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A Summary of Appendix
We provide details of the model in Jullien (2000), which are useful to understand our derivations, in
Section A.1. We present details of the examples mentioned in Section 3 in the paper in Section A.2. We
discuss how the problem of a single seller that we focus on in the empirical analysis could be equivalently
interpreted as the problem of an oligopolist in Section A.3. We further elaborate on our identification
strategy in Section A.4. We present estimation results omitted from the paper in Section A.5.

A.1 Model with Heterogeneous Reservation Utilities
We provide here omitted details of the model in Jullien (2000) under the assumption that a seller’s cost
function is separable across consumers only for consistency with his formulation. Recall that in Jullien
(2000) the seller’s optimal menu is chosen to maximize expected profits subject to incentive compatibility
and participation constraints, that is,

(IR problem) max
{t(θ),q(θ)}

∫ θ

θ

[t(θ)− c(q(θ))]f(θ)dθ s.t.

(IC) v(θ, q(θ))− t(θ) ≥ v(θ, q(θ′))− t(θ′) for any θ, θ′

(IR) v(θ, q(θ))− t(θ) ≥ u(θ) for any θ.

We refer to this model in which the seller’s constraints are IC and IR as the IR model. We define
an allocation {u(θ), q(θ)} to be implementable if it satisfies the IC and IR constraints. The standard
approach to solve such a problem is to reduce the IC constraints to a local version that is analytically more
tractable. To do so, notice that the IC constraint is satisfied for a consumer of type θ whenever choosing
q(θ) for the price t(θ) maximizes the left-side of the IC constraint. Taking first-order conditions, this
requires that vq(θ, q(θ))q′(θ) = t′(θ). It will prove convenient to expression this condition as

u′(θ) = vθ(θ, q(θ)), (1)

by using the fact that differentiating u(θ) yields u′(θ) = vθ(θ, q(θ))+[vq(θ, q(θ))q
′(θ)−t′(θ)]. A standard

result is that under the assumption that vθq(θ, q) > 0, an allocation is incentive compatible if, and only if,
it is locally incentive compatible in that (1) holds, the quantity schedule q(θ) is weakly increasing (a.e.),
and the associated utility u(θ) is absolutely continuous.
∗University College London, Institute for Fiscal Studies, NBER, and CEPR.
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There are several steps to the solution of the resulting IR problem. First, we effectively “substitute
out” the local incentive compatibility condition (1) by integrating both sides of it from θ to θ to obtain

u(θ) = u(θ) +

∫ θ

θ

vθ(x, q(x))dx (2)

and substituting it into the seller’s objective function, using the fact that t(θ) − c(q(θ)) = v(θ, q(θ)) −
c(q(θ))− u(θ) = s(θ, q(θ))− u(θ). Second, we rewrite the resulting problem as a Lagrangian problem
with dγ(θ) representing the multiplier on the IR constraint for type θ. Third, after simple manipulations
detailed in Result 2, we express the Lagrangian problem in the following simple form,

(simple IR problem) max
{q(θ)}

∫ θ

θ

{
v(θ, q(θ))− c(q(θ)) +

[
F (θ)− γ(θ)

f(θ)

]
vθ(θ, q(θ))

}
f(θ)dθ, (3)

with q(θ) weakly increasing and γ(θ) =
∫ θ
θ
dγ(x) defined to be the cumulative multiplier on the IR

constraint for type θ. This cumulative multiplier has the properties of a cumulative distribution function,
that is, it is nonnegative, weakly increasing, and γ(θ̄) = 1, as shown in Result 1. Note that the integral in
the definition of γ(θ) is interpreted as accommodating not just discrete and continuous distributions but
also mixed discrete-continuous ones. That is, this formulation covers the case in which the IR constraints
bind at isolated points. In the standard nonlinear pricing model, consumers’ reservation utilities are
assumed to be independent of θ so that the IR constraints simplify to u(θ) ≥ u and bind only for the
lowest type, which implies that γ(θ) = 1 for all types. See Result 3.

Jullien (2000) shows that under three assumptions, referred to as potential separation, homogeneity,
and full participation, there is a unique optimal allocation inducing full participation that is characterized
by the first-order conditions to (3),

vq(θ, q(θ))− c′(q(θ)) =
γ(θ)− F (θ)

f(θ)
vθq(θ, q(θ)) (4)

for each type, together with the complementary slackness condition on the IR constraints,∫ θ

θ

[u(θ)− ū(θ)]dγ(θ) = 0. (5)

Note that conditions (4) and (5) are actually those of a relaxed version of (3) in which the constraint that
q(θ) is weakly increasing has been dropped.

The final step uses the potential separation assumption, which, as discussed in the paper, is a gen-
eralization of the standard monotone hazard rate condition, to show that the solution to these first-order
conditions is increasing and, hence, a solution to the original IR problem. (See Result 4 for a precise
statement of this result.) For later use, we find it convenient to let l(γ, θ) denote the solution to the first-
order condition (4) for a consumer of type θ for a given value of the cumulative multiplier γ ∈ [0, 1], as
we do in the paper. Thus, l(γ, θ) should be interpreted as the quantity that would be chosen by the seller
for some arbitrary cumulative multiplier, γ. We start with a preliminary result:

Result 1. The cumulative multiplier γ(θ) satisfies γ(θ̄) =
∫ θ̄
θ
dγ(θ) = 1.

Before we prove this result, note that the cumulative multipliers are measures over
[
θ, θ̄
]

that may
jump discretely at some points. Hence, we need to adopt a convention on what the integral symbol
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means for mixed discrete-continuous measures. An intuitive approach is as follows. A mixed discrete-
continuous measure µ(θ) on

[
θ, θ̄
]

can be represented as the sum of a discrete measure µd(θ), defined on
the mass points {θ1, . . . , θK} with generic element θk, and a continuous measure µc(θ) on

[
θ, θ̄
]
. Then,

the symbol
∫ θ′′
θ′
dµ(θ) is defined as∫ θ′′

θ′
dµ(θ) ≡

∑
θ′≤θk≤θ′′

µd(θk) +

∫ θ′′

θ′
dµc(θ), (6)

where the integral on the right-side of (6) is the standard one for continuous measures. Critically, the
integral over an interval [θ′, θ′′] may contain discrete mass at both endpoints θ′ and θ′′ as well as discrete
and continuous mass between these endpoints. Moreover, by this definition we have that

µ(θ̄) =

∫ θ̄

θ

dµ(θ). (7)

Here and in the paper, we use the definition of integration given by (6) without further remark.
Proof of Result 1: We prove this result by considering a uniform marginal reduction in the participation
constraint from ū(θ) to ū(θ)− δ for all types by a given small amount, δ > 0. The first part of the proof
uses the standard envelope condition to derive an expression for the resulting change in the value of the
IR problem, expressed in quasi-Lagrangian form,

max
{u(θ)},{q(θ)}∈Q

{∫ θ̄

θ

[s(θ, q(θ))− u(θ)] f(θ)dθ +

∫ θ̄

θ

[u(θ)− u(θ)] dγ(θ)

}
s.t. u′(θ) = vθ(θ, q(θ)),

where Q is the set of functions that are weakly increasing with θ. To this purpose, rewrite the value of
this problem as

W (ū(θ)− δ) = max
{u(θ),q(θ)}

{∫ θ̄

θ

[s(θ, q(θ))− u(θ)] f(θ)dθ +

∫ θ̄

θ

[u(θ)− ū(θ) + δ] dγ(θ)

}

ignoring the requirement that q(θ) be weakly increasing, so that

dW (ū(θ)− δ)
dδ

=

∫ θ̄

θ

dγ(θ), (8)

where the integral in (8) is defined as in (6).
For the second part of the proof, we argue that it is immediate that the solution to the problem

obtained from this proposed change in the participation constraints implies the same quantities as in the
original problem, with the price schedule shifted up by the constant δ and consumers’ utilities shifted
down by δ. Of course, such a change in the participation constraints will just shift up the value of the
program by δ. Specifically, if {u(θ), q(θ)} with associated t(θ) is the solution to the original problem,
then {u(θ)− δ, q(θ)} with associated t(θ) + δ is the solution to the new problem,

W (ū(θ)− δ) =

∫ θ̄

θ

[t(θ) + δ − c(q(θ))] f(θ)dθ = δ +

∫ θ̄

θ

[t(θ)− c(q(θ))] f(θ)dθ = δ +W (ū(θ)).
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Hence,
dW (ū(θ)− δ)

dδ
= 1. (9)

Thus, we have

γ(θ̄) =

∫ θ̄

θ

dγ(θ) =
dW (ū (θ)− δ)

dδ
= 1,

where these equalities follow from the definition in (6), (8), and (9). Hence, γ(θ̄) = 1.
We now show how the IR problem can be reduced to the simple IR problem.

Result 2. The IR problem can be reduced to the simple IR problem.

Proof of Result 2: The first step is to rewrite the IC constraints in their local form and express the resulting
problem in quasi-Lagrangian form by letting dγ(θ) denote the multiplier on the participation constraint
of a consumer of type θ so that the seller’s problem becomes

max
{u(θ)},{q(θ)}∈Q

{∫ θ̄

θ

[s(θ, q(θ))− u(θ)] f(θ)dθ +

∫ θ̄

θ

[u(θ)− u(θ)] dγ(θ)

}
s.t. u′(θ) = vθ(θ, q(θ)),

(10)
where Q is the set of functions that are weakly increasing with θ. The second step is to establish two
simple results, that is,∫ θ̄

θ

u(θ)dF (θ) = u(θ) +

∫ θ̄

θ

vθ(θ, q(θ))dθ −
∫ θ̄

θ

vθ(θ, q(θ))F (θ)dθ, (11)

∫ θ̄

θ

u(θ)dγ(θ) = u(θ) +

∫ θ̄

θ

vθ(θ, q(θ))dθ −
∫ θ̄

θ

vθ(θ, q(θ))γ(θ)dθ. (12)

Here we establish (12), and note that the proof of (11) is analogous. To do so, recall that the constraint
u′(θ) = vθ(θ, q(θ)) is equivalent to (2). Integrating this condition from θ to θ̄ with respect to γ(θ) gives∫ θ̄

θ

u(θ)dγ(θ) =

∫ θ̄

θ

[
u(θ) +

∫ θ

θ

vθ(x, q(x))dx

]
dγ(θ) = u(θ) +

∫ θ̄

θ

(∫ θ

θ

vθ(x, q(x))dx

)
dγ (θ) .

(13)
We then use integration by parts to simplify the second term on the right-most side of (13). Using∫
AdB = AB| −

∫
BdA, with A =

∫ θ
θ
vθ(x, q(x))dx, B = γ(θ), γ(θ) = 0, and γ(θ̄) = 1, we obtain

∫ θ̄

θ

(∫ θ

θ

vθ(x, q(x))dx

)
dγ(θ) =

(∫ θ

θ

vθ(x, q(x))dx

)
γ(θ)

∣∣∣∣θ̄
θ

−
∫ θ̄

θ

vθ(θ, q(θ))γ(θ)dθ

=

∫ θ̄

θ

vθ(θ, q(θ))dθ −
∫ θ̄

θ

vθ(θ, q(θ))γ(θ)dθ. (14)

The third step consists in substituting (11) and (12) into the quasi-Lagrangian form of the objective
function in (10) to obtain∫ θ̄

θ

s(θ, q(θ))f(θ)dθ −
∫ θ̄

θ

u(θ)f(θ)dθ +

∫ θ̄

θ

u(θ)dγ(θ)−
∫ θ̄

θ

u(θ)dγ(θ)
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=

∫ θ̄

θ

s(θ, q(θ))f(θ)dθ − u(θ)−
∫ θ̄

θ

vθ(θ, q(θ))dθ +

∫ θ̄

θ

vθ(θ, q(θ))F (θ)dθ

+u(θ) +

∫ θ̄

θ

vθ(θ, q(θ))dθ −
∫ θ̄

θ

vθ(θ, q(θ))γ(θ)dθ −
∫ θ̄

θ

u(θ)dγ(θ),

so that the seller’s objective function can be expressed as∫ θ̄

θ

[
s(θ, q(θ)) +

F (θ)− γ(θ)

f(θ)
vθ(θ, q(θ))

]
f(θ)dθ −

∫ θ̄

θ

u(θ)dγ(θ), (15)

where
∫ θ
θ
ū(θ)dγ(θ) is an irrelevant constant that we can drop without affecting the solution to the prob-

lem.
Consider the standard nonlinear pricing model in which the IR constraints reduce to u(θ) ≥ ū, where

ū is consumers’ reservation utility. The following result is immediate.

Result 3. In the standard nonlinear pricing model, ū(θ) = ū and γ(θ) = 1 for all θ.

Proof of Result 3: Note that any incentive compatible allocation implies that u(θ) is strictly increasing
in θ, since u′(θ) = vθ(θ, q(θ)) > 0. Thus, if the IR constraints are to bind, they must bind just for the
lowest type and be slack for higher types, that is, dγ(θ) = 0 for θ > θ. Note that if the IR constraint did
not bind for the lowest type, θ, then the seller could increase profits by increasing t(θ) until the constraint
binds. Next, since γ(θ) is weakly increasing and has the properties of a cumulative distribution function,
it follows that γ(θ̄) = 1 =

∫ θ̄
θ
dγ(θ). But if dγ(θ) = 0 for all θ > θ, then γ(θ) must have a mass point at

θ with γ(θ) = 1, since γ(θ̄) = 1 =
∫ θ̄
θ
dγ(θ).

Consider now the three main assumptions of Jullien (2000). The first assumption, potential separa-
tion, requires l(γ, θ) to be a weakly increasing function of θ for all γ ∈ [0, 1], sufficient conditions for
which are

∂

∂θ

(
sq(θ, q)

vθq(θ, q)

)
≥ 0 and

d

dθ

(
F (θ)

f(θ)

)
≥ 0 ≥ d

dθ

(
1− F (θ)

f(θ)

)
.

The second assumption, homogeneity, is a critical one. The easiest way to understand it is to imagine
that the reservation utility ū(θ) is generated by consumers trading with an “outside” seller who offers an
incentive-compatible menu {t̄(θ), q̄(θ)} such that ū(θ) = v(θ, q̄(θ))− t̄(θ). Then, homogeneity amounts
to assuming that the outside seller offers a locally incentive compatible menu that achieves ū(θ) for each
consumer type in that

u′(θ) = vθ(θ, q(θ)) and q(θ) is weakly increasing. (16)

Formally, the assumption requires that the reservation utility be implementable through an incentive com-
patible schedule, {q̄(θ)}. Technically, given the assumption that vθq(θ, q) > 0, condition (16) requires
the reservation utility ū(θ) be sufficiently convex.1

The third assumption, full participation, simply ensures that the seller can make nonnegative profits
when trading with each consumer type so that all consumers participate. A sufficient condition for this
assumption to hold is that homogeneity holds and for each type θ, the seller can make weakly positive
profits by supplying the reservation quantity q̄(θ) at price t̄(θ) to each type so that a consumer of type θ

1Under the assumption that vθθ(·, ·) ≥ 0, which is typically made in the literature, it follows that 0 ≤ u′′(θ) =
vθθ(θ, q(θ)) + vθq(θ, q(θ))q̄

′(θ), since vθq(·, ·) > 0 and q̄′(θ) ≥ 0 by assumption. When, for instance, v(θ, q) = θν(q),
the homogeneity assumption just requires convex reservation utilities since ū′′(θ) = ν′(q̄(θ))q̄′(θ) ≥ 0.
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obtains the utility ū(θ) = v(θ, q̄(θ))− t̄(θ), that is,

t̄(θ)− c(q̄(θ)) = v(θ, q̄(θ))− c(q̄(θ))− ū(θ) ≥ 0. (17)

Result 4 (Jullien’s Theorem 1). Under the assumptions of potential separation, homogeneity, and full
participation, there exists a unique optimal allocation with full participation. An implementable allo-
cation {u(θ), q(θ)} is optimal if, and only if, there exists a cumulative distribution function γ(θ) on
[θ, θ] such that the first-order conditions (4) and the complementary slackness condition (5) are satisfied.
Moreover, q(θ) is continuous.

We now state Jullien’s characterization of the optimal menu for the highly convex and weakly convex
cases, respectively. To do so, let ΘB = {θ : l(1, θ) ≤ q(θ) ≤ l(0, θ)} denote the set of types such that
for each such type θ, there exists a reservation multiplier γ̄(θ) between zero and one that can support the
reservation quantity as a solution to the seller’s first-order condition. Thus, if we restrict attention to the
set of types in ΘB, then the only remaining condition that needs to be met for the reservation multiplier
γ̄(θ) to be a legitimate cumulative multiplier is that γ̄(θ) be increasing on ΘB, where

γ̄(θ) = F (θ) +
vq(θ, q̄(θ))− c′(q̄(θ))

vθq(θ, q̄(θ))
f(θ).

For such a set, if
dq(θ)/dθ ≥ lθ(γ(θ), θ) on ΘB, (18)

then the highly convex case applies, whereas if

dq(θ)/dθ ≤ lθ(γ(θ), θ) on ΘB, (19)

then the weakly convex case applies. To interpret these conditions, note that differentiating q̄(θ) =
l(γ̄(θ), θ) yields

γ̄′(θ) =
dq(θ)/dθ − lθ(γ(θ), θ)

lγ(γ(θ), θ)
. (20)

Since lγ(γ, θ) < 0 whenever l(γ, θ) > 0, condition (18) implies that γ̄(θ) is decreasing on ΘB so that
the reservation multiplier cannot be legitimate for any interior type. Condition (19) implies that γ̄(θ) is
increasing on ΘB so that the reservation multiplier is legitimate for all types in ΘB. Hence, under (18),
participation constraints cannot bind for any interior type whereas under (19), they bind for all types
in ΘB. Under the assumptions of potential separation, homogeneity, and full participation, Jullien’s
Propositions 2 and 3 imply the following result:

Result 5 (Jullien’s Propositions 2 and 3). Under (18), the highly convex case applies so that there exists
a constant γ such that q(θ) = l(γ, θ). Under (19), if q(·) is continuous and ΘB is nonempty, then ΘB is
an interval [θ1, θ2] and the weakly convex case applies so that q(θ) = l(0, θ) for θ < θ1, q(θ) = q̄(θ) for
θ1 ≤ θ ≤ θ2, and q(θ) = l(1, θ) for θ > θ2.

A.2 Details of Examples in the Paper
Setup of Example 1. We provide here details about Example 1 in the paper. Suppose utility is HARA
and given by ν(q) = (1 − d)[aq/(1 − d) + b]d/d, with a > 0, aq/(1 − d) + b > 0, and d < 1, so that
ν ′(q) = a[aq/(1−d)+b]d− 1 and ν ′′(q) = −a2[aq/(1−d)+b]d−2. From the seller’s first-order condition,
it follows that ν ′(q) = cf(θ)/[θf(θ) + F (θ) − γ(θ)]. So, the quantity q(θ) = l(γ(θ), θ) implied by the
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augmented model is

q(θ) = l(γ(θ), θ) =
(1− d)

a

[
aθf(θ) + aF (θ)− aγ(θ)

cf(θ)

] 1
1−d

− b(1− d)

a
.

The quantity qs(θ) = l(1, θ) implied by the standard nonlinear pricing model, instead, satisfies ν ′(q) =
cf(θ)/[θf(θ) + F (θ)− 1]. The first-best quantity qFB(θ) solves θν ′(qFB(θ))=c.

As for the linear monopoly quantity and price, from θν ′(qm(θ)) = pm it follows

qm(θ) =
(1− d)

a

[(
aθ

pm

) 1
1−d

− b

]

and |εPQ| = Eθ[A(qm(θ))−1]/Eθ[qm(θ)] = 1/(1− d) + b/{aEθ[qm(θ)]}, where A(·) is the coefficient of
absolute risk aversion. Assume that b = 0 so that |εPQ| = (1− d)−1, pm = c/d, and

qm(θ) =
(1− d)

a

(
adθ

c

) 1
1−d

.

Using the fact that um(θ) = θν(qm(θ))− pmqm(θ), we obtain

um(θ) =
(1− d)2

d
1−2d
1−d

(a
c

) d
1−d

θ
1

1−d .

From us(θ) = u(θ) +
∫ θ
θ
ν(qs(x))dx, where u(θ) is intended to be consumers’ reservation utility for all

types under the standard model, it also follows

us(θ) = u(θ) +
a

d
1−d (1− d)

d

∫ θ

θ

[
xf(x) + F (x)− 1

cf(x)

] d
1−d

dx.

Note that qm(θ) ≥ l(γ(θ), θ) when b = 0 if, and only if, [γ(θ)− F (θ)]/f(θ) ≥ (1− d)θ.
If the type distribution is uniform with f(θ) = 1/(θ − θ) and F (θ) = (θ − θ)/(θ − θ), then

us(θ) = u(θ) +
a

d
1−d (1− d)2

2c
d

1−dd

[(
2θ − θ

) 1
1−d −

(
2θ − θ

) 1
1−d

]
.

Similarly, since u(θ) = u(θ) +
∫ θ
θ
ν(q(x))dx, in the highly convex case of our model we obtain

u(θ) = u(θ) +
a

d
1−d (1− d)

c
d

1−dd

∫ θ

θ

[
xf(x) + F (x)− γ

f(x)

] d
1−d

dx = u(θ) +
a

d
1−d (1− d)2

2c
d

1−dd

·
{[

2θ − θ − γ(θ − θ)
] 1

1−d −
[
θ − γ(θ − θ)

] 1
1−d

}
.

Assume that u(θ) = 0. Then us(θ) ≥ um(θ) if, and only if,
(
2θ − θ

) 1
1−d ≥

(
2θ − θ

) 1
1−d +2d

d
1−d θ

1
1−d .

Instead, u(θ) ≥ um(θ) if, and only if,[
2θ − θ − γ(θ − θ)

] 1
1−d −

[
θ − γ(θ − θ)

] 1
1−d ≥ 2d

d
1−d θ

1
1−d .
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These are the calculations behind Example 1 in the paper.

Example of Impact of Cash Transfers on Unit Prices with HARA Utility Function. We provide
here omitted details of the example discussed in the paper after Corollary 2. Since T (q(θ)) = θν(q(θ))−
u(θ), it follows that

T (q(θ)) =
(1− d)

d

(a
c

) d
1−d [

2θ − θ − γ(θ − θ)
] d

1−d

{
θ − (1− d)

2

[
2θ − θ − γ(θ − θ)

]}

+
(1− d)2

2d

(a
c

) d
1−d [

θ − γ(θ − θ)
] 1

1−d

in the highly convex case, with the price per unit p(q(θ)) = T (q(θ))/q(θ) given by

p(q(θ)) =
c

2d
[
2θ − θ − γ

(
θ − θ

)]
2θd+ (1− d)

[
θ + γ(θ − θ)

]
+

(1− d)
[
θ − γ(θ − θ)

] 1
1−d[

2θ − θ − γ
(
θ − θ

)] d
1−d

 .

By straightforward algebraic manipulations, it is easy to show that

∂p(q(θ))

∂γ
=

c
(
θ − θ

)
2d
[
2θ − θ − γ

(
θ − θ

)]2
2θd+(1− d)

[
θ + γ(θ − θ)

]
+

(1− d)
[
θ − γ(θ − θ)

] 1
1−d[

2θ − θ − γ
(
θ − θ

)] d
1−d


+

c(θ − θ)
2d
[
2θ − θ − γ

(
θ − θ

)]
1− d+

[
θ − γ(θ − θ)

] d
1−d

[(1 + d)θ − 2θ + (1− d)γ
(
θ − θ

)
][

2θ − θ − γ
(
θ − θ

)] 1
1−d

 .

Moreover, using the expression for q(θ), that is,

q(θ) =
(1− d)

a

(a
c

) 1
1−d [

2θ − θ − γ
(
θ − θ

)] 1
1−d ,

to obtain the inverse function θ(q), it follows that

p(q) =
c

2
+

(1− d)1−d

2d

a
d

1−d (1− d)1+d
[
θ − γ(θ − θ)

] 1
1−d

c
d

1−d q
+
ad
[
θ + γ(θ − θ)

]
q1−d

 .

It is immediate that p(q) > 0 and p(q) decreases with quantity when d < 0. Now, observe that

∂p(q(θ))

∂γ
=

cθ
(
θ − θ

)
d
[
θ − γ

(
θ − θ

)]2 ,
which is negative when d < 0, whereas

∂p(q(θ))

∂γ
=

c
(
θ − θ

)
2d
[
2θ − θ − γ

(
θ − θ

)]2
2θd+ (1− d)

[
θ + γ(θ − θ)

]
+

(1− d)
[
θ − γ(θ − θ)

] 1
1−d[

2θ − θ − γ
(
θ − θ

)] d
1−d


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+
c(θ − θ)

2d
[
2θ − θ − γ

(
θ − θ

)]
1− d+

[
θ − γ(θ − θ)

] d
1−d

[(1 + d)θ − 2θ + (1− d)γ
(
θ − θ

)
][

2θ − θ − γ
(
θ − θ

)] 1
1−d

 ,

which is positive when d < 0 as long as

θ

θ − θ
<

[
2θ − θ − γ

(
θ − θ

)
θ − γ(θ − θ)

] d̃

1+d̃

, (21)

d̃ = −d > 0, which is satisfied if, for instance, θ − γ(θ − θ) is chosen small enough. Since, as argued
in the paper, γ decreases after an increase in income, and ∂p(q(θ))/∂γ < 0 whereas ∂p(q(θ))/∂γ > 0,
then such an increase implies an increase in unit prices at low quantities and a decrease in unit prices at
high quantities. Note that (21) is equivalent to

d̃

1 + d̃
>

log
(

θ
θ−θ

)
log

[
2θ−θ−γ(θ−θ)
θ−γ(θ−θ)

] ,
so a sufficient condition for (21) is d̃/(1 + d̃) > log

(
θ
θ−θ

)
/ log

(
θ
θ

)
, which is easily satisfied for d small

enough. Observe, finally, that

∂p(q(θ))

∂γ∂θ
=

c
(
θ − θ

)
d
[
2θ − θ − γ

(
θ − θ

)]3 {−2θ − θ − γ(θ − θ)

+

[
θ − γ(θ − θ)

2θ − θ − γ
(
θ − θ

)] d
1−d
[

2θ + (d− 3)θ + (1− d)γ
(
θ − θ

)
1− d

] .

Thus, ∂p(q(θ))/∂γ∂θ ≥ 0 is equivalent to

[
2θ − θ − γ

(
θ − θ

)
θ − γ(θ − θ)

] d̃

1+d̃ [
2θ − (d̃+ 3)θ + (1 + d̃)γ

(
θ − θ

)]
≤ (1 + d̃)[2θ + θ + γ

(
θ − θ

)
], (22)

which is always satisfied if

2θ + (1 + d̃)γ
(
θ − θ

)
− (3 + d̃)θ ≤ 0⇔ 2θ ≤ (3 + d̃)θ − (1 + d̃)γ(θ − θ).

With θ = 1 and θ = θ + 1, this last displayed inequality becomes 2θ ≤ 3 + d̃ − (1 + d̃)γ. If γ = 1/2,
this latter inequality reduces to 2θ ≤ 5/2 + d̃/2 and a sufficient condition is 4 ≤ 5/2 + d̃/2 or d̃ ≥ 3.
When θ = 1, θ = θ + 1, and γ = 1/2, it also follows that (21) reduces to

2 <

(
3− γ
1− γ

) d̃

1+d̃

⇔ d̃

1 + d̃
>

log(2)

log
(

3−γ
1−γ

) =
log(2)

log (5)
.

Hence, (21) and (22) can both be easily satisfied.
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A.3 An Oligopoly Model with Price Discrimination
Consider a market (village) in which two or more identical firms with the same cost functions compete
in nonlinear price-quantity menus to exclusively serve any given consumer. We assume that over the
relevant period of time—a week, in light of the frequency of our data—a consumer only purchases from
one seller. Consumers’ preferences and characteristics are as described in the paper in Section 3. Here
we prove the following result: regardless of the pattern of individual consumers’ purchases across sellers,
equilibrium prices and quantities can be characterized as the solution to the problem of a single seller that
we focused on in the paper. Hence, in this precise sense, our construction entails no loss of generality.

Formally, the strategy of each firm j = 1, . . . , J consists of the offer of an incentive compatible menu
{tj(θ), qj(θ)} for all consumer types. Let

uj(θ) = v(θ, qj(θ))− tj(θ)

denote the utility of a consumer of type θ from choosing to purchase from firm j. The strategy of each
consumer simply consists of choosing which firm to visit. Conditional on consumers’ visits, each firm
offers incentive compatible menus that encode the optimal purchasing strategies of consumers, so there
is no need to separately specify a consumer’s purchasing strategy conditional on a visit.

A strategy for a consumer is a vector x(θ) = (x1(θ), . . . , xJ(θ)) of probabilities of visiting firms with∑
j xj(θ) = 1 and xj(θ) ≥ 0. Clearly, given a vector of utilities associated with purchasing from any of

the firms, u(θ) = (u1(θ), . . . , uJ(θ)), the best response of a consumer of type θ satisfies

xj(θ, u(θ)) =

{
0 if uj(θ) < uj(θ) = maxi 6=j ui(θ)
≥ 0 otherwise. (23)

Here uj(θ) is the highest utility of a consumer of type θ from purchasing from some firm other than
firm j. This best response takes into account the fact that a consumer will never visit a firm that offers a
contract yielding a strictly lower utility than some other firm. For simplicity, if the consumer is indifferent
between visiting, say, k firms, then we posit that the consumer visits each firm with probability 1/k.

Given the best response of each consumer, denoted by x = {xj(θ, u(θ))}j,θ, and the offered utilities
of all other firms, u−j = {ui(θ)}i 6=j,θ, the problem of firm j consists of choosing an incentive compatible
menu to maximize expected profits,

max
{tj(θ),qj(θ)}

∫ θ

θ

xj(θ, u(θ))[tj(θ)− c(qj(θ))]f(θ)dθ, (24)

subject to the incentive constraints

(IC) v(θ, qj(θ))− tj(θ) ≥ v(θ, qj(θ
′))− tj(θ′) for any θ, θ′, if xj(θ, u(θ)) > 0.

An equilibrium is a set of best responses for each type of consumer, {xj(θ, u(θ))}j,θ, together with
incentive-compatible menus and offered utilities for each firm, {tj(θ), qj(θ), uj(θ)}j,θ, which satisfy (23)
and (24).

10



Clearly, we can use (23) to write out a firm’s profit maximization problem directly as

(O problem) max
{tj(θ),qj(θ)}

∫ θ

θ

xj(θ, u(θ))[tj(θ)− c(qj(θ))]f(θ)dθ s.t.

(IC) v(θ, qj(θ))− tj(θ) ≥ v(θ, qj(θ
′))− tj(θ′) for any θ, θ′, if xj(θ, u(θ)) > 0

(IR’) v(θ, qj(θ))− tj(θ) ≥ uj(θ) for any θ, if xj(θ, u(θ)) > 0.

In an equilibrium with identical sellers, it follows that uj(θ) is independent of j and can be written as
u(θ). Also, xj(θ, u(θ)) = 1/J , that is, consumers of each type θ randomize equally among all J firms
in their visits. With uj(θ) = u(θ) and omitting the multiplicative constant 1/J from a seller’s objective
function, this oligopoly problem reduces to the IR problem in the paper. We formally state this result in
the next proposition.

Proposition 1. Suppose the market is populated by a given number of sellers with identical cost function,
c(q). Then, equilibrium prices and quantities are solutions to the IR problem in the paper.

The argument for Proposition 1 relies on sellers in a village competing to exclusively serve con-
sumers. Competition in non-exclusionary nonlinear price schedules is beyond the scope of our paper.
First, this type of competition does not conform to anecdotal evidence on consumption patterns in our
data: typically, households purchase weekly from one seller only. Second, common approaches to char-
acterize these problems rely on assumptions, like the ability of a seller to condition its prices on con-
sumers’ purchasing behavior with other sellers, that are counterfactual in our setting. See, for instance,
Stole (2007).

A.4 Identification
A.4.1 Comparison with Existing Literature

Our identification argument builds on arguments common in the literature on the nonparametric iden-
tification of auctions and nonlinear pricing models (see Campo et al. (2011), Guerre et al. (2000) and
Perrigne and Vuong (2010), cited in the paper). In auction models, the key object of interest, the distribu-
tion of bidders’ valuations, is nonparametrically identified from the observed distribution of bids, based
on the monotone relationship between bidders’ valuations and actual bids that auction models usually
imply—up to some knowledge of bidders’ utility function if bidders are risk averse. Similarly, one of
the key objects of interest in our analysis, the distribution of consumers’ marginal willingness to pay, is
nonparametrically identified from the observed distribution of quantity purchases (and the equilibrium
price schedule), based on the monotone relationship between consumers’ marginal willingness to pay
and purchased quantities that our nonlinear pricing model gives rise to.

Unlike the estimation of common auction models, however, the estimation of nonlinear pricing mod-
els often involves the recovery of consumers’ valuation of quantity. Like Perrigne and Vuong (2010),
under the separability assumption v(θ, q) = θν(q) for consumers’ utility, we identify both the distri-
bution of θ, which describes a consumer’s marginal willingness to pay, and consumers’ “base” utility
function, ν(q), just using information on the price schedule and the distribution of quantity purchases in
a market, up to the coefficient of absolute risk aversion. We do so by exploiting the relationship between
prices and quantities implied by a seller’s first-order condition for the choice of quantities to offer and
each consumer’s first-order condition for the choice of quantity to buy.

A seller’s problem, though, is more involved in our model than in the model of Perrigne and Vuong
(2010). Unlike in the nonlinear pricing model that Perrigne and Vuong (2010) consider, the equilibrium
price and quantity menu in our model depends not just on the distribution of θ, on ν(q), and on a seller’s
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cost function, but also on the endogenous distribution of consumers who are indifferent between purchas-
ing and not purchasing in a market, due to binding subsistence or participation constraints. As explained
in the paper, consumers indifferent between purchasing and not purchasing need not be just consumers
with the lowest possible marginal willingness to pay, as in the standard nonlinear pricing model. Since
the characteristics of this group of “marginal” consumers affect a seller’s choice of prices and quantities,
the recovery of the primitives of interest requires the identification of the distribution of such consumers.
We show that the empirical content of our model is rich enough to allow us to identify (and estimate) the
distribution of “marginal consumers” and so to identify key primitives of our model.

Like in Perrigne and Vuong (2010), in our setup, the identification of more general preference struc-
tures than the separable one just described is made difficult by the need to recover the dependence of util-
ity on both quantity and marginal willingness to pay, just based on first-order conditions for the optimal
choice of quantity. In particular, only the first derivative of the utility function with respect to quantity,
vq(θ, q), and the cross-partial derivative of the utility function with respect to type and quantity, vθq(θ, q),
appear in the equilibrium conditions on which identification relies—respectively, in consumers’ and
sellers’ first-order conditions (vq(θ, q)) or just in sellers’ first-order conditions (vθq(θ, q)). Moreover, the
cross-partial derivative vθq(θ, q) only appears interacted with other unobserved primitives or unobserved
endogenous variables. Hence, the identification of more general preferences typically requires additional
information. Naturally, information on consumers’ reservation utility in a market, u(θ), would be suf-
ficient to nonparametrically identify vθ(θ, q) under our homogeneity assumption, since u′(θ) = vθ(θ, q)
under this assumption. By the same argument as in the paper, vq(θ, q) is identified from the marginal
price schedule, T ′(q). Alternatively, knowledge of marginal cost in a market allows to nonparametri-
cally set- and point-identify some of the primitives of interest in this more general case, even without
knowledge of u(θ). We establish this point in the next subsection.

Our arguments also bear similarities with those in the hedonic pricing literature. See, in particular,
Ekeland et al. (2004) and Heckman et al. (2010), cited in the paper. In these papers too, marginal
payoff functions are not identified without further restrictions, in addition to the equilibrium conditions
on the behavior of both sides of the market. The first paper proves identification of marginal payoff
functions and the distribution of unobserved heterogeneity up to location and scale, under the assumption
of an additively separable marginal payoff structure. Specifically, they consider nonparametric hedonic
models with additive marginal utility and additive marginal product functions, and show that hedonic
models with these additivity restrictions are nonparametrically identified based on single market data.
No heterogeneity in the curvature of preference or production functions is allowed.

The second paper examines alternative identifying assumptions on the functional form of marginal
payoff functions, combined with exogenous variables, for data from single and multiple markets. This
second paper proves the nonparametric identification of structural functions and distributions in general
hedonic models without imposing additivity. For instance, the authors allow the curvature of the marginal
utility for a product attribute, and the distribution of marginal utilities, to vary in general ways across
agents with different observed characteristics.

In analogy to these papers, we also investigate the identifiability of nonparametric structural rela-
tionships with nonadditive heterogeneity and assess which features of nonlinear pricing models can be
identified from observations on equilibrium outcomes in a single market, under relatively mild assump-
tions that are common in the empirical auction and nonlinear pricing literature. Like these authors, we
rely on separability conditions for the identification of consumer marginal utility. Note that the strategy
of relying on multi-market data to achieve identification is less appealing in our setup, given the poten-
tial variation of consumers’ marginal willingness to pay and reservation utility across markets, as our
estimates confirm.

Our identification problem, however, differs from the one in those two papers in three important
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respects. First, to establish identification, those papers exploit the existence of exogenous covariates
independent of the unobserved heterogeneity term of interest—here, consumers’ marginal willingness to
pay. The existence of such exogenous variables is unlikely in our case, as most household characteristics,
such as the demographic composition of a household, are highly correlated with consumers’ purchasing
behavior in the data.

Second, in our case not just the cumulative distribution or probability density function of the hetero-
geneity distribution is unknown but also its support, which compounds the identification problem since
knowledge of this support is crucial in identifying marginal utility.

Third, consumers’ reservation utilities depend on their unobserved characteristics, which makes the
participation constraint non-redundant for consumers with potentially any value of the unobserved char-
acteristic, θ. Hence, a consumer’s problem in our model is a mixed discrete-continuous choice problem
of whether to participate and, conditional on participation, which quantity to choose, whose solution is
not just characterized by the first-order conditions for optimal consumption. Similarly, a seller’s prob-
lem consists in deciding whether to induce a consumer to trade and, if so, for which price and quantity
combination. As shown, the interaction between participation (or budget) and incentive constraints in a
seller’s problem is crucial for the characteristics of the equilibrium price schedule and for its dependence
on primitives. Importantly, as argued in the paper, this feature of our model is key to the distributional
implications of nonlinear pricing, which are the focus of our analysis.

A.4.2 Identification of General Preference Structures

We show here which primitives of our model in a market can be identified with knowledge of a seller’s
marginal cost of the total quantity provided of a good, c′(Q), once the separability assumption v(θ, q) =
θν(q) is relaxed. Without loss of generality, consider the IR problem. Then, the primitives left to
identify are v(θ, q), F (θ), the support of θ, f(θ), and u(θ). Recall that the general form of a seller’s and
a consumer’s first-order conditions is, respectively,

vq(θ, q)− c′(Q) =
γ(θ)− F (θ)

f(θ)
vθq(θ, q) and T ′(q) = vq(θ, q),

which imply

T ′(q)− c′(Q) =
γ(θ)− F (θ)

f(θ)
vθq(θ, q). (25)

From T ′(q) = vq(θ, q), it follows that vq(θ, q) is nonparametrically identified without the need of any
further restriction. Since γ(θ(q)) ≥ G(q) if, and only if, T (q) ≥ c′(Q), it also follows

γ(θ(q))∈
{

[0, G(q)) at any q s.t. T ′(q) < c′(Q)
(G(q), 1] at any q s.t. T ′(q) > c′(Q)

and γ(θ(q)) = G(q) at any q s.t. T ′(q) = c′(Q).

(26)
Note that these bounds are tight in that the set of values of γ(θ(q)) they imply covers the identified set.
As discussed in the paper, F (θ) is identified by G(q).

Result 6. Suppose that c′(Q) is known. Then, vq(θ, q) is identified from the marginal price schedule and
γ(θ) is identified from the marginal price schedule and the distribution of quantity purchases by (26). If
γ(θ) is identified, then the support of θ (up to θ), f(θ), and vθq(θ, q) are also identified.

Proof of Result 6: The first part of the claim is immediate from the discussion preceding it. As for
the rest of the claim, observe that (25) implies that vθq(θ, q)/f(θ) is identified once γ(θ) is identified
since F (θ) = G(q). If γ(θ) is identified, then θ(q) is identified up to θ by the same argument as in the
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paper. Hence, f(θ) is identified too from the observed distribution of quantities, since f(θ) = g(q)/θ′(q).
Finally, vθq(θ, q) is identified from vθq(θ, q)/f(θ).

The following result is immediate by the homogeneity assumption, which implies u′(θ) = vθ(θ, q),
and Result 6.

Result 7. Suppose that u′(θ) is known. Then, vq(θ, q) is identified from the marginal price schedule and
vθ(θ, q) is identified from u′(θ).

A.5 Omitted Estimation Results
Here we graph the estimates of the probability density function of consumer types for each good, namely,
rice, kidney beans, and sugar, and in each village, defined as a Mexican municipality or as a Mexican
locality. In the tables that follow, we report the t-statistics of the estimates of the model’s primitives and
the cumulative multiplier associated with consumers’ participation (or budget) constraints obtained from
villages defined as localities. We note that the estimates of the probability density function of consumer
types are very similar across the two specifications of the multiplier function and the two definitions of
villages.

A.5.1 Estimates of the Probability Density Functions of Consumer Types

In Figure 1, we plot the estimates of the probability density function of consumer types for each good and
village estimated from villages defined at the level of the Mexican municipality. We graph the estimates
obtained for the linear specification of the index of the multiplier function in the top panels and for the
quadratic specification of the index of the multiplier function in the bottom panels. See Section 4 in the
paper for details. In Figure 2, we plot the corresponding estimates from villages defined at the level of
the Mexican locality.

Figure 1: Estimated Density Function of Types from Municipalities (Linear and Quadratic Specification)

0
.0

2
.0

4
.0

6
Ty

pe
 D

en
si

ty

0 200 400 600 800
Log Consumer Type

Rice

0
.0

1
.0

2
.0

3
.0

4
Ty

pe
 D

en
si

ty

0 100 200 300 400
Log Consumer Type

Kidney Beans

0
.0

05
.0

1
.0

15
.0

2
Ty

pe
 D

en
si

ty

0 200 400 600 800
Log Consumer Type

Sugar

0
.0

2
.0

4
.0

6
.0

8
Ty

pe
 D

en
si

ty

0 200 400 600 800
Log Consumer Type

Rice

0
.0

2
.0

4
.0

6
.0

8
Ty

pe
 D

en
si

ty

0 50 100 150 200
Log Consumer Type

Kidney Beans

0
.0

1
.0

2
.0

3
.0

4
Ty

pe
 D

en
si

ty

0 100 200 300 400 500
Log Consumer Type

Sugar

-

14



Figure 2: Estimated Density Function of Types from Localities (Linear and Quadratic Specification)
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A.5.2 Estimates from Localities: Linear Specification of Multiplier

The following three tables report selected percentiles of the distribution of the t-statistics of the estimates
of c′(Q), γ(θ(q)), θ(q), ν ′(q), and f(θ) across villages. These statistics are meant to illustrate the overall
precision of our estimates. The next three tables report the quartiles of the distribution across villages of
selected percentiles of the distribution across village-level quantities of the t-statistics of the estimates
of γ(θ(q)), θ(q), ν ′(q), and f(θ). These statistics are meant to show the variability across villages of
the precision of the estimates of γ(θ(q)), θ(q), ν ′(q), and f(θ) at the different quantities of a good in a
village. All estimates have been obtained assuming that the cumulative multiplier for each good in each
village is a logistic function of quantity with a linear index.

Table 1: Percentiles of t-Statistics across Quantities and Villages for Rice (Linear)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.046 2.078 6.137 17.464 40.573 67.370 116.908 157.698 219.232
γ(θ(q)) 1.492 4.919 8.687 32.465 423.474 2.1× 104 6.4× 105 7.8× 106 7.6× 108

θ(q) 0.018 0.199 0.477 1.421 4.305 11.729 28.350 46.836 168.314
ν′(q) −82.665 −24.026 −12.946 −3.655 −0.651 2.092 23.368 53.139 186.895
f(θ) 1.118 1.118 1.118 2.739 6.801 9.487 12.698 14.433 17.783

Table 2: Percentiles of t-Statistics across Quantities and Villages for Beans (Linear)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.006 0.082 0.531 4.252 20.117 52.698 102.618 145.407 253.494
γ(θ(q)) 1.348 4.068 6.851 19.377 63.942 298.560 2266.634 1.2× 104 1.4× 105

θ(q) 0.017 0.121 0.233 0.760 1.979 4.897 9.943 14.400 36.705
ν′(q) −9.354 −4.244 −2.207 −0.801 −0.044 6.205 35.734 80.199 288.988
f(θ) 1.118 1.118 1.581 3.868 7.259 10.124 12.829 14.371 19.074

Table 3: Percentiles of t-Statistics across Quantities and Villages for Sugar (Linear)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.028 0.458 2.593 14.432 81.714 168.106 310.166 383.611 1079.864
γ(θ(q)) 0.918 2.967 5.710 20.727 115.921 5521.459 1.6× 105 1.3× 106 1.2× 108

θ(q) 0.028 0.191 0.366 1.182 2.622 5.918 12.318 20.804 68.186
ν′(q) −9.528 −4.086 −2.061 −0.269 2.538 24.648 117.050 238.115 593.421
f(θ) 1.118 1.118 1.581 4.330 7.583 10.308 13.399 15.890 18.873
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Table 4: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Rice (Linear)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 0.868 2.238 4.915 10.943 42.727 1288.063 3.9× 104 1.6× 105 3.3× 106

p50 2.981 9.293 12.284 34.977 219.328 5564.058 1.9× 105 1.0× 106 1.0× 107

p75 8.288 38.873 71.004 239.436 2347.055 4.1× 104 5.3× 106 5.7× 107 4.3× 109

θ(q) p25 0.012 0.173 0.285 0.921 2.707 7.235 15.518 23.228 77.506
p50 0.018 0.345 0.650 1.567 4.539 12.344 25.603 39.546 139.740
p75 0.024 0.536 0.984 2.383 6.674 16.967 37.531 69.579 178.023

ν′(q) p25 −102.280 −30.619 −19.462 −6.528 −1.591 −0.434 0.246 4.267 16.539
p50 −46.631 −20.421 −12.514 −3.381 −0.546 1.501 12.688 27.224 90.916
p75 −26.391 −12.352 −7.253 −1.479 0.066 11.390 39.017 75.014 291.182

f(θ) p25 1.118 1.118 1.118 1.704 2.958 5.000 7.746 9.354 13.334
p50 2.236 3.133 3.716 5.181 7.086 9.403 12.361 14.186 16.956
p75 5.000 5.700 6.134 7.200 8.488 11.307 13.509 15.108 19.133

Table 5: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Beans (Linear)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 0.985 3.168 4.303 10.108 23.698 47.761 127.314 244.325 1.8× 104

p50 2.309 8.971 15.326 29.391 58.219 148.088 398.864 1565.996 4.3× 104

p75 6.627 26.890 47.324 95.732 272.696 1185.432 5181.648 2.2× 104 8.8× 104

θ(q) p25 0.009 0.088 0.162 0.535 1.380 3.507 6.741 9.957 19.674
p50 0.023 0.165 0.325 0.946 2.117 4.857 9.461 12.323 32.044
p75 0.023 0.233 0.500 1.321 3.102 6.460 12.790 16.810 46.251

ν′(q) p25 −11.395 −6.792 −4.108 −1.709 −0.538 −0.018 4.480 10.778 39.869
p50 −6.629 −3.462 −2.085 −0.757 −0.084 3.662 20.573 36.142 120.305
p75 −3.579 −1.742 −1.193 −0.220 1.259 12.897 64.953 149.110 348.020

f(θ) p25 1.118 1.581 1.581 2.500 4.047 5.659 7.071 8.062 10.488
p50 2.456 4.031 4.748 6.124 7.972 9.848 12.443 14.457 21.215
p75 4.464 6.088 7.020 8.062 9.782 11.478 14.048 16.880 23.555

Table 6: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Sugar (Linear)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 0.418 2.249 3.338 8.486 24.133 476.983 2.8× 104 1.7× 105 3.3× 106

p50 1.209 5.690 12.683 29.163 82.548 1569.923 6.3× 104 5.2× 105 5.3× 106

p75 4.162 18.620 32.856 75.538 309.142 7259.133 2.2× 105 3.3× 106 2.5× 108

θ(q) p25 0.025 0.123 0.301 0.930 2.015 3.924 7.518 10.447 19.237
p50 0.028 0.218 0.466 1.334 2.832 5.879 9.549 15.821 34.383
p75 0.046 0.276 0.717 2.039 4.113 9.088 15.896 25.188 69.761

ν′(q) p25 −10.931 −5.816 −4.288 −1.279 0.107 6.205 36.551 83.493 194.541
p50 −7.377 −2.711 −1.701 −0.240 2.677 25.290 78.036 139.464 306.498
p75 −3.424 −1.037 −0.314 0.516 10.199 64.145 199.016 257.552 628.068

f(θ) p25 1.118 1.118 1.402 2.958 4.743 6.971 8.545 9.487 12.748
p50 2.927 3.987 5.054 6.296 7.906 10.092 13.555 15.969 18.337
p75 5.831 6.444 7.071 8.048 9.764 12.078 14.847 17.630 19.969
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A.5.3 Estimates from Localities: Quadratic Specification of Multiplier

The following three tables report selected percentiles of the distribution of the t-statistics of the estimates
of c′(Q), γ(θ(q)), θ(q), ν ′(q), and f(θ) across villages. The next three tables report the quartiles of the
distribution across villages of selected percentiles of the distribution across village-level quantities of the
t-statistics of the estimates of γ(θ(q)), θ(q), ν ′(q), and f(θ). All estimates have been obtained assuming
that the cumulative multiplier for each good in each village is a logistic function of quantity with a
quadratic index.

Table 7: Percentiles of t-Statistics across Quantities and Villages for Rice (Quadratic)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.197 1.918 5.199 16.728 37.022 65.785 111.986 156.545 225.224
γ(θ(q)) 1.035 3.547 6.640 24.053 232.322 6921.356 2.2× 105 1.7× 106 1.5× 108

θ(q) 0.030 0.256 0.544 1.591 4.553 14.492 41.178 74.819 191.568
ν′(q) −108.437 −28.931 −13.165 −3.345 −0.455 5.553 35.716 67.995 234.168
f(θ) 1.118 1.118 1.118 2.727 6.794 9.487 12.550 14.287 17.655

Table 8: Percentiles of t-Statistics across Quantities and Villages for Beans (Quadratic)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.004 0.044 0.172 2.615 12.770 53.810 102.240 136.358 239.336
γ(θ(q)) 1.281 3.359 5.236 17.060 75.993 386.926 3984.676 2.5× 104 2.0× 105

θ(q) 0.024 0.157 0.313 0.966 2.460 5.446 9.243 13.201 28.556
ν′(q) −9.701 −4.706 −2.639 −0.744 0.086 6.785 37.882 94.091 332.620
f(θ) 1.118 1.118 1.581 3.873 7.364 10.062 13.078 15.810 20.321

Table 9: Percentiles of t-Statistics across Quantities and Villages for Sugar (Quadratic)

p1 p5 p10 p25 p50 p75 p90 p95 p99
c′(Q) 0.019 0.167 1.781 8.346 82.833 167.661 288.498 380.583 650.754
γ(θ(q)) 1.430 3.532 6.013 21.947 96.086 2019.979 6.5× 104 3.2× 105 2.4× 108

θ(q) 0.016 0.147 0.305 1.092 2.494 5.124 12.396 20.509 122.292
ν′(q) −25.074 −4.306 −2.269 −0.391 1.872 20.848 80.387 148.411 591.023
f(θ) 1.118 1.118 1.581 4.330 7.665 10.460 13.463 15.572 18.884
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Table 10: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Rice (Quadratic)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 0.310 2.528 4.166 9.665 51.009 790.278 1.9× 104 7.1× 104 1.3× 106

p50 0.683 6.347 14.073 29.170 152.315 2299.945 6.0× 104 5.3× 105 3.0× 106

p75 5.978 25.989 38.259 116.680 777.837 1.9× 104 1.8× 106 1.2× 107 1.6× 108

θ(q) p25 0.025 0.172 0.346 0.984 2.972 7.786 19.299 29.881 66.676
p50 0.064 0.354 0.661 1.945 4.735 15.125 44.963 70.168 132.236
p75 0.183 0.821 1.229 2.970 8.701 24.310 64.569 100.735 215.639

ν′(q) p25 −162.027 −50.724 −24.138 −5.239 −1.574 −0.360 0.156 3.172 13.915
p50 −95.212 −21.296 −13.165 −3.249 −0.364 2.376 13.803 23.804 70.276
p75 −46.973 −9.720 −4.752 −0.728 2.825 20.226 51.351 88.045 182.750

f(θ) p25 1.118 1.118 1.118 1.759 2.958 5.375 8.211 12.247 14.185
p50 2.236 2.962 3.536 5.313 6.792 8.867 11.727 14.073 17.476
p75 5.000 5.590 6.058 7.245 8.637 10.949 13.155 14.958 20.456

Table 11: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Beans (Quadratic)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 0.822 2.250 3.422 7.292 18.897 60.567 149.344 268.732 2573.039

p50 1.820 4.227 9.847 24.617 67.114 169.289 414.829 1132.442 1.5× 104

p75 4.032 18.955 38.337 105.138 422.276 1382.032 5278.679 1.6× 104 2.0× 105

θ(q) p25 0.016 0.110 0.228 0.718 1.858 3.796 6.830 9.632 17.124
p50 0.017 0.160 0.330 1.078 2.588 5.411 8.229 11.303 25.619
p75 0.130 0.323 0.645 1.569 3.663 6.985 11.180 15.948 28.997

ν′(q) p25 −13.748 −6.468 −4.595 −2.156 −0.518 0.064 3.390 6.724 30.630
p50 −6.826 −4.054 −2.356 −0.853 −0.058 3.184 14.733 26.128 96.637
p75 −3.527 −1.668 −0.857 0.017 3.121 16.823 51.626 128.570 250.859

f(θ) p25 1.118 1.118 1.581 2.739 4.100 5.924 7.583 9.552 15.407
p50 2.427 3.708 4.450 6.124 7.982 9.937 12.924 16.074 20.282
p75 4.031 5.666 6.614 8.063 9.552 11.837 15.112 17.534 20.793

Table 12: Between-Village Quartiles of Percentiles of t-Statistics across Village Quantities for Sugar (Quadratic)

p1 p5 p10 p25 p50 p75 p90 p95 p99
γ(θ(q)) p25 0.940 2.412 3.857 8.572 27.432 147.725 1.7× 104 8.1× 104 1.3× 106

p50 3.166 7.223 10.878 29.042 77.897 530.951 2.8× 104 1.3× 105 2.3× 106

p75 7.822 20.626 36.080 85.640 307.809 3935.793 1.0× 105 6.7× 105 3.2× 109

θ(q) p25 0.007 0.121 0.229 0.765 1.867 3.413 6.157 9.802 44.665
p50 0.007 0.165 0.384 1.283 2.747 5.033 9.987 15.675 72.555
p75 0.056 0.344 0.794 1.909 3.541 8.033 17.366 36.451 3885.028

ν′(q) p25 −2.5× 103 −6.658 −3.531 −1.381 −0.053 4.027 21.737 34.101 120.574
p50 −22.933 −3.397 −1.794 −0.325 2.064 19.568 47.653 87.399 222.200
p75 −4.993 −1.425 −0.691 0.390 9.453 40.488 115.893 202.440 622.084

f(θ) p25 1.118 1.118 1.350 2.739 4.743 7.004 8.934 10.607 13.460
p50 2.739 3.783 4.815 6.347 8.129 10.457 13.239 15.572 18.895
p75 4.330 6.222 6.982 8.094 9.805 12.298 15.059 17.636 18.936
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