch∗) = p+ ξ. If the agent perceives only mhτ , his

demand is off the ideal ch∗ (up to second order terms) as:

ch = ch∗ −Ψ
(
mhτ − ξh

)
.

This expression is exact in the quadratic functional form about, and otherwise the leading term

of a Taylor expansion of a general function, with now the interpretation Ψ = ψhch∗ then. So the

welfare loss is:

Lh = W h −W h∗ =
1

2
uh′′ ·

(
−Ψ ·

(
mτ − ξh

))2
= −1

2
Ψ
(
mhτ − ξh

)2
,

and social welfare is L =
∑

h L
h = −Ψ

2

∑
h

(
mhτ − ξh

)2

Because Lτ = −Ψ
∑

hm
h
(
mhτ − ξh

)
, the optimal tax is

τ ∗ =

∑
h ξhm

h∑
hm

2
h

=
E
[
ξhm

h
]

E
[
mh2

] .
90The expressions in the rest of this section are exact with this quadratic utility specification. For general utility

functions, they hold provided that they are understood as the leading order terms in a Taylor expansion around an
economy with no heterogeneity.
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Let us calculate V = E
[(
mhτ − ξh

)2
]

at this optimum τ = τ ∗,

V = E
[
mh2

]
τ ∗2 − 2E

[
mhξh

]
τ ∗ + E

[
ξh

2
]

= E
[
mh2

] E [ξhmh
]2

E
[
mh2

]2 − 2E
[
mhξh

] E [ξhmh
]

E
[
mh2

] + E
[
ξ2
h

]
= −

E
[
ξhm

h
]2

E
[
mh2

] + E
[
ξ2
h

]

=
E [ξ2

h]E
[
mh2

]
− E

[
ξhm

h
]2

E
[
mh2

] .

hence the welfare loss is: L = −1
2
HΨ

E[ξ2
h]E[mh2]−(E[ξhmh])

2

E[mh2]
.

If there is no tax, the loss is (from equation 96):

Lno tax = −Ψ

2

∑
h

(
mh · 0− ξh

)2
= −Ψ

2

∑
h

ξ2
h = −1

2
HΨE

[
ξ2
h

]
.

So, L = Lno tax E[ξ2
h]E[mh2]−(E[ξhmh])

2

E[mh2]E[ξ2
h]

.

Optimal quantity mandate. Welfare is
∑

h

[
Uh (c∗)−

(
p+ ξh

)
c∗
]
. The optimal quantity restric-

tion c∗ is characterized by:
1

H

∑
h

Uh′ (c∗) = p+
1

H

∑
h

ξh. (97)

The welfare loss compared to the first best, which entails Uh′ (ch∗) = p+ ξh is

Lh =
1

2
Uh′′ (c)

(
ch
∗ − c∗

)2

= −1

2

1

Ψ

(
ch
∗ − c∗

)2

.

The best consumption satisfies: LQc∗ = 1
2

∑
h

1
Ψ

(
ch
∗ − c∗

)
= 0, i.e. c∗ = E

[
ch
∗]

The loss is:

LQ = −1

2

H

Ψ
E
[(
ch
∗ − c∗

)2
]

= −1

2

H

Ψ
var

(
ch
∗
)
.

�

Proof of Proposition 3.4 Equation (11) then yields the optimal tax:

τ =
(
E
[
Mh′SrMh

])−1 E
[
Mh′]SrτX . (98)

withτX = (ξ∗, 0)′ .

When agents have uniform misperceptions (Mh = M ), the optimal tax is τ = M−1τX . This
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implies τ1 = ξ∗
m1

> 0 and τ2 = 0. The principle of targeting applies. This is no longer true when

misperceptions are not uniform.

We have
(
E
[
Mh′SrMh

])
ij

=SrijE
[
mh
im

h
j

]
and

(
E
[
Mh′Sr

])
ij

= E
[
mh
i

]
Srij. Matrix inversion

gives:

τ2 =
Sr11S

r
12E [m1] (E [m2

1]E [m2]− E [m1m2]E [m1])

detE
[
Mh′SrMh

] ξ∗.

Because E
[
Mh′SrMh

]
is a dimension 2 × 2 and has negative roots (there is a good 0, so that

Sr is the block matrix excluding good 0, and has only negative root), detE
[
Mh′SrMh

]
> 0.

The condition in the Proposition is that E [m2
1]E [m2] − E [m1m2]E [m1] > 0. Hence, sign (τ2) =

−sign (S12).

The quadratic case simply gives a constant matrix Sr.�

Proof of Proposition 3.8

0 = qi
∂L

∂τi
=
∑
h

[
(
λ− γk,h

)
qic

h
i + λτ · SC,k,hi qi]

=
∑
h

[
(
λ− γk,h

)
qic

h
i + λ

∑
j

τjS
C,k,h
ji qi].

Summing over i in the account gives:

0 =
∑
h

[
(
λ− γk,h

)∑
i

qic
h
i + λ

∑
j

τj
∑
i

SC,k,hji qi].

By the traditional Slutsky relation with account
∑

i S
C,k,h
ji qi = 0 for all j, h, so

0 =
∑
h

[
(
λ− γk,h

)∑
i

qic
h
i ] = 0.

With just one type of agent h, this gives λ− γk = 0. This implies, for all i :∑
j

τjS
C,k
ji qi = 0.

This first order condition is verified by τj = τ for all j. For a generic Slutsky matrix, the only

solution of x · SC = 0 is x = tq for some real t (we do not have a proof of this, but this is highly

likely). This implies that τj = τ for some τ . �

Proof of Proposition 3.9 Ramsey case. We have ci (τi) = ωi
pi+τi

. The planner’s problem

entails:

max
τi

ui (ci (τi))− (pi + τi) ci (τi) + λτici (τi) ,
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which gives, using c′i (τi) = − ci(τi)
pi+τi

[u′i (ci)− (pi + τi (1− λ))]
ci

pi + τi
+ (λ− 1) ci = 0,

i.e.

u′i (ci) = λ. (99)

When u′i (ci) = c
1/ψi
i this gives the announced result, τi

pi
= λψi − 1.

Pigou case. The first best features u′i (ci) = pi + ξi, and the rigid mental account gives ci (τi) =
ωi

pi+τi
, where u′i (ωi) = pi. Hence, we have:

ci =
u′−1
i (pi)

pi + τi
= u′−1

i (pi + ξi) ,

i.e.
τi
pi

=
u′−1
i (pi)

u′−1
i (pi + ξi)

− 1.

When u′i (ci) = c
1/ψi
i this gives the announced result, τi

pi
=
(

1 + ξ
pi

)ψi
− 1.�

Proof of Proposition 5.1 We compute the derivatives of the Lagrangian:

∂L

∂τκi
=
∑
h

[
Wvh

(
vhτκi + vhqp · pτκi

)
− µp ·

(
chτκi + chqp · pτκi

)]
.

To calculate this, let us make an analogy with our basic Ramsey model with fixed prices. We

expressed it L = W + λ
∑

h

(
τ · ch − w

)
, and it can be re-expressed:

L = W + λ
∑
h

(
τ · ch − w

)
= W + λ

∑
h

[
(p+ τ) · ch − w − p · ch

]
= W − λ

∑
h

p · ch,

as q · ch − w = 0. So

Lfixed price
τκi

=
∂
(
W − λ

∑
h p · ch

)
∂τκi

=
∑
h

[
Wvhv

h
τκi
− µp · chτκi

]
=
∑
h

[
(
λ− γh

)
chi + λ(τ̄ − τ̃ b,h) · SC,κ,hi ]. (100)

We then have

Lτκi = Lfixed price
τκi

+
∑
j

Lτpj ε
κ
ji = Lfixed price

τκi
+ Lτp · εκi . (101)
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�

The intuition is as follows. With a full set of commodity taxes τ p, we can rewrite the objective

function and the resource constraint in the planning problem as a function of q = p+ τ p. We can

then relax the planning problem by dropping the competitive pricing equation, which is slack—this

equation can then simply be used to find τ p given the desired value of q. As a result, only the first

derivatives of the production function p = F ′ enter the optimal tax formulas and not the second

derivatives F ′′ (and hence do not depend on supply elasticities). With a restricted set of commodity

taxes τ p, this relaxation of the planning problem fails, the competitive pricing equation cannot be

dropped, and the optimal tax formulas depend on the second derivatives F ′′ (and hence depend on

supply elasticities).�

Proof of Lemma 9.4 We observe that a tax τ sh modifies the externality as:

dξ
({
wh
}
,
{
τ s,h
})

dτ s,h
= ξchc

h
τs,h (q, w, ξ) +

∑
h′

ξch′c
h′

ξ

dξ

dτ s,h
,

so
dξ
({
wh
}
,
{
τ s,h
})

dτ s,h
=

ξchc
h
τs,h

1−
∑

h′ ξch′c
h′
ξ

. (102)

Also dξ
dwh

= ξchc
h
wh

(q, w, ξ) +
∑

h′ ξch′c
h′

ξ
dξ
dwh

, so

dξ

dwh
=

ξchc
h
wh

1−
∑

h′ ξch′c
h′
ξ

. (103)

We note that the FOC of (82) in wh is

0 = vhwh + λ
(
τ s,h · crhwh − 1

)
+

dξ

dwh

∑
h′

vh
′

ξ + λτ s,h
′ · crh

′

ξ

= vhwh + λ
(
τ sh · crhwh − 1

)
+

ξchc
h
wh

1−
∑

h′ ξch′c
h′
ξ

∑
h′

vh
′

ξ + λτ sh
′ · crh

′

ξ by (103)

= vhwh + λ
(
τ sh · crhwh − 1

)
+ ξchc

h
whΞ = vhwh + λ

(
τ s,h · crhwh − 1

)
− λτ ξhchwh

= γh,ξ − λ.

which confirms that at the optimum γh,ξ = λ for all agents – even if the tax hasn’t been optimized

upon.
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g ({τs,h}) = max
{wh}

∑
h

vr
(
p+ τ s,h, wh, ξ

)
+ λ

∑
h

[
τ s,h · cr

(
p+ τ s,h, wh, ξ

)
− wh

]
= max
{wh}

∑
h

vr
(
p+ τ s,h, wh, ξ

)
+ λ

∑
h

[
p · cr

(
p+ τ s,h, wh, ξ

)]
[probably not useful]

(
p+ τh

)
c = wh.

We take the derivatives (82):

gτs,h ({τs,h′}) =
(
λ− vhw

)
chr + λτ s,hchrp +

dξ

dτ s,h

∑
h′

[
vh
′

ξ + λτ s,h
′ · crξ

]
=
(
λ− vhw

)
chr + λτ s,hchrp +

ξchc
h
τs,h

1−
∑

h′ ξch′c
h′
ξ

∑
h′

vh
′

ξ + λτ s,h
′ · crξ by (102)

=
(
λ− vhw

)
chr + λτ s,hchrp + ξchc

h
τs,hΞ

=
(
λ− vhw

)
chr + λτ s,hchrp − λτ ξhchp

=
(
λ− vhw

)
chr + λ

(
τ sh − τ ξh

)
chrp

=
(
λ− vhw

)
chr + λ

(
τ sh − τ ξh

) [
Shr − crwch

]
=
[
λ− vhw − λ

(
τ s,h − τ ξh

)
cw
]
ch + λ

(
τ s,h − τ ξh

)
Shr

= λ
(
τ s,h − τ ξh

)
Shr. (104)

Hence, observing that τ s,h − τ ξh = 0 at the optimum,

gτs,hτs,h′ = λShr

(
1h=h′ −

dτ ξh
({
τ s,h

′′})
dτ s,h′

)
. (105)

Example with quasi-linear utility, additive externality

When u (c, ξ) = u (c1, ..., cn)+λc0+ 1
H
ξ, we have c (p, ξ) independent of ξ, and Ξ =

∑
h

[
βh

vhξ

vhw
+λτ ·chξ

]
1−
∑
h ξchc

h
ξ

=

1, and τ ξh = − 1
λ
ξch .

So, dτξ,h

dτs,h′
= − 1

λ
ξchch′

dch
′

dτh′
= − 1

λ
ξchch′S

rh′ :

dτ ξ,h

dτ s,h′
= −1

λ
ξchch′S

rh′ ,

so

gτs,hτs,h′ = λSrh1h=h′ +HSrhξchch′S
rh′ . (106)

That should generalize to additive externality: u (c, ξ) = u (c)+ 1
H
ξ. Then Ξ =

∑
h

[
βh

vhξ

vhw
+λτ ·chξ

]
1−
∑
h ξchc

h
ξ

=

1. And τ ξh = − 1
λ
ξch
({
τ sh
})

. When
{
τ−h

′}
are held constant, varying τh′ changing ch

′
and ξ, but

doesn’t change the marginal utility of the agent −h′, so doesn’t change their consumption, so
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dch
′′

dτh′
= 0 for h′′ 6= h′,

dτ ξ,h

dτ s,h′
= −1

λ
ξchch′

dch
′

dτh′
= −1

λ
ξchch′S

rh′ +
∑
h′′

−1

λ
ξchch′′

∂ch
′′

dwh′′
dwh

′′

dτh′

= −1

λ
ξchch′

(
Srh

′ − ch′
wh′
c+ ch

′

wh′
dwh

′

dτh′

)

= −1

λ
ξchch′

[
Srh

′ − ch′
wh′

(
c− dwh

′

dτh′

)]
.

as γh,ξ = vhw + λ
(
τ sh − τ ξh

)
· chw = λ implies dvhw + λ

(
dτ sh

)
· cw = 0.�

Proof of Proposition 9.2 We have apply our tax formulas (9):

∂L

∂χ
= −

∑
h

ιhγhch −
∑
h

[(
λ− γh

(
1−mh

))
τ − λτX,h + γhχηh

]
Ψτχ,hχ

= −
∑
h

ιhγhch −Ψ
∑
h

[(
λ− γh

(
1−mh

))
τ − λτX,h + γhχηh

]
ηh (107)

=
∑
h

[
−ιhγhch −Ψxhηh

]
, (108)

where

xh =
(
λ− γh

(
1−mh

))
τ − λτX,h + γhχηh.

Likewise,
∂L

∂τ
=
∑
h

[
(λ− γh) ch −Ψxhmh

]
.

The problem is maxχ,τ L (τ, χ) s.t. χ ≥ 0, τ ≥ 0. The Lagrangian is:

L∗ (τ, χ) = L (τ, χ) + πχ+ π′τ,

where π, π′ are Lagrangian multipliers.

We observe that when there is no intervention (τ = χ = 0), then xh < 0.

Lχ
ηh

= −ι
hγh

ηh
ch −Ψxh

Lτ
mh

=
λ− γh

mh
ch −Ψxh,

so
Lτ
mh
− Lχ
ηh

=

[
λ− γh

mh
+
ιhγh

ηh

]
ch = ∆.
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If the optimum features χ > 0, τ = 0, then Lτ = −π′ < 0 = Lχ, which implies ∆ < 0.

If the optimum features χ = 0, τ > 0, then Lχ = −π < 0 = Lτ , which implies ∆ > 0.

If the optimum features χ = τ = 0, then Lχ = −π < 0, Lτ = −π′ < 0, so Ψxh >

max
(
−ιhγhch,

(
λ− γh

)
ch
)
. This implies in particular that λ < γh.

We note that if the problem had with no inequality constraints, and just one type of agent, then

an interior solution features: λ− γh = −ιhγh. there is a large subsidy in place, (to help the agent),

and the excess consumption is corrected via the nudge. That is, the policy is to “Subsidize the poor,

and nudge them away from the good at the same time”. This results is a bit knife-edge.

Proof of Proposition 9.22 We note that for any tax system,

L
({
τh
}
,
{
τ s,h
}
,
{
wh
})

= L
({
τ s,h
}
,
{
τ s,h
}
,
{
wh +

(
τ s,h − τh

)
· ch
(
p+ τh, p+ τ s,h, wh, ξ

)})
.

and

L
({
τ s,h
}
,
{
τ s,h
}
,
{
wh
})

= W
(
vh,r

(
p+ τ s,h, wh, ξ

))
+ λ

∑
h

[
τ · cr,h

(
p+ τ s,h, wh, ξ

)
− wh

]
.

Here w,w∗ ∈ RH . Call y =
({
τh
}
,
{
τ s,h
})
∈ R2nH (with n the number of goods). The first best

(in a world with externalities) has (w∗, y∗). We call w∗∗ (y) the optimal redistribution given a tax

system y. So, w∗ = w∗∗ (y∗).

Ltot = L (w, y)− L (w∗, y∗)

= [L (w, y)− L (w∗∗ (y) , y)] + [L (w∗∗ (y) , y)− L (w∗∗ (y∗) , y∗)]

=
1

2
(w − w∗∗ (y)) · Lww (w∗∗ (y) , y) · (w − w∗∗ (y)) +

1

2
(y − y∗) gyy (y − y∗) by Lemma 15.3

= Ldistribution + Ldistortion

Ldistribution =
1

2
(w − w∗∗ (y)) · Lww (w∗∗ (y) , y) · (w − w∗∗ (y))

Ldistortion =
1

2
(y − y∗) gyy (y − y∗) .

Redistribution terms

From Lemma 15.2, the expression of the loss involves Lwh (w, τ) = γξh − λ, the social marginal

utility. Applying that Lemma 15.2 gives a loss:

Ldistribution =
1

2

∑
h,h′

(
γξh − γ

) (
Lww (w, τ)−1)

h,h′

(
γξh − γ

)
. (109)
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Tax distortion terms

We have Ldistortion = 1
2

(y − y∗) gyy (y − y∗). Note that g (y) = g ({τ s}).

g (τ s) = max
w1,...,wn

L (w, τ s) = L (w∗ (τ s) , τ s)

gτsτs = Lτsτs − LτswL−1
wwLτsw by Lemma 15.3.

�

Proof of Lemma 9.2 Demand is:

ci (τi) = yi
(
1− αiτi +O

(
τ 2
i

))
, (110)

Hence have:

L =
∑
i

U i (ci (τi))− (1 + τi) ci (τi) + (1 + Λ) τici (τi)

=
∑
i

U i (ci (τi))− ci (τi) + Λτici (τi)

=
∑
i

fi (τi) + Λτici (τi) ,

with

fi (τi) = F i (ci (τi)) , F i (c) = U i (c)− c.

We have

fi (τi)− fi (0) = f ′i (0) τi +
1

2
f ′′i (0) τ 2

i + o
(
τ 2
)

f ′i (τi) = F i′ (ci (τi)) c
′
i (τi)

f ′′i (τi) = F i′′ (ci (τi)) c
′
i (τ)2 + F i′ (ci (τi)) c

′′
i (τi) .

As F ′i (0) = 0, we have

f ′i (0) = 0

f ′′i (0) = F ′′ (ci (0)) c′i (0)2 = U ′′i (yi) y
2
i α

2
i using (110)

=
−1

ψi
qiyiα

2
i using (62)

= −α
2
i

ψi
yi,
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so

L (τ)− L (0) =
∑
i

[
1

2
f ′′ (0) τ 2

i + Λτici

]
+ o

(
τ 2
)

+ o (τΛ)

=
∑
i

[
−1

2

α2
i

ψi
yiτ

2
i + Λτici

]
+ o

(
τ 2
)

+ o (τΛ) .

So the objective function is:

L = −1

2

∑
i

−α
2
i

ψi
yiτ

2
i + Λ

∑
i

τici + o
(
τ 2
)

+ o (τΛ) . (111)

�

Proof of Proposition 9.7 We use the extended utility function vh (q,ω) and demand function

ch (q,ω). We use the Roy’s identify with mental accounts, Proposition 9.8:

∂L

∂τi
=
∑
h

[Wvhv
h
ωk(i)

vhqi
vh
ωk(i)

+
∑
k

Wvhv
h
ωkω

k
qi

+ λchi + λτ · [chqi +
∑
k

chωkω
k
qi

]],

=
∑
h

[−βk(i),h
(
chi + τ b,k(i) · SC,k(i),h

i

)
+
∑
k

βk,hωkqi + λchi + λτ ·

((
S
C,k(i),h
i − ck(i),h

ωk(i) ci

)
+
∑
k

chωkω
k
qi

)
], using (52)

=
∑
h

[
(
λ− βk(i),h − λτ · ck(i),h

ωk(i)

)
chi +

∑
k

[
βk,h + λτ · chωk

]
ωkqi + λ

(
τ − τ̃ b,k(i),h

)
· SC,k(i),h

i ],

=
∑
h

[
(
λ− γk(i),h

)
chi +

∑
k

γk,hωk,hqi + λ
(
τ − τ̃ b,k(i),h

)
· SC,k(i),h

i ],

∂L

∂τi
=
∑
h

[
(
λ− γk(i),h

)
chi + λ

(
τ − τ̃ b,k(i),h

)
· SC,k(i),h

i +
∑
k

γk,hωk,hqi ].

�

Proof of Proposition 9.8 We first note a few simple identities. As B (c (p, ω) ,p, ω) = 0

and v (p,ω) = u (c (p, ω)), we have:

Bccpi +Bpi = 0, Bccωk +Bωk = 0, vωk = uccωk . (112)
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We calculate:

τ b,k · cωl =

(
− uc
vωk
− Bc

Bωk

)
· cωl

= − vωl
vωk

+
Bωl

Bωk

.

using (112). So typically τ b,k · cωl 6= 0, except when l = k:

τ b,k · cωk = 0. (113)

We are now ready to study Roy’s identity. We have:

vpi (p,ω)

vωk (p,ω)
=
uccpi (p,ω)

vωk
=

(
uc
vωk

+
Bc (c,p,ω)

Bωk (c,p,ω)
− Bc (c,p,ω)

Bωk (c,p,ω)

)
cpi

=

(
uc
vωk

+
Bc

Bωk

)
cpi −

Bc

Bωk

cpi

vpi (p,ω)

vωk (p,ω)
= −τ b,k · cpi +

Bpi

Bωk

. (114)

using (112).

Using (113) gives:

τ b,k · cpj = τ b,k · SC,kj ,

so
vpi (p,ω)

vωk (p,ω)
= −τ b,k · SC,kj +

Bpi

Bωk

.

�

Proof of Proposition 9.14 Case of an inattentive consumer. Call qa = pa + τa. Equilibrium

requires qa = qb = 1. Competitive pricing in good 1 requires that firms choose inputs according

to: maxlia,lib pi

(
lia
αi

)αi (
lib

1−αi

)1−αi
− (1 + τia) lia − lib with τ0a = 0. Hence, the equilibrium price

is pi = (1 + τia)
αi , and input use features (1 + τia) lia = αipiyi, so lia = αi (1 + τia)

αi−1 yi and

lib = (1− αi) (1 + τia)
αi yi

The planning problem is maxτ1a L (p1) with p1 = (1 + τ1a)
α1 , so that:

L (p1) = c0 + U s (c1 (p1))− ξ∗c1 (p1)−
1∑
i=0

(lia (p1) + lib (p1))

= U s (c1 (p1))−
(
ξ∗ + α1 (1 + τ1a)

α1−1 + (1− α1) (1 + τ1a)
α1
)
c1 (p1) as c0 − (l0a (p1) + l0b (p1))

= U s (c1 (p1))−
(
ξ∗ + α1p

1− 1
α1

1 + (1− α1) p1

)
c1 (p1) .
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with c1 (p1) = U ′−1 (p1).

Hence, as U s′ (c1 (p1)) = p1,

Lp1 = c′1 (p1)

[
p1 −

(
ξ∗ + α1p

1− 1
α1

1 + (1− α1) p1

)]
−
(

(α1 − 1) p
− 1
α1

1 + (1− α1)

)
c1 (p1) .

When there is production efficiency, p1 = 1 and,

Lp1|τ1a=0 = c′1 (p1) [U s′ (c1 (p1))− (ξ∗ + 1)]

= −ξ∗c′1 (p1) > 0.

Hence, production efficiency is not an optimum. Starting from it, it is optimal to increase the tax

τ1a to discourage the production of good 1, increase its price, and discourage its consumption.

Case of an attentive consumer. It is enough to do a Pigouvian tax τ c1 = ξ∗, and restore production

efficiency (τ1a = 1). Then, we achieve the first best. �

Proof of Proposition 9.15 Suppose that φ = φs. Let e (φ, q) be the expenditure function

associated with φ (c1, ..., cn). Since φ is homogeneous of degree 1, we have e (φ, q) = φe (1, q).

Consider a non homogeneous tax system with associated prices q. Tax revenues are

∑
h

φh
n∑
i=1

(qi − pi)eqi (1, q) .

Now consider a reformed uniform tax system with associated prices q̂i = xpi for some scalar x,

which delivers the same c0 and the same φh for all h. We just need to solve in x the following

equation

e (1, q) = e (1, xp) .

The reformed tax system leaves the experienced utility of all agents identical (this step crucially uses

φ = φs). We claim that the reformed tax system also raises more revenues. This concludes the proof

that the optimal tax system must be uniform. Laroque (“Indirect taxation is superfluous under

separability and taste homogeneity: A simple proof,” Economics Letters 2005) presents related

arguments). This amounts to showing that

n∑
i=1

(qi − pi)eqi (1, q) <
n∑
i=1

(q̂i − pi)eqi (1, q̂) ,

or using
∑n

i=1 qieqi (1, q) = e (1, q) = e (1, q̂) =
∑n

i=1 q̂ieqi (1, q̂) ,this amounts to showing that

0 <
n∑
i=1

pi[eqi (1, q)− eqi (1, q̂)],
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or equivalently since q̂i = xpi, to showing that

0 <
n∑
i=1

q̂i[eqi (1, q)− eqi (1, q̂)],

which holds by a straight revealed preference argument.

�

11.2 Additional Derivations for the Mirrlees Problem

11.2.1 Intermediary results for the Mirrlees problem

Impact of a change in taxes on earnings and individual utility We first study the

impact of a small change δqz∗ of the marginal retention rate at z∗ and how it affects labor supply

at z (e.g. via misperceptions). We simultaneously study the impact of a lump-sum (independent of

z) virtual income change δK. It will prove conceptually and notationally useful to define:

ζ
c

Qz∗
(z) = ζcQz∗ (z) + ζc (z) δz (z∗) , (115)

where δz is a Dirac distribution at point z. Hence, as ζcQz∗ (z) was a potentially smooth function of

z∗, ζ
c

Qz∗
(z) is a generalized function of z∗, in the sense of the theory of distributions. From now on,

we mostly use our notation convention of dropping the dependency on z.

Lemma 11.1 (Impact of changes in taxes on behavior and welfare) Suppose that there is a change

(δqz∗)z∗≥0 to marginal retention rate schedule and a lump sum increase in revenue δK. The impact

on earnings and agent’s welfare is:

δz =
ηδK + z

∫∞
0
ζ
c

Qz∗
δqz∗dz

∗

q − ζczR′′
, (116)

δv

vr
= δK − z τ

b

q

(
ζcR′′δz +

∫ ∞
0

ζ
c

Qz∗
δqz∗dz

∗
)
. (117)

In these equations, the integrals involving z
∫∞

0
ζ
c

Qz∗
δqz∗dz

∗ should be understood in the sense of

the theory of distributions as zζc (z) δqz +
∫∞
z∗=0

zζcQz∗ (z) δqz∗dz
∗ (reintroducing in these equations

the dependency on z), leading to

δz =
η (z) δK + zζc (z) δqz +

∫∞
0
zζcQz∗ (z) δqz∗dz

∗

q (z)− ζc (z) zR′′ (z)
,

δv

vr
= δK − z τ

b

q
ζc (z)R′′ (z) δz − z τ

b (z)

q (z)
ζc (z) δqZ −

∫ ∞
z∗=0

z
τ b (z)

q (z)
ζcQz∗ (z) δqz∗dz

∗.

To interpret the economics of (116), start with an increase in income δK. It has, first, an impact
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on labor supply: it creates a direct change in earnings supply equal to η
q
δK. The additional term

ζczR′′ in the denominator of (116) is more subtle and arises from the fact that as the agent adjusts

his labor supply, he experiences a different marginal tax rate (which changes as R′′δz), leading to

an additional change in income ζc

q
zR′′δz. The final expression solves for δz as a fixed point. The

term z
∫∞

0
ζ
c

Qz∗
δqz∗dz

∗ reflects the impact of a change in the marginal tax rate on earnings. The

difference with Saez (2001) is that it is non-zero even when the change in the tax schedule occurs

at z∗ 6= z. This is because when agents have behavioral biases, a change of the marginal rate at z∗

potentially affects the perceived tax at z.

In (117), the term δK is a mechanical income effect and is the only term present in the traditional

model of Saez (2001). The term −z τb
q

(
ζcR′′δz +

∫∞
0
ζ
c

Qz∗
δqz∗dz

∗
)

represent the welfare impact aris-

ing from changes in behavior (as the envelope theorem no longer applies) because of misoptimization,

respectively, because movements in labor supply change the marginal tax rate (−z τb
q
ζcR′′δz) along

the initial schedule and because of changes in the tax schedule itself (−z τb
q

∫∞
0
ζ
c

Qz∗
δqz∗dz

∗).

Impact of a change in taxes on social welfare We next study the impact of the above

changes on welfare. Following Saez (2001), we call h (z) the density of agents with earnings z at the

optimum, and H (z) =
∫ z

0
h (z′) dz′. We also define the virtual density h∗ (z) = q(z)

q(z)−ζczR′′(z)h (z) ,

which can also be written as 1−T ′(z)
1−T ′(z)+ζczT ′′(z)h (z).

Lemma 11.2 Under the conditions of the Lemma 11.1, the change in the government objective

function associated with the agent is

δL (z) = (γ (z)− 1) δK +
T ′ (z)− τ̃ b (z)

1− T ′ (z)

h∗ (z)

h (z)
z

∫ ∞
0

ζ
c

Qz∗
(z) δqz∗dz

∗, (118)

where γ (z) is the marginal social utility of income:

γ (z) = g (z) + η (z)
τ̃ b (z)

1− T ′ (z)
+ η (z)

T ′ (z)− τ̃ b (z)

1− T ′ (z)

h∗ (z)

h (z)
. (119)

This definition of the social marginal utility of income γ (z) is similar to the one we encountered

in the Ramsey problem. It encompasses the direct impact of one extra dollar on the agent’s

welfare (the g (z) term) and the impact coming from a change in labor supply on tax revenues

( T ′(z)
1−T ′(z)η (z) h∗(z)

h(z)
). Compared to Saez (2001), it features a new term arising from the failure of the

envelope theorem, η τ̃b(z)
1−T ′(z)

(
1− h∗(z)

h(z)

)
.

The effect on the government objective function (118) is much like in the many-person Ramsey of

Proposition 2.1. The term (γ (z)− 1) δK is a mechanical effect, abstracting from changes in behav-

ior. As the government gives (back) δK to agent, the impact on revenues is −δK, while the impact

on the agent is valued as γ (z) δK. Next, there is a substitution effect T ′(z)
1−T ′(z)

h∗

h
z
∫∞

0
ζ
c

Qz∗
(z) δqz∗dz

∗:
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as the agent changes his labor supply, there is a change in tax revenues proportional to

T ′ (z)

1− T ′ (z)

∫ ∞
0

ζ
c

Qz∗
(z) δqz∗dz

∗.

Third, there is a misoptimization term, −τ̃
b(z)

1−T ′(z)
h∗(z)
h(z)

z
∫∞

0
ζ
c

Qz∗
(z) δqz∗dz

∗.

We also note the following first order condition for the intercept of the tax schedule, r0.

Lemma 11.3 At the optimum,∫ ∞
0

(
1− γ (z)− T ′ (z)− τ̃ b (z)

1− T ′ (z)

h∗ (z)

h (z)
zζcr0 (z)

)
h (z) dz = 0. (120)

We next state the impact of a marginal change in the tax rate, ∂L
∂τz∗
≡ − ∂L

∂qz∗
.

Proposition 11.1 (Impact of a local change on the marginal tax rate on the government objective

function) We have

∂L

∂τz∗
=

∫ ∞
z∗

(1− γ (z))h (z) dz−ζc(z∗)T
′ (z∗)− τ̃ b (z∗)

1− T ′ (z∗)
z∗h∗ (z∗)−

∫ ∞
0

ζcQz∗ (z)
T ′ (z)− τ̃ b (z)

1− T ′ (z)
zh∗ (z) dz.

(121)

This equation involves an equality between two generalized functions of z∗. This is the in-

come tax equivalent of the formula in Proposition 2.1 for the many-person Ramsey. The three

terms in (121) correspond to the, by now familiar, mechanical (
∫∞
z∗

(1− γ (z))h (z) dz), substitution

(−ζc(z∗) T ′(z∗)
1−T ′(z∗)z

∗h∗ (z∗)), and misoptimization (ζc(z∗) τ̃b(z∗)
1−T ′(z∗)z

∗h∗ (z∗)−
∫∞

0
ζcQz∗ (z)T

′(z)−τ̃b(z)
1−T ′(z) zh∗ (z) dz)

effects. The first two terms are exactly as in Saez (2001), and the third one is new as it is present

only with behavioral agents. We will describe its meaning shortly. We also note that formula (121)

can be written in a more compact way as:

∂L

∂τz∗
=

∫ ∞
z∗

(1− γ (z))h (z) dz −
∫ ∞

0

ζ
c

Qz∗
(z)

T ′ (z)− τ̃ b (z)

1− T ′ (z)
zh∗ (z) dz. (122)

11.2.2 Proofs for the Mirrlees results

Notations and Derivation of relation (84) We take the material from section 7.1. The

extended good is the two-dimensional c = (c, z), the (generalized) price vector is q = (1, q,Q, r0).

The budget function is B (c, q) = q1c1− q2c2 = c− qz, so that the budget constraint is B (c, q) ≤ r.

Note that the Saez r is also the w in the rest of the paper (as the budget constraint is generally

expressed as B (c, q) ≤ r); we still found useful to stick here to the Saez notations; so in the

derivations of the Mirrlees case, we will use r and w interchangeably, depending on what the

context calls for.
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Applying definition (34) gives

τ b = (1,−q)− (uc, uz)

vr
. (123)

We know that cQz∗ = qzQ∗z (which comes from differentiating c = qz + r w.r.t. Q∗z), so

SCQz∗ =
(
cQz∗ , zQ∗z

)′
= (q, 1)′ zQ∗z .

Proposition 7.1 implies:

vQz∗ (q, r)

vr (q, r)
= −τ b (q, r) · SCQz∗ (q, r) = −τ b (q, r) (q, 1)′ zQ∗z = −τ bzQ∗z

= −τ b z
q
ζcQz∗ ,

as we defined

τ b = τ b (q, r) · (q, 1) = −quc + uz
vr

. (124)

Likewise, c − qz = r implies (taking the derivative w.r.t. q): cq − qzq − z = 0 and (taking the

derivative w.r.t. r) cr − qzr = 1, so

SCq (q, r) = cq − crz = (cq − crz, zq − zrz)

= (qzq + z − (qzr + 1) z, zq − zrz) = (q, 1) (zq − zrz)

= (q, 1) z
ζc

q
. (125)

Proposition 7.1 implies:

vq (q, r)

vr (q, r)
= z − τ b (q, r) · SCq (q, r) = z − τ b (q, r) · (q, 1) z

ζc

q

= z − z

q
τ bζc.

�

Proof of Elasticity relations (85) in the Mirrlees framework: Concrete values of the

general model in the misperception case Now consider the model with misperception. As

above, the extended good is c = (c, z), and the (generalized) price q = (1, q,Q, r0), and the budget

function is B (c, q) = c1q1 − c2q2 = c− qz, so that

Bc (c, q) = (1,−q) . (126)
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We use (40)

τ b = Bc (c, q)− Bc (c, qs)

Bc (c, qs) · cr (q, r)

= (1,−q)− (1,−qs)
(1,−qs) · (qzr + 1, zr)

as c (q, r) = qz (q, r) + r gives cr = qzr + 1.

= (1,−q)− (1,−qs)
1 + (q − qs) zr

τ b = (1,−q)− (1,−qs)
1 + (q − qs) η

q

. (127)

Next, recall (124),

τ b = τ b (q, r) · (q, 1)

=

[
(1,−q)− (1,−qs)

1 + (q − qs) η
q

]
· (q, 1) =

qs − q
1 + (q − qs) η

q

=
τ − τ s

1− (τ − τ s) η
q

. (128)

using q = 1− τ , qs = 1− τ s. Thus we have proven (86).

Next, we calculate ζc. We call e = (0, 1) the vector singling earnings on the vector c = (c, z).

We apply (39) with pj = q, the price of earnings. We have:

e · SHj = e · Sr (p, r) · pspj (p, r) = zrq
∂qs

∂q
=
z

q
ζc,rmzz

e · SHj =
z

q
ζc,rmzz. (129)

Next, using the notation Dj of Proposition 7.1,

Dj = −τ b · SHj by (33)

= [Bc (p, c)−Bc (ps, c)] · SHj by (41)

= [(1, q)− (1, qs)] · SHj by (126)

= (q − qs) e · SHj as e = (0, 1)

= (q − qs) z
q
ζc,rmzz by (129).

We record:

Dj = (q − qs) z
q
ζc,rmzz. (130)
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Next, we apply (37): SCj = SHj + crDj, which implies:

e · SCj = e · SHj + e · crDj

=
z

q
ζc,rmzz +

η

q
Dj as e · cr = zr =

η

q

=
z

q
ζc,rmzz

(
1 +

η

q
(q − qs)

)
=
z

q

(
1− ητ − τ

s

q

)
ζc,rmzz as q = 1− τ, qs = 1− τ s.

Now, as ζc = q
z
e · SCj is the compensated earnings elasticity (see e.g. (125)):

ζc =
q

z
e · SCj

ζc =

(
1− ητ − τ

s

q

)
ζc,rmzz. (131)

Exactly the same reasoning (using then pj = qz∗ , and e · SHj = z
q
ζc,rmzz∗) shows

ζcQz∗ =

(
1− ητ − τ

s

q

)
ζc,rmzz∗ . (132)

Hence, we have proven (85).

Proof of (87): Decision vs. Experienced utility model The agent’s optimization gives

qusc + usz = 0. Equation (124) gives:

τ b = −quc + uz
vr

=
uc

usz
usc
− uz
vr

.

Dirac / Double bar Notation for the proofs in the Mirrlees framework We define:

ζ
c

Qz∗
(z) = ζcQz∗ (z) + ζc (z) δz (z∗) .

Informally, this definition means that ζ
c

Qz∗
is like ζcQz∗ (z), but with an extra Dirac term when z = z∗.

Proof of Lemma 11.1 We have

z = z (q (z) ,Q, r (z))

r (z) = R (z)− zq (z) ,
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so

δr = r′ (z) δz + δr| constant z = −zq′ (z) δz + (δK − zδqz)
= −zR′′δz + δK − zδqz.

δz = zq(q
′ (z) δz + δqz) +

∫ ∞
0

zQz∗δqz∗dz
∗ + zrδr

=
z

q
ζuq′ (z) δz +

z

q
ζuδqz +

z

q

∫ ∞
0

ζcQz∗δqz∗dz
∗ +

η

q
(−zR′′δz + δK − zδqz)

=
z

q
ζuR′′δz +

z

q

∫ ∞
0

ζ
c

Qz∗
δqz∗dz

∗ +
η

q
(−zR′′δz + δK) ,

so

δz =
z
∫∞

0
ζ
c

Qz∗
δqz∗dz

∗ + ηδK

q + (η − ζu) zR′′
=
z
∫∞

0
ζ
c

Qz∗
δqz∗dz

∗ + ηδK

q − ζczR′′
.

For welfare v (q,Q, r0, r), we have:

δv

vr
=
vq
vr

(q′ (z) δz + δqz) +

∫ ∞
0

vQz∗
vr

δqz∗dz
∗ + δr,

= z

(
1− τ bζc

q

)
(R′′dz + δqz) + z

∫ ∞
0

(
−
τ bζcQz∗
q

)
δqz∗dz

∗ − zR′′δz + δK − zδqz,

δv

vr
= z

(
−τ

bζc

q

)
R′′δz + z

(∫ ∞
0

(
−
τ bζcQz∗
q

)
δqz∗dz

∗ +

(
−τ

bζc

q

)
δqz

)
+ δK,

= δK − z τ
b

q
ζcR′′ (z) δz − τ b

q
z

∫ ∞
0

ζ
c

Qz∗
δqz∗dz

∗,

= δK − z τ
b

q

(
ζcR′′ (z) δz +

∫ ∞
0

ζ
c

Qz∗
δqz∗dz

∗
)
.

�

Proof of Lemma 11.2 Observe that

h∗ (z)

q
=

h (z)

q − ζczR′′ (z)
,

so that q − ζczR′′ (z) = qh
h∗

and

zR′′ = q
h∗ − h
ζch∗

. (133)
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We have

δT = δ (z (1− q (z))− r) ,
= (1− qz) δz − zq′ (z) δz − zδqz − δr,
= (1− qz) δz − zR′′δz − zδqz − (−zR′′δz + δK − zδqz),
= T ′ (z) δz − δK.

We also have

δL = δT + g (z)
δv

vr
,

= T ′ (z) δz + g (z)
δv

vr
− δK.

Using Lemma 11.1, we can rewrite this as

δL = T ′ (z)
z
∫∞

0
ζ
c

Qz∗
δqz∗dz

∗ + ηδK

q − ζczR′′
+ g (z)

(
δK − z τ

b

q

(
ζcR′′ (z) δz +

∫ ∞
0

ζ
c

Qz∗
δqz∗dz

∗
))
− δK.

Using equation (133) and Lemma 11.1, we can rewrite this as

δL =

[
−1 + g (z) + η

T ′ (z)

q

h∗

h
+ g (z)

(
−τ

bζc

q

)
η
h∗ − h
ζch

]
δK,

+

(
−g(z)τ b

q
+
T ′ (z)

q

h∗

h
+ g (z)

(
−τ

bζc

q

)
h∗ − h
ζch

)
z

∫ ∞
0

ζ
c

Qz∗
δqz∗dz

∗,

= (γ (z)− 1) δK +
h∗

h
z
T ′ (z)− τ̃ b (z)

q

∫ ∞
0

ζ
c

Qz∗
δqz∗dz

∗,

where

γ (z) = g (z) + η
τ̃ b (z)

q
+
T ′ (z)− τ̃ b (z)

q
η
h∗ (z)

h (z)
.

�

Proof of Proposition 11.1 We use the following notations:

F (z∗) =

∫ ∞
0

[
−ζ

c

Qz∗

τ̃ b (z)

q (z)
+ ζcQz∗

T ′ (z)

q

]
zh∗ (z) dz,

J (z∗) = ζcz∗
T ′ (z∗)

q
h∗ (z∗) .

F (z∗) =

∫ ∞
0

ζ
c

Qz∗

T ′ (z)− τ̃ b (z)

q (z)
zh∗ (z) dz = F (z∗) + J (z∗) ,

We consider a change δqz∗ at z∗. This leads to a lump-sum change δK = 1z>z∗δqz∗ . Hence,
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Lemma 11.2 gives the change in the government objective function

δL (z) = (γ (z)− 1) 1z>z∗δqz∗ +
h∗

h
z
T ′ (z)− τ̃ b (z)

q

∫ ∞
0

ζ
c

Qz∗
δqz∗dz

∗.

The total change is

δL =

∫ ∞
0

δL (z)h (z) dz,

δL

δqz∗
=

∫ ∞
z∗

(γ (z)− 1)h (z) dz +

∫ ∞
0

[
T ′ (z)− τ̃ b (z)

q
ζ
c

Qz∗

]
h∗

h
zh (z) dz,

∂L

∂τz∗
= −F (z∗) +

∫ ∞
z∗

(1− γ (z))h (z) dz. (134)

We also have
∂L

∂τz∗
≡ − ∂L

∂Qz∗
= −F (z∗) +

∫ ∞
z∗

(1− γ (z))h (z) dz. (135)

�

Proof of Lemma 11.3 Using Lemma 11.2, applied to a change δr0 to all agents, and slightly

generalizing, we find

δL (z) = (γ (z)− 1) δr0 +
T ′ (z)− τ̃ b (z)

1− T ′ (z)

h∗ (z)

h (z)
zζcr0 (z) δr0,

and δL =
∫
δL (z)h (z) dz should be 0.�

Proof of Proposition 10.1 Let us now solve for the optimal J , which ensures ∂L
∂Qz∗

= 0. We

can write

− ∂L

∂τz∗
= J (z∗)−

∫ ∞
z∗

a (z) dz − b (z∗) +

∫ ∞
z∗

J (z) ρ (z) dz. (136)

We use the notations

ρ (z) =
η

ζc
1

z
, (137)

a (z) = (1− g (z))h (z)− ρg (z) z

(
−τ b(z)

ζc

q(z)

)
(h∗ (z)− h (z)) , (138)

b (z) = −F (z∗) . (139)

a (z) is the effect of giving $1 to agent z (that’s the (1− g (z))h (z) term), corrected from distortions

from the non-linearity of the income tax.

F (z∗) is the part impact on the government’s objective function of increase δqz∗ , coming from

121



the distortions from perceptions

F (z∗) =

∫ ∞
0

[
−ζ

c

Qz∗

τ̃ b (z)

q (z)
+ ζcQz∗

T ′ (z)

q

]
zh∗ (z) dz = F (z∗) + zg (z)

(
−τ b ζ

c

q(z)

)
h∗ (z) ,

F (z∗) =

∫ ∞
0

[
ζcQz∗

T ′ (z)− τ̃ b(z)

q

]
zh∗ (z) dz.

We note that

a = (1− γ)h+ η
T ′ (z)

q

h∗

h
h,

a = (1− γ)h+ ρJ. (140)

We also have

J (z∗) =

∫ ∞
z∗

a (z) dz + b (z∗)−
∫ ∞
z∗

J (z) ρ (z) dz,

J̇ = −a+ ḃ+ Jρ,

d

dz

[
J (z) e−

∫ z
0 ρ(s)ds

]
= e−

∫ z
0 ρ(s)ds

(
−a (z) + ḃ (z)

)
,

J (z) e−
∫ z
0 ρ(s)ds = C +

∫ ∞
z

e−
∫ z′
0 ρ(s)ds

(
a (z′)− ḃ (z′)

)
dz′,

J (z) =

∫ ∞
z

e−
∫ z′
z ρ(s)ds

(
a (z′)− ḃ (z′)

)
dz′. (141)

Integrating by parts, we get∫ ∞
z

e−
∫ z′
z ρ(s)dsḃ (z′) dz′ =

[
e−

∫ z′
z ρ(s)dsb (z′)

]∞
z

+

∫ ∞
z

e−
∫ z′
z ρ(s)dsρ (z′) b (z′) dz′

= −b (z) +

∫ ∞
z

e−
∫ z′
z ρ(s)dsρ (z′) b (z′) dz′, (142)

J (z) = b (z) +

∫ ∞
z

e−
∫ z′
z ρ(s)ds (a (z′)− ρ (z′) b (z′)) dz′. (143)

We can rewrite this as

J (z∗) = −F (z∗) +

∫ ∞
z∗

e−
∫ z
z∗ ρ(s)ds

(
a (z) + ρF (z)

)
dz (144)

= −z∗g (z∗)

(
−τ b (z∗)

ζc (z∗)

q(z∗)

)
h∗ (z∗)− F (z∗)

+

∫ ∞
z∗

e−
∫ z
z∗ ρ(s)ds

[
(1− g (z))h (z) + g (z) ρ (z) z

(
−τ b (z)

ζc (z)

q (z)

)
h (z) + ρ (z)F (z)

]
dz.

122



Using

J (z∗) = ζc (z∗) z∗h∗ (z∗)
T ′ (z∗)

1− T ′ (z∗)
and rearranging gives

ζc (z∗) z∗h∗ (z∗)
T ′ (z∗)− τ̃ b (z∗)

1− T ′ (z∗)
+ F (z∗)−

∫ ∞
z∗

e−
∫ z
z∗ ρ(s)dsρ (z)F (z) dz

=

∫ ∞
z∗

e−
∫ z
z∗ ρ(s)ds

[
(1− g (z))h (z) + g (z) ρ (z) z

(
−τ b (z)

ζc (z)

q (z)

)
h (z)

]
dz,

which can be rewritten to get the announced formula

T ′ (z∗)− τ̃ b (z∗)

1− T ′ (z∗)
+

1

ζc
1

z∗h∗ (z∗)

∫ ∞
z=0

(
ζcQz∗ (z)−

∫ ∞
z′=z∗

e−
∫ z′
z∗ ρ(s)dsρ (z′) ζcQ

z
′ (z) dz′

)
T ′ (z)− τ̃ b (z)

1− T ′ (z)
zh∗ (z) dz,

=
1

ζc
1−H (z∗)

z∗h∗ (z∗)

∫ ∞
z∗

e−
∫ z
z∗ ρ(s)ds

(
1− g (z)− η τ̃

b (z)

q (z)

)
h (z)

1−H (z∗)
dz.

�

Proof of Proposition 10.2 We use (11.1):

∂L

∂τz∗
=

∫ ∞
z∗

(1− γ (z))h (z) dz − ζc(z∗)T
′ (z∗)− τ̃ b (z∗)

1− T ′ (z∗)
z∗h∗ (z∗)−

∫ ∞
0

ζcQz∗ (z)
T ′ (z)− τ̃ b (z)

1− T ′ (z)
zh∗ (z) dz

=

∫ ∞
z∗

(
1− g (z)− η (z)

T ′ (z)

1− T ′ (z)

)
h (z) dz − ζc(z∗)T

′ (z∗)− τ̃ b (z∗)

1− T ′ (z∗)
z∗h∗ (z∗)

−
∫ ∞

0

ζcQz∗ (z)
T ′ (z)− τ̃ b (z)

1− T ′ (z)
zh∗ (z) dz using (88)

= (1−H (z∗))

(
1− g − η τ

1− τ

)
− ζc τ − gτ

b

1− τ
z∗h∗ (z∗)−

∫ ∞
0

ζcQz∗ (z)
T ′ (z)− τ̃ b (z)

1− T ′ (z)
zh∗ (z) dz.

Recall that∫ ∞
z0

(1−H (z∗)) dz∗ = [(1−H (z∗)) (z − z∗)]∞z0 −
∫ ∞
z0

h (z∗) (z − z∗) dz

= E [(z − z0) 1z≥z0 ]

=
1

π
E [z1z≥z0 ] .
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Given the constraint that T ′ (z) = τ for z > z0, the FOC on τ is: 0 =
∫∞
z0

∂L
∂τz∗

dz∗, i.e.

0 =

∫ ∞
z0

∂L

∂τz∗
dz∗ =

(
1− g − η τ

1− τ

)∫ ∞
z0

(1−H (z∗)) dz∗ − ζ
c τ − gτ b

1− τ
E [z1z≥z0 ]

−
∫ ∞

0

(∫ ∞
z0

ζcQz∗ (z)dz∗

)
T ′ (z)− τ̃ b (z)

1− T ′ (z)
zh∗ (z) dz

=

(
1− g − η τ

1− τ

)
1

π
E [z1z≥z0 ]− ζc τ − gτ

b

1− τ
E [z1z≥z0 ]−

∫ ∞
0

ζcq (z)
T ′ (z)− τ̃ b (z)

1− T ′ (z)
zh∗ (z) dz

0 =

(
1− g − η τ

1− τ

)
− ζcπτ − gτ

b

1− τ
− π

E [z1z≥z0 ]

∫ ∞
0

ζcq (z)
T ′ (z)− τ̃ b (z)

1− T ′ (z)
zh∗ (z) dz.

Hence, we have:

τ

1− τ
=

1− g − β + ζcπg τb

1−τ

ζcπ + η
, (145)

with

β =
π

E [z1z≥z0 ]

∫ ∞
0

ζcq (z)
T ′ (z)− τ̃ b (z)

1− T ′ (z)
zh∗ (z) dz

= Ez
[
T ′ (z)− τ̃ b (z)

1− T ′ (z)

]
E∗
[
ζcq (z)

] πE [z]

E [z1z≥z0 ]
.

where Ez [φ (z)] =
∫
φ(z)h(z)zdz∫
φ(z)zdz

and E∗
[
ζcq (z)

]
=

E∗
[
ζcq(z)

T ′(z)−τ̃b(z)
1−T ′(z) h∗(z)dz

]
E∗
[
T ′(z)−τ̃b(z)

1−T ′(z) h∗(z)dz
] is a weighted average too.

We can rewrite the equation as : τ
1−τ =

a+ b
1−τ
c

, which gives τ = a+b
a+c

, so that:

τ =
1− g − β + ζcπgτ b

1− g − β + ζcπ + η
.

12 Basic behavioral consumer theory with linear budget

constraints

12.1 Traditional theory: Recap

The objects in the traditional theory are e (p, u), v (p, w), h (p, u) = arg minc p · c s.t. u (c) = u.

Let us prove the traditional relations – a warm up for the proof in the behavioral case.

Roy’s identity is proven as follows: v (p, w) = maxc u (c) + λ (w − p · c), so vpj = −λcj, vw = λ,

so:

vpj + vwc
j = 0. (146)
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Shepard’s lemma is proven as follows: The envelope theorem gives ep (p, u) = h (p, u), i.e.

epi (p, u) = hi, (147)

and differentiating once more gives:

epipj = hipj (p, u) = Sij. (148)

We have c (p, w) = h (p, v (p, w)), which implies

cpj = hpj + huvpj

cw = huvw,

and because of Roy, we have Slutsky’s relation:

cpj + cwcj = hpj = Sj,

i.e.

cipj + ciwcj = hipj = Sij. (149)

12.2 Behavioral version with perceived prices

The sparse max demand

smax
c|ps

u (c) s.t. p · c ≤ w

of a behavioral agent perceiving prices ps (while true prices are p and the true budget is w) is:

c (p,ps, w) = cr (ps, w′ (p,ps, w)) , (150)

where perceived budget w′ satisfies:

p · cr (ps, w′ (p,ps, w)) = w. (151)

We call cr (ps, w′) the rational Marshallian demand under prices ps and budget w′.

We define v (p,ps, w) = u (c (p,ps, w)). The expenditure function is e (p,ps, u) = minw w

s.t. v (p,ps, w) ≥ u. We define the Hicksian demand h (p,ps, u) = arg smaxc|ps −p · c s.t.

u (c) = u with perception ps by the agent, which gives h (p,ps, u) = hr (ps, u). So c (p,ps, w) =

hr (ps, v (p,ps, w)) .

Here we derive Shepard, Roy etc. for this behavioral model. This generalizes Gabaix (2014),

which derives similar relations under the assumption that ps = Mp+ (1−M ) pd.
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We call

Srj = hrpsj (ps, u)

the rational Slutsky matrix, and Srj =
(
Srij
)
i=1...n

the vector of Slutsky sensitivities with respect to

price pj.

Proposition 12.1 (Generalized Shepard’s lemma) Given the function e (p,ps, u) = p·hr (ps, u),

we have:

epj = cj

epsj = (p− ps) · Srj .

Proof. We have: e (p,ps, u) = p·hr (ps, u), so

epj = hrj = cj

epsj = p · hrpsj (ps, u) = (p− ps) · hrpsj (ps, u) .

Indeed, we have ps · hr (ps, u) = 0. To prove this, observe that

q · hrqj (q, u) =
∑
i

qih
i
qj

=
∑
i

qih
j
qi

by symmetry

= 0 as hj (q, u) is homogeneous of degree 0.

�

Proposition 12.2 ( Generalized Roy’s identity). Given the function v (p,ps, w), we have:

vpj
vw

= −cj
vpsj
vw

= (ps − p) · Srj = Ds
j ,

i.e.
vps
j

vw
=
∑

i (p
s
i − pi)Srij.

To gain intuition for the term in vspsj , observe that:

vsps · δps ≥ 0 with δps = 0.01 (p− ps) .

This is, the agent is better off if his perceived price goes towards the true price.

Proof of Proposition 12.2

For a number u, we have the identity u = v (p,ps, e (p,ps, u)) for all p,ps, u. Deriving w.r.t. pj

gives:

0 = vpj + vwepj = vpj + vwcj,
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by the behavioral Shepard’s lemma (Proposition 12.1).

Deriving w.r.t. psj gives:

0 = vpsj + vwepsj = vpsj + vw (p− ps) · Srj

again by the behavioral Shepard’s lemma (Proposition 12.1).�

Proposition 12.3 (Marshallian demand) Given the consumption function c (p,ps, w), we have:

cpj = −cwcj (152)

cpsj = Srj + cwD
s
j =: S (153)

= Srj + cw
[
(ps − p) · Srj

]
(154)

=
(
1 + cw (ps − p)′

)
Srj . (155)

i.e. cipj = −ciwcj and cipsj = Srij + ciwD
s
j . In addition, cw = 1

p·cr
w′ (p

s,w′)
crw′ = vw

λ
crw′.

The new term is ciwD
s
j . To interpret it, consider again what happens if if the agent’s perceived

price goes towards the true price. dps = χ (p− ps), χ > 0. Then,

dc = cpsdp
s = Sdps + cwdE

dE = [(ps − p) · Sr · dps] ≥ 0.

The extra term dE is positive: it’s as if the agent became richer. That creates in income effect, and

shift his consumption cwdE. We can summarize: “If the agent’s perceived price goes towards the

true price, the agent is better off, and the consumer consumes as if she was richer”.

Proof. We have c (p,ps, w) = hr (ps, v (p,ps, w)), which implies

cw = hruvw, cpj = hruvpj . (156)

Because of Roy (vpj + cjvw = 0), we have: cpj+cwcj = 0.

Also, c (p,ps, w) = h (ps, v (p,ps, w)) gives:

cpsj (p,ps, w) = hpsj + huvpsj

= Srj + cw
vpsj
vw

using cw = hruvw

= Srj + cwD
s
j using Proposition 12.2.

We have (151): so p·crw′ ∂w
′

∂w
= 1, and ∂w′

∂w
(p,ps, w) = 1

p·cr
w′ (p

s,w′)
. So c (p,ps, w) = cr (ps, w′ (p,ps, w)),

we have csw = crw′
∂w′

∂w
.

�
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In the traditional model v (p, w) = maxc u (c)+λ (w − p · c) implies vw = λ. There is a deviation

here, as indicated below.

Proposition 12.4 (Envelope theorem, modified) Call λ the Lagrange multiplier such that u′ (c) =

λps. We have:
vw
λ

= ps · cw (p,ps, w) = 1 + (ps − p) · cw (p,ps, w) .

Proof. We have:

p · cr (ps, w′ (p,ps, w)) = w,

so p·crw′ ∂w
′

∂w
= 1, and

∂w′

∂w
=

1

p · crw′ (ps, w′)
.

Also, given c (p,ps, w) = cr (ps, w′ (p,ps, w))

cw = crw′ (p
s, w′)

∂w′

∂w
=

crw′ (p
s, w′)

p · crw′ (ps, w′)
.

Next, given v (p,ps, w) = u (cs (p,ps, w)) we have:

vw = u′ (cs) · cw = λps · cw = λps ·
(
crw′ (p

s, w′)

p · crw′ (ps, w′)

)
= λ

ps · crw′ (ps, w′)
p · crw′ (ps, w′)

vw =
λ

p · crw′ (ps, w′)
.

�

We can check that things are consistent: with uc = λps,

vpsj = uccpsj = λps (1 + cwp
′)Srj = λpscwp

′Srj = vwp
′Srj = vwD

s
j .

Proposition 12.5 (Expenditure function – second derivatives) Given es (p,ps, u) = p·h(ps, u), we

have

espipj = 0

espipsj = Srij

espsi psj = −Srij + (p− ps) · hpsi psj = −Srij +
∑
k

(pk − psk)hkpsi psj .

The first derivatives of the expenditure functions were calculated in Proposition 12.1.
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Proof. Given es (p,ps, u) = p·h(ps, u), we saw earlier in Proposition 12.1.

espj = hj (ps, u)

espsj = (p− ps) · hpsj (ps, u) = p · hpsj (ps, u) .

Differentiating more,

espipj = 0 (157)

espipsj = hipsj (ps, u) = Srij, (158)

and as espsj = (p− ps) · hrpsj (ps, u) ,

espsi psj = −hipsj +
∑
k

(pk − psk)hkpsi psj .

�

12.3 Representation lemma for behavioral models

The following Lemma means that the demand function of a general abstract consumer can be

represented as that of a misperceiving consumer with perceived prices ps (p, w).

Lemma 12.1 (Representing an abstract demand by a misperception). Given an abstract demand

c(p, w), and a utility function u (c), we can define the function:

ps (p, w) =
uc (c (p, w))

vw (p, w)
. (159)

Then, the demand function can be represented as that of a sparse agent with perceived prices

ps (p, w).

c (p, w) = cs (p,ps (p, w) , w) . (160)

Proof The demand of a sparse agent cs (p,ps, w) is characterized by uc (cs (p,ps, w)) = λps

for some λ, and p·c= w. By construction, we have uc (cs (p,ps, w)) = λps for ps = ps (p, w).

Hence, the representation is valid. We make a mild assumption, namely that given a c=c(p, w),

there’s no other c′ with p·c′ = w, uc (c′) = uc (c), and u (c′) > u (c). Otherwise, we would need to

consider another “branch” of the sparse max, namely a solution uc (cs) = λps with cs · p = w with

λ not necessarily the lowest value possible.�

We note that for any ps (p, w) = kuc (c (p, w)) for some k > 0, we have uc(c(p,w))
vw(p,w)

= ps

ps·cw (indeed,

both are equal to uc
uc·cw ).
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By contrast, the general model cannot in general be represented by a decision vs. experi-

enced utility model. Indeed, a decision utility model always generates a symmetric Slutsky matrix

SH (q, w), and this property does not hold in general for the general model. For example, the misper-

ception model with exogenous perception Mij (q, w) = mj1{i=j} features SHij (q, w) = Srij (q, w)mj.

Since Sr (q, w) is symmetric, SH (q, w) is not symmetric as long as there exists i and j with mi 6= mj.

13 Complements on basic consumer theory with nonlinear

budget constraints

We give here complements to Section 7.

13.1 Rational agent

Primal is: v (p, w) = maxc u (c) s.t. B (p, c) ≤ w and demand c (p, w). We can also define

e (p, u) = arg mincB (p, c) s.t. u (c) ≥ u and Hicksian demand h(p, u). We next derive the

traditional consumer relation with that non-linear budget constraint.

Shepard’s lemma: The envelope theorem gives

epi (p, u) = Bpi (h (p, u) ,p)

epipj = Bpipj (h (p, u) ,p) +Bpic · hpj (p, u) .

(the last term is to be read: Bpic · hpj =
∑

k Bpick · h
ck
pj

). We note that Bpic · hpj is symmetric.

Roy’s identity : u = v (p, e (p, u)), so 0 = vpi + vwepi , i.e.

vpi = −vwBpi . (161)

Given c (p, w) = h (p, v (p, w)), we have cw = huvw, cpi = hpi +huvpi = hpi +cw
vpi
vw

and because

of Roy, cpi = hpi − cwBpi , i.e. the Slutsky relation for nonlinear budget constraints:

hpi = cpi + cwBpi . (162)

Finally, given B (c (p, w) ,p) = w,

Bccpi = −Bpi , Bccw = 1. (163)

Premultiplying (162) by Bc gives: Bchpi = Bccpi +BccwBpi = −Bpi +Bpi = 0,

Bchpi = 0. (164)
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All in all, traditional consumer theory holds, replacing p by Bc.

13.2 Misperceiving Agent

We now study

v (p,ps, w) = smax
c|ps

u (c) s.t. B (c,p) ≤ w. (165)

We call cs (p,ps, w) the demand function. Recall that’s it’s characterized by uc (c) = λBc (c,ps)

for some λ, and c (p,ps, w) = cr (ps, w′) for a w′ that ensures

B (cs (p,ps, w) ,p) = w.

Given B (c (p,ps, w) ,p) = w, we have (taking the derivatives w.r.t. p,ps, w):

Bccp = −Bp
Bccps = 0

Bccw = 1.

where Bc = Bc (c,ps), Bp = Bp (c,ps).

Likewise, B (cr (ps, w′) ,ps) = w′ gives

Bs
cc

r
ps = −Bs

ps

Bcc
r
w′ = 1.

Define the rational Hicksian action

hr (ps, u) = arg min
c
B (c,ps) s.t. u (c) ≥ u, (166)

and the corresponding Slutsky matrix, and the perceived ps

Srj = hrpsj (ps, u)|u=v(p,ps,w) . (167)

Define the dual expenditure function

e (p,ps, u) = smin
c|ps

B (c,p) s.t. u (c) ≥ u. (168)

We have the simpler representation:

e (p,ps, u) = B (hr (ps, u) ,p) . (169)
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Proposition 13.1 (Shepard’s lemma, nonlinear and behavioral). Given the expenditure function

e (p,ps, u) = B (hr (ps, u) ,p), we have

epj = Bpj

epsj = (Bc −Bs
c) · Srj .

Proof. e (p,ps, u) = B (hr (ps, u) ,p) gives: epj = Bpj , and

epsj = Bch
r
psj

= (Bc −Bs
c)h

r
psj
.

as (164) gives Bs
ch

r
psj

= 0. �

Proposition 13.2 ( Generalized Roy’s identity). Given the function v (p,ps, w), we have:

vpj
vw

= −Bpj
vpsj
vw

= (Bs
c −Bc) · Srj = Ds

j .

i.e.
vs
ps
j

vsw
=
∑

i (B
s
i −Bi)S

r
ij.

Proof of Proposition 13.2

For a number u, we have the identity u = v (p,ps, e (p,ps, u)) for all p,ps, u. Deriving w.r.t. pj
gives:

0 = vpj + vwepj = vpj + vwBpj

by the behavioral Shepard’s lemma (Proposition 13.1).

Deriving w.r.t. psj gives:

0 = vpsj + vwepsj = vpsj + vw (Bc −Bs
c) · Srj

again by the behavioral Shepard’s lemma (Proposition 13.1).�

Proposition 13.3 (Marshallian demand) Given the Marshallian action c (p,ps, w), we have:

cpj = −cwBpj (170)

cpsj = Srj + cwD
s
j , (171)

i.e. cipj = −Bi
pj
· cw and cipsj = Si,rj + ciwD

s
j .

Proof. We have c (p,ps, w) = h (ps, v (p,ps, w)), which implies

cw = huvw, cpj = huvpj . (172)
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Because of Roy (vpj = −Bpjvw), we have: cwBpj = huvwBpj = −huvpj = −cpj , hence cpj =

−cwBpj .
Also, cpsj (p,ps, w) = h (ps, v (p,ps, w)) gives:

c (p,ps, w) = hpsj + huvpsj

= Srj + cw
vpsj
vw

using cw = huvw

= Srj + cw
[
(Bs

c −Bc) · Srj
]

using Proposition 13.2.

�

In the traditional model v (p, w) = maxc u (c) + λ (w −B (c,p)) implies vw = λ. There is a

deviation here, as indicated below.

Proposition 13.4 (Envelope theorem, modified) Call λ the Lagrange multiplier such that uc (c) =

λBc (c,ps). We have:
vw
λ

= Bs
ccw = 1 + (Bs

c −Bc) cw, (173)

where Bs
c = Bc (c,ps) and Bc = Bc (c,p).

Proof. We have: v (p,ps, w) = u (c (p,ps, w)), so

vw
λ

=
1

λ
uccw = Bs

ccw

= Bs
ccw + 1−Bccw using Bccw = 1 from B (c, p) = w

= 1 + (Bs
c −Bc) cw.

�

13.3 Hybrid Model: Agent maximizing the wrong utility function with

the wrong prices

Suppose now an agent with true problem maxc u (c) s.t. B (p, c) ≤ w but maximizes instead

smaxc|ps u
s (c) s.t. B (p, c) ≤ w with both the wrong utility and the wrong prices. This is hybrid

of the two previous models.

In terms of decision (if not welfare), the agent is a misperceiving agent with utility us and

perceived prices ps. Call vs (p, w) = us (c (p, w)) and hr,s (ps, û) = arg mincB (ps, c) s.t. us (c) ≥ û

the indirect utility function (of that misperceiving agent) and the rational compensated demand of

that agent with utility us. Then, our agent has demand:

c (p, w) = hr,s (ps (p, w) , vs (p, w)) . (174)
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Proposition 13.5 (Agent misperceiving both utility and prices) Take the model of an agent max-

imizing the wrong utility function us (c), with the wrong perceived prices ps. Call Sr,s (p, w) =

hr,sps (ps (p, w) , vs (p, w)) the Slutsky matrix of the underlying rational agent who has utility us, and

define

Ssj (p, w) = Sr,s (p, w) · pspj (p, w) . (175)

i.e. Ssij =
∑

k S
r,s
ik

∂psk(p,w)

∂pj
, where

∂psk(p,w)

∂pj
is the matrix of marginal perception. Then,

SCj (p, w) = Ssj (p, w) + cw

(
vspj
vsw

+Bpj

)
SHj (p, w) = Ssj + cw

(
vspj
vsw
−
vpj
vw

)
Ssj (p, w) = cpj − cw

vspj
vsw
.

We can write

−Dj = τ b · Ssj ,

with:

τ b = (Bc (p, c)−Bc (ps, c)) +

(
usc
vsw
− uc
vw

)
. (176)

Finally, Bc (ps, c) ·Ssj = 0.

This tax τ b is the sum of two gaps: between the prices and perceived prices (Bc (c,p)−Bc (ps, c))

, and between true utility and perceived utility ( u
s
c

vsw
− uc

vw
).

Proof. So, with M j = ∂ps(p,w)
∂pj

, and use c(p, w) = hr,s (ps, vs (p, w)):

cw (p, w) = hr,su v
s
w

cpj (p, w) = hr,sps ·M j + hr,su v
s
j = Ssj + cw

vsj
vsw
.

Using (29) and (30) gives:

SCj = cpj (p, w) + cw (p, w)Bpj (c,p) = Ssj + cw

(
vsj
vsw

+Bpj

)
SHj = cpj (p, w)− cw (p, w)

vpj (p, w)

vw (p, w)
= Ssj + cw

(
vsj
vsw
−
vpj (p, w)

vw (p, w)

)
.

We have

Bc (ps, c) · Ssj = Bc (ps, c) · hr (ps, vs) ·M j = 0 as Bc (ps, c) · hr (ps, vs) = 0.
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Recall also that usc
vsw

= ΛBc (ps, c) as the agent maximizes with perceived prices ps. Hence,

−Dj =

(
Bc (c,p)− uc

vw

)
Ssj

=

(
(Bc (c,p)−Bc (ps, c))−

(
uc
vw
− ΛBc (ps, c)

))
Ssj as Bc (ps, c) · Ssj = 0

=

(
(Bc (c,p)−Bc (ps, c))−

(
uc
vw
− usc
vsw

))
· Ssj = τ b · SHj .

�
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