Online Appendix for Influencing Connected Legislators

Abstract

In this appendix we present omitted proofs and tables for "Influencing Connected Legislators."

Marco Battaglini
Cornell University and EIEF
Ithaca, NY 14853
battaglini@cornell.edu
Eleonora Patacchini
Cornell University
Ithaca, NY 14853
ep454@cornell.edu

1 Proof of Lemma 1

Let φ be the n dimensional column vector of voting probabilities with i th element equal to φ_{i}. Define $\boldsymbol{\eta}: R^{n} \rightarrow R^{n}$ as $\boldsymbol{\eta}(\boldsymbol{\varphi}, \mathbf{s})=\boldsymbol{\varphi}-\mathbf{F}(\boldsymbol{\varphi}, \mathbf{s})$, where $\mathbf{s}=\left(\mathbf{s}_{\mathbf{A}}, \mathbf{s}_{\mathbf{B}}\right)$ and $\mathbf{F}(\boldsymbol{\varphi}, \mathbf{s})$ is a column vector with i th element equal to $1 / 2+\Psi\left(\omega\left(s_{A}^{i}\right)-\omega\left(s_{B}^{i}\right)+v^{i} q^{i}(\boldsymbol{\varphi})+\phi \sum_{j} g_{i, j}\left(2 \varphi_{j}-1\right)\right)$, as defined in (5) in Section 3.1. The equilibrium probabilities $\boldsymbol{\varphi}(\mathbf{s})$ are defined as the solution of $\boldsymbol{\eta}\left(\boldsymbol{\varphi}^{*}, \mathbf{s}\right)=0$. The fact that the solution of this system exists follows from Brouwer's fixed-point theorem as argued in Section 3. Since, by Assumption 1, $\Psi(\bar{v}+\phi+\omega(2 W))<1 / 2$, the solution is interior in $(0,1)$. To show uniqueness of an equilibrium of the voting stage with policy motivated legislators for Ψ sufficiently small, let $\|x\|$ be the norm $\|x\|=\sum_{i}\left|x_{i}\right|$ for any $x \in R^{n}$. We have:

$$
\begin{aligned}
\left\|\mathbf{F}(\boldsymbol{\varphi}, \mathbf{s})-\mathbf{F}\left(\boldsymbol{\varphi}^{\prime}, \mathbf{s}\right)\right\| & \leq \Psi\left(\bar{\nu} \cdot \sum_{l}\left|\int_{\varphi_{l}^{\prime}}^{\varphi_{l}} \sum_{i} q_{l}^{i}(\mathbf{x})\right| d x+2 \phi \sum_{j}\left(\sum_{i} g_{i, j}\right)\left|\varphi_{j}-\varphi_{j}^{\prime}\right|\right) \\
& \leq \Psi\left(n \bar{\nu} \cdot \sum_{l}\left(\left|\varphi_{l}-\varphi_{l}^{\prime}\right|\right)+2 \phi \sum_{j}\left|\varphi_{j}-\varphi_{j}^{\prime}\right|\right) \leq \Psi(n \bar{v}+2 \phi)\left\|\varphi-\boldsymbol{\varphi}^{\prime}\right\|
\end{aligned}
$$

where we use the fact that $\left|q_{j}^{i}(\mathbf{x})\right|<1$ for any \mathbf{x}, and $\sum_{i} g_{i, j} \leq 1$ for any j. For any $\eta<1$, we therefore have $\left\|\mathbf{F}(\boldsymbol{\varphi}, \mathbf{s})-\mathbf{F}\left(\boldsymbol{\varphi}^{\prime}, \mathbf{s}\right)\right\| \leq \eta \cdot\left\|\varphi-\boldsymbol{\varphi}^{\prime}\right\|$ for Ψ sufficiently small. We can therefore conclude that there is a Ψ_{1} such that $\mathbf{F}(\boldsymbol{\varphi}, \mathbf{s})$ is a contraction in $[0,1]$ with a unique fixed-point in $(0,1)$ for $\Psi \leq \Psi_{1}$.

We now turn to the derivatives of the voting probabilities. The implicit function theorem implies that the solution φ_{i} is differentiable in s_{A}^{j} at $\mathbf{s}_{A}, \mathbf{s}_{B}$ if $(D \boldsymbol{\eta})_{\varphi}$ is invertible in a neighborhood of $\left(\mathbf{s}_{A}, \mathbf{s}_{B}, \boldsymbol{\varphi}\left(\mathbf{s}_{\mathbf{A}}, \mathbf{s}_{\mathbf{B}}\right)\right)$, where $\boldsymbol{\varphi}\left(\mathbf{s}_{\mathbf{A}}, \mathbf{s}_{\mathbf{B}}\right)$ solves $\boldsymbol{\eta}\left(\boldsymbol{\varphi}, \mathbf{s}_{A}, \mathbf{s}_{B}\right)=0$ (the expression $(D \boldsymbol{\eta})_{\boldsymbol{\varphi}}$ represents the Jacobian of $\boldsymbol{\eta}$ with respect to $\boldsymbol{\varphi}$). It is easy to verify that $(D \boldsymbol{\eta})_{\boldsymbol{\varphi}}=[I-\phi \Psi 2 \widetilde{G}]$, where \widetilde{G} is a $n \times n$ matrix with i, j element equal to $\widetilde{g}_{i, l}=g_{i, l}\left(g_{i, l}+v^{i} q_{l}^{i}(\boldsymbol{\varphi})\right)$. Let r^{*} be the largest eigenvalue of \widetilde{G} achieved for some φ (this is well defined and bounded since $r(\widetilde{G})$ is continuos in φ in and the space of feasible φ is compact). Theorem III* of Debreu and Herstein [1953] implies that $[I-\phi \Psi 2 \widetilde{G}]^{-1}$ exists and is nonegative for $\Psi \leq\left(2 \phi r^{*}\right)^{-1}=\Psi_{2}$. The Jacobian of φ is then

$$
D_{j}[\varphi]=\Psi \cdot \omega^{\prime}\left(s_{A}^{l}\right)[I-\phi \Psi 2 \widetilde{G}]^{-1} \mathbf{1}_{j}
$$

where $\mathbf{1}_{j}$ is a n-dimensional vector equal to zero except at the i th dimension in which it is equal to one. Since $[I-\phi \Psi 2 \widetilde{G}]^{-1}$ is nonnegative with at least one strictly positive element for $\Psi \leq \Psi_{2}$, it follows that $\sum_{i} \partial \varphi_{i} / \partial s_{A}^{j}=D_{j}[\varphi]^{T} \cdot \mathbf{1}>0$ for n large enough.

To verify concavity with respect to \mathbf{s}_{A}, let $D^{2} \varphi_{i}$ be the Hessian of φ_{i}. Consider first its diagonal entries $\partial^{2} \varphi_{i} / \partial s_{A}^{j} \partial s_{A}^{j}$ for any j. We can write:

$$
\frac{\partial^{2} \varphi_{i}}{\partial s_{A}^{j} \partial s_{A}^{j}}=\Psi\left[\begin{array}{c}
\frac{\partial^{2} \omega_{j}\left(s_{A}^{i}\right)}{\partial s_{A}^{j} \partial s_{A}^{j}}+2 \phi \sum_{l} g_{i, l} \frac{\partial^{2} \varphi_{l}}{\partial s_{A}^{j} \partial s_{A}^{j}} \tag{1}\\
+v^{i} \sum_{l}\left(\sum_{k} q_{l k}^{i}(\varphi)\left(\frac{\partial \varphi_{l}}{\partial s_{A}^{j}}\right)\left(\frac{\partial \varphi_{k}}{\partial s_{A}^{j}}\right)+q_{l}^{i}(\varphi) \frac{\partial^{2} \varphi_{l}}{\partial s_{A}^{j} \partial s_{A}^{j}}\right)
\end{array}\right]
$$

We can write:

$$
\begin{equation*}
[I-\phi \Psi 2 \widetilde{G}]\left(D^{2} \boldsymbol{\varphi}\right)_{j j}=\Psi \omega^{\prime \prime}\left(s_{A}^{l}\right)\left(\mathbf{1}_{j}+\Psi^{2} \frac{\left(\omega^{\prime}\left(s_{A}^{l}\right)\right)^{2}}{\omega^{\prime \prime}\left(s_{A}^{l}\right)} V\left(\mathbf{z}^{j}\right)^{T} D^{2} q^{i}(\boldsymbol{\varphi})\left(\mathbf{z}^{j}\right)\right) \tag{2}
\end{equation*}
$$

where $\left(D^{2} \boldsymbol{\varphi}\right)_{j j}=\left(\frac{\partial^{2} \varphi_{1}}{\partial s_{A}^{j} \partial s_{A}^{j}}, \ldots, \frac{\partial^{2} \varphi_{n}}{\partial s_{A}^{j} \partial s_{A}^{j}}\right)^{T}$, the $n \times n$ matrix $D^{2} q^{i}(\boldsymbol{\varphi})$ is the Hessian of $q^{i}(\boldsymbol{\varphi})$, and $\mathbf{z}^{j}=$ $[I-\phi \Psi 2 \widetilde{G}]^{-1} \mathbf{1}_{j}$. The Hessian $\left(D^{2} \boldsymbol{\varphi}\right)_{j j}$ exists if $[I-\phi \Psi 2 \widetilde{G}]$ is invertible: a property that, as shown above, is verified if $\Psi \leq \Psi^{*}$. Since $\left(\omega^{\prime}\left(s_{A}^{l}\right)\right)^{2} / \omega^{\prime \prime}\left(s_{A}^{l}\right)$ is bounded for any feasible s_{A}^{l}, and \mathbf{z}^{j} is a positive column vector with l element $z_{l}^{j} \leq \bar{z}$ for some finite \bar{z}, the i th term of the second term in the parenthesis in the right hand side of (2) is bounded above by $\Psi^{2} \frac{\omega^{\prime \prime}\left(s_{A}^{l}\right)}{\omega^{\prime}\left(s_{A}^{l}\right)} \overline{v z}^{2} \sum_{v} \sum_{k} q_{v, k}^{i}(\boldsymbol{\varphi})$. It follows that:

$$
\begin{equation*}
\left(D^{2} \varphi\right)_{j j}=[I-\phi \Psi 2 \widetilde{G}]^{-1} \Psi \omega^{\prime}\left(s_{A}^{l}\right)\left(\mathbf{1}_{j}+o\left(\Psi^{2}\right)\right) \tag{3}
\end{equation*}
$$

where $o\left(\Psi^{2}\right)$ converges to zero as $\Psi \rightarrow 0$ at the speed of Ψ^{2}. By the fact that $[I-\phi \Psi 2 \widetilde{G}]^{-1}$ is positive and $\omega^{\prime \prime}\left(s_{A}^{l}\right)<0$, it follows that $\sum_{i} \partial^{2} \varphi_{i} / \partial s_{A}^{j} \partial s_{A}^{j}=\left(D^{2} \varphi\right)_{j j} \cdot 1<0$ for a sufficiently small Ψ. We conclude that the diagonal of the Hessian of $\sum_{i} \varphi_{i}$ has all strictly negative values. Following the same steps as above it we can also show that for any ε there is a Ψ_{3} such that the absolute values of the off diagonal elements of the Hessian of $\sum_{i} \varphi_{i}$ are lower than ε for $\Psi \leq \Psi_{3}$. This implies that there is a Ψ^{*} such that $\sum_{i} \varphi_{i}$ is increasing and strictly concave in respectively s_{A}^{j} and \mathbf{s}_{A} for $\Psi \leq \Psi^{*}$.

2 Proof of Lemma 3.1

The fact that all agents of the same type have the same Bonacich centrality is immediate from the definition. We can write:

$$
b_{i}\left(\phi^{*}, G^{T}\right)=1+\phi^{*} \sum_{l=1}^{n} g_{l, i} \cdot b_{l}\left(\phi^{*}, G^{T}\right)=1+\phi^{*} \sum_{\tau=1}^{m} n_{\tau} h_{\tau, l(i)} \cdot \bar{b}_{\tau}
$$

where \bar{b}_{τ} be the Bonacich centrality of an agent of type τ. Since, again, $b_{i}\left(\phi^{*}, G\right)=\bar{b}_{\iota(i)}$, we have: $\bar{b}_{\iota(i)}=1+\phi^{*} \sum_{\tau=1}^{m} \widetilde{h}_{\tau, \iota(i)} \cdot \bar{b}_{\tau}$ where $\widetilde{h}_{i, j}=n_{\tau} h_{\tau, \iota(i)}=\alpha_{j} h_{i, j} /\left(\sum_{l} \alpha_{l} h_{i, l}\right)$, since $\sum_{l} \alpha_{l} h_{i, l}=$ $\sum_{l} g_{i, l} / n=1 / n$. We therefore have that $\overline{\mathbf{b}}=\left[I+\phi^{*} \widetilde{H}^{T}\right]^{-1} \cdot \mathbf{1}$, implying that $b_{i}\left(\phi^{*}, G\right)$ is defined by (30) as stated.

3 Proof of Lemma 3.2

We first note that by Assumption $1 \varphi_{j} \leq \bar{\varphi}, \varphi_{j} \geq \underline{\varphi}$ for some $\bar{\varphi}$ and $\underline{\varphi}$ in $(0,1)$, any legislator j and any $\mathbf{s}_{A}, \mathbf{s}_{B}$. Given this, we proceed in two steps.

Step 1. We prove here that $\lim _{n \rightarrow \infty} q^{n, j}=0$ for all $j=1, \ldots, n$. Consider the pivot probability of a player j of type i. There are two cases to consider.

Case 1.1. Suppose first that $\alpha_{i}^{n} \rightarrow \alpha_{i}>0$. Let M_{-i}^{n} be the profile of votes of all types different from i. Let P_{i}^{n} be the probability that there is a profile of votes M_{-i}^{n} such that j can be pivotal for some profile $m_{i}^{-j, n}$ of players of type i different than j. Let $p_{j}^{n}\left(M_{-i}^{n}\right)$ be the probability of $m_{i}^{-j, n}$ such that j is pivotal given M_{-i}^{n} and let $\bar{p}_{j}^{n}=\max _{M_{-i}^{n}} p_{j}\left(M_{-i}^{n}\right)$. Associated to \bar{p}_{j}^{n} there is a number $\widehat{l}{ }_{j}^{n}$ of legislators of type i that must vote for A in order for j to be pivotal. Let $\eta_{j}^{n}=\widehat{l}_{j}^{n} /\left(n_{i}-1\right)$ the share of types i other than j that are needed to make j pivotal. If $\eta_{j}^{n} \rightarrow 1$ or $\eta_{j}^{n} \rightarrow 0$ then \bar{p}_{j}^{n} converges to zero, so j 's pivot probability converges to zero. Assume $\eta_{j}^{n} \rightarrow \eta_{j} \in(0,1)$. Given this, j 's pivot probability can be bounded above as follows. To keep the formulas simple, let $z_{i}(n)=\alpha_{i} n-1$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} q^{n, i} & \leq P_{i}^{n} \cdot \lim _{n \rightarrow \infty} b\left(\eta_{j}^{n} z_{i}(n) ; z_{i}(n), \varphi^{i}\right) \\
& \leq \lim _{n \rightarrow \infty}\binom{z_{i}(n)}{\eta_{j}^{n} z_{i}(n)}\left(\left(\varphi^{i}\right)^{\eta_{j}^{n} z_{i}(n)} \cdot\left(1-\varphi^{i}\right)^{\left(1-\eta_{j}^{n}\right) z_{i}(n)}\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{\left(\sqrt{2 \pi z_{i}(n)} \cdot\left(z_{i}(n)\right)^{z_{i}(n)} e^{-z_{i}(n)}\right) \cdot\left(\left(\varphi^{i}\right)^{\eta_{j}^{n} z_{i}(n)} \cdot\left(1-\varphi^{j}\right)^{\left(1-\eta_{j}^{n}\right) z_{i}(n)}\right)}{\left(\sqrt{2 \pi \eta_{j}^{n} z_{i}(n)} \cdot\left(\eta_{j}^{n} z_{i}(n)\right)^{\eta_{j}^{n} z_{i}(n)} e^{-\eta_{j}^{n} z_{i}(n)}\right)} \\
& \left.=\sqrt{2 \pi\left(1-\eta_{j}^{n}\right) z_{i}(n)} \cdot\left(\left(1-\eta_{j}^{n}\right) z_{i}(n)\right)^{\left(1-\eta_{j}^{n}\right) z_{i}(n)} e^{-\left(1-\eta_{j}^{n}\right) z_{i}(n)}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{\left(\left(\sqrt{2 \pi \eta_{j}^{n}}\right) \cdot \sqrt{\left(1-\eta_{j}^{n}\right)}\right)} \cdot\left(\frac{\left(\left(\varphi^{i}\right)^{\eta_{j}^{n}} \cdot\left(1-\varphi^{j}\right)^{1-\eta_{j}^{n}}\right)}{\left.\left(\eta_{j}^{n}\right)^{\eta_{j}^{n}}\left(1-\eta_{j}^{n}\right)^{1-\eta_{j}^{n}}\right)}\right)^{z_{i}(n)} \cdot \frac{1}{\sqrt{z_{i}(n)}} \\
& \leq \frac{1}{\left(\left(\sqrt{2 \pi \eta_{j}}\right) \cdot \sqrt{\left(1-\eta_{j}\right)}\right)} \lim _{n \rightarrow \infty} \frac{1}{\sqrt{z_{i}(n)}}=0,
\end{aligned}
$$

where the third inequality follows from the Stirling formula and the last follows from the fact that $\eta_{j}^{n} \in \arg \max _{\varphi}\left((\varphi)^{\eta_{j}^{n}}(1-\varphi)^{1-\eta_{j}^{n}}\right)$.
Case 1.2. Consider now that case in which $\alpha_{i}^{n} \rightarrow 0$. Let $M_{-j k}^{n}$ the profile of votes of: 1) all types i but different than agent j; and 2) of all other types $t \neq i, k$, where k is a type such that $\alpha_{k}^{n} \rightarrow \alpha_{k}>0$. Let $P_{-j k}^{n}$ be the probability that there is a profile of votes $M_{-j k}^{n}$ such that j can be pivotal for some profile m_{k}^{n} of players in k. Let $p_{j}^{n}\left(M_{-j k}\right)$ be the probability of m_{k}^{n} such that j is pivotal given $M_{-j k}$ and let $\bar{p}_{j}^{n}=\max _{M_{-j k}^{n}} p_{j}\left(M_{-j k}^{n}\right)$. As above the pivot probability $q^{n, i}$ can be bounded above by $P_{-j k}^{n} \cdot \bar{p}_{j k}^{n}$. Proceeding as in the previous case, we can prove that this upper bound converges to zero as $n \rightarrow \infty$, implying the result.
Step 2. Consider now $\sum_{j}\left|q_{j}^{n, i}\right|$. For any two distinct legislators i and j, let $N^{-i j}$ and $\boldsymbol{\varphi}^{-i j}$ be, respectively, the set of all legislators except i and j and the associated vector of probabilities of choosing P. Let moreover $S\left(N^{-i}, s\right)$ be the set of all s-combinations of $N^{-i j}$. We have that for
any $j \neq i, q^{n, i}=\varphi_{j} E_{n}+\left(1-\varphi_{j}\right) F_{j}$ where:

$$
\begin{aligned}
E_{n} & =\sum_{A \in S\left(N^{-i j}, q n-2\right)} \prod_{k \in A} \varphi_{k}^{-i j} \cdot \prod_{l \in A^{C}}\left(1-\varphi_{l}^{-i j}\right) \\
F_{n} & =\sum_{A \in S\left(N^{-i j}, q n-1\right)} \prod_{k \in A}\left(\varphi_{k}^{-i j}\right) \cdot \prod_{l \in A^{C}}\left(1-\varphi_{l}^{-i j}\right)
\end{aligned}
$$

We can therefore write: $q_{j}^{n, i}=\left(E_{n}-F_{n}\right)$. From Step 1 we know that $q^{n, i} \rightarrow 0$ as $n \rightarrow \infty$ for all i. It follows from (5) in Section 3.1, that $\varphi_{i} \rightarrow 1 / 2$ for all legislators. This implies that, for all $i,\left|E_{n}-F_{n}\right|$ can be bounded above by: $K_{n}=\Theta\binom{n}{q n}((1+\delta) / 2)^{n}$ where $\Theta>1$, and $\delta>0$ is a parameter that can be chosen arbitrarily close to 0 for n sufficiently large. It follows that $\sum_{j}\left|q_{j}^{n, i}\right|$ is bounded above by $n K_{n}$. Using again the Stirling formula we have:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n K_{n}=\lim _{n \rightarrow \infty} \frac{n \Theta \sqrt{2 \pi n} n^{n} e^{n}}{\left[\begin{array}{c}
\sqrt{2 \pi q n}(q n)^{q n} e^{q n} . \\
\sqrt{2 \pi(1-q) n}[(1-q) n]^{(1-q) n} e^{(1-q) n}
\end{array}\right]}((1+\delta) / 2)^{n} \\
= & \frac{\Theta}{\sqrt{2 \pi q(1-q)}} \lim _{n \rightarrow \infty}\left(n^{1 / 2}\left(\frac{2 \cdot q^{q}(1-q)^{1-q}}{1+\delta}\right)^{-n}\right)=\frac{\Theta}{\sqrt{2 \pi q(1-q)}} \lim _{n \rightarrow \infty}\left(n^{1 / 2}(1-\epsilon)^{n}\right)
\end{aligned}
$$

for some $\epsilon>0$, where the last equality follows from the fact since, δ is arbitrarily small, 2 . $q^{q}(1-q)^{1-q} /(1+\delta)>1$ for any $q \in(1 / 2,1)$. Since $\lim _{n \rightarrow \infty}\left(n^{1 / 2}(1-\epsilon)^{n}\right)=0$, we have that $\sum_{j}\left|q_{j}^{n, i}\right|$ converge to zero.

4 Derivation of Equation 19 in Section 4.1

The necessary and sufficient condition (17) in Section 4.1 for interest group $l=A, B$ is

$$
\sum_{j}\left(\partial \varphi_{j}\left(\mathbf{s}_{A}, \mathbf{s}_{B}\right) / \partial s_{l}^{i} \cdot \theta_{j}\right)=\lambda
$$

where λ is the Lagrangian multiplier associated to the constraint. In matrix form as $D \boldsymbol{\varphi}^{T} \cdot \boldsymbol{\theta}=\lambda$ and using (9) in Section 3.2, we have:

$$
\begin{equation*}
D \boldsymbol{\varphi}^{T} \cdot \boldsymbol{\theta}=\Psi \cdot D \boldsymbol{\omega}^{T} \cdot\left(I-\phi^{*} \cdot G^{T}\right)^{-1} \boldsymbol{\theta}=\lambda \tag{4}
\end{equation*}
$$

Let $\mathbf{b}^{\theta}\left(\boldsymbol{\phi}^{*}, \mathbf{G}\right)=\left(I-\phi^{*} \cdot G^{T}\right)^{-1} \cdot \boldsymbol{\theta}$ be the weighted Bonacich centrality measure, with $\mathbf{b}^{\theta}\left(\boldsymbol{\phi}^{*}, \mathbf{G}\right)=$ $\left(b_{1}^{\theta}\left(\phi^{*}, G\right), \ldots, b_{n}^{\theta}\left(\phi^{*}, G\right)\right)$. The first order condition (4) can then be written as: $b_{j}^{\theta}\left(\phi^{*}, G\right) \omega\left(s_{A}^{j}\right)=$ λ_{*}, where $\lambda_{*}=\lambda / \Psi$.

5 Proof of the result stated in Section 5.3

Let us define $\beta_{l}^{n}\left(s_{A}, s_{B}\right)$ as the probability that threshold l is passed for $l=1, \ldots, J, \beta_{l}^{n}\left(s_{A}, s_{B}\right)=$ $\operatorname{Pr}\left(\sum_{i} x_{i}^{n}(A)>z_{l} \mid \mathbf{s}_{A}, \mathbf{s}_{B}\right)$. With preferences that depend on reaching the threshold z_{j}, interest group A 's expect utility can be written as: $W_{n}^{\mathbf{z}, \mathbf{u}}\left(\mathbf{s}_{A}, \mathbf{s}_{B}\right)=u_{0}+\sum_{l=0}^{J}\left(u_{l}-u_{l-1}\right) \beta_{l}^{n}\left(\mathbf{s}_{A}, \mathbf{s}_{B}\right)$. The equilibrium contributions are characterized by the first order necessary condition of:

$$
\begin{equation*}
\max _{\left(\mathbf{s}_{A}, \mathbf{s}_{B}\right) \in S} W_{n}^{\mathbf{z}, \mathbf{u}}\left(\mathbf{s}_{A}, \mathbf{s}_{B}\right) \tag{5}
\end{equation*}
$$

The necessary condition of the corresponding Lagrangian with respect to s_{A}^{j} where j is an agent of type i :

$$
\begin{equation*}
\frac{\partial W_{n}^{\mathbf{z}, \mathbf{u}}\left(\mathbf{s}_{A}, \mathbf{s}_{B}\right)}{\partial s_{A}^{j}}=\sum_{k}\left(\sum_{l}\left(u_{l}-u_{l-1}\right) \frac{\partial \beta_{l}^{n}}{\partial \varphi_{k}}\right) \cdot \frac{\partial \varphi_{k}^{n}}{\partial s_{A}^{j}}=\lambda^{n} \tag{6}
\end{equation*}
$$

where $\partial \beta_{l}^{n} / \partial \varphi_{k}$ and $\partial \varphi_{k}^{n} / \partial s_{A}^{j}$ are the derivatives of $\beta_{l}^{n}\left(s_{A}, s_{B}\right)$ and $\varphi_{k}^{n}\left(s_{A}, s_{B}\right)$ with respect to, respectively, φ_{k}^{n} and $s_{A}^{n, j}$ evaluated at $\widetilde{\mathbf{s}}$ and λ^{n} is chosen to satisfy the budget constraint. It is easy to verify that $\partial \beta_{l}^{n} / \partial \varphi_{k}$ is equal to the probability that legislator k is "pivotal" in having threshold l passed, that is $\partial \beta_{l}^{n} / \partial \varphi_{k}=\beta_{l}^{-k, n}$ where $\beta_{l}^{-k, n}=\operatorname{Pr}\left(\sum_{i \neq k} x_{i}^{n}(A)=z_{l} \mid \mathbf{s}_{*}, \mathbf{s}_{*}\right)$. We can rewrite (6) as:

$$
\frac{\sum_{k=1}^{n}\left(R_{k}^{n} / R_{1}^{n}\right) \cdot \partial \varphi_{k}^{n} / \partial s_{A}^{j}}{\sum_{k=1}^{n}\left(R_{k}^{n} / R_{1}^{n}\right) \cdot \partial \varphi_{k}^{n} / \partial s_{A}^{l}}=1
$$

where $R_{k}^{n}=\sum_{l}\left[\left(u_{l}-u_{l-1}\right) \cdot \partial \beta_{l}^{n} / \partial \varphi_{k}\right]$. Note that, by Lemma 3.2, $q_{n}^{i} \rightarrow 0$ as $n \rightarrow \infty$, so by (5) in section 3.1 we must have that the probability that i votes for A is $\varphi_{i, n} \rightarrow 1 / 2$ as $n \rightarrow \infty$. This implies that $\beta_{l}^{-k} / \beta_{1}^{-k} \rightarrow 1$ and so $R_{j}^{n} / R_{1}^{n} \rightarrow 1$ for any $j=1, . ., m$. It follows that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left(R_{k}^{n} / R_{1}^{n}\right) \cdot \partial \varphi_{k}^{n} / \partial s_{A}^{j}}{\sum_{k=1}^{n}\left(R_{k}^{n} / R_{1}^{n}\right) \cdot \partial \varphi_{k}^{n} / \partial s_{A}^{l}} & =\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \partial \varphi_{k}^{n} / \partial s_{A}^{j}}{\sum_{k=1}^{n} \partial \varphi_{k}^{n} / \partial s_{A}^{l}}=\lim _{n \rightarrow \infty} \frac{b_{j}^{\mathcal{M}}\left(\phi^{*}, V, G^{T}\right) \omega^{\prime}\left(s_{A}^{j}\right)}{b_{l}^{\mathcal{M}}\left(\phi^{*}, V, G^{T}\right) \omega^{\prime}\left(s_{A}^{l}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{b_{j}\left(\phi^{*}, G^{T}\right)}{b_{l}\left(\phi^{*}, G^{T}\right)} \frac{\omega^{\prime}\left(s_{A}^{j}\right)}{\omega^{\prime}\left(s_{A}^{l}\right)}=1 \quad \forall j, l
\end{aligned}
$$

where the second equality follows from the analysis of $D \varphi^{T} \cdot 1$ in Section 7.2 and $\left(b_{i}\left(\phi^{*}, G^{T}\right)\right)_{i=1}^{n}$ are the limit Bonacichs. We conclude that for a large n, we have $\frac{\omega^{\prime}\left(s_{A}^{j}\right)}{\omega^{\prime}\left(s_{A}^{l}\right)} \simeq \frac{b_{l}\left(\phi^{*}, G^{T}\right)}{b_{j}\left(\phi^{*}, G^{T}\right)}$, or $b_{j}\left(\phi^{*}, G^{T}\right) \omega^{\prime}\left(s_{A}^{j}\right) \simeq \lambda$ for all $j=1, \ldots, n$. Assuming log utility as in Section 4 of the paper, we have $s_{A}^{j} \simeq b_{j}\left(\phi^{*}, G^{T}\right)$ for all $j=1, \ldots, n$.

References

Debreu G. and I. N. Herstein [1953]: "Nonnegative Square Matrices," Econometrica, 21(4): 597-607.

TABLE A.1. Summary statistics

	Variable definition	Committee network		Alumni network		
		Mean	St. Dev	Mean	St. Dev	p-value
PAC Contributions (\$Mil)	PAC Contributions to a member of Congress, excluding contributions from individuals and Super PACs, source: http://opensecrets.org.	886,284	989,801.6	891,450.8	1,021,031	0.8883
Party (1=Republican)	Dummy variable taking value of one if the member of Congress is a Republican.	0.5061	0.5000	0.4734	0.4999	0.2608
Gender (1=Female)	Dummy variable taking value of one if the member of Congress is female.	0.1738	0.3790	0.1732	0.3786	0.9635
Chair (1=Yes)	Dummy variable taking value of one if the member of Congress is a chair of at least one committee.	0.0469	0.2116	0.0497	0.2175	0.7261
Seniority	Maximum consecutive years in the same committee	7.6433	6.2492	7.7581	6.4334	0.6207
Margin of Victory	Election Margin of Victory	0.3518	0.2496	0.3622	0.2585	0.2634
Per capita Income	Mean Per Capita Income in Political District	26,815.48	8,377.558	26,772.33	8,480.09	0.8884
DW_ideology	Distance to the center in terms of ideology of each member of Congress measured using the absolute value of the first dimension of the dw-nominate score created by McCarty et al. (1997)	0.5012	0.2221	0.4993	0.2292	0.8182
Relevant Committee (1=Yes)	Dummy variable taking value of one if the member of Congress sits on one of the powerful committees (Appropriations, Energy and Commerce, Financial Services, Rules or Ways and Means).	0.5446	0.4981	0.4485	0.4975	0.7071
Joint Committee (1=Yes)	Dummy variable taking value of one if the member of Congress is in a joint committee.	0.0559	0.2298	0.0643	0.2454	0.3368
Top 10 university ($1=\mathrm{Yes}$)	Top 10 universities according to the 2014 ranking of http://www.usnews.com/education	0.0657	0.2479	0.1140	0.3180	0.000
N. obs		2,128	2,128	1,166	1,166	

Notes: We report the p-values of the T-tests for equality in means between the committee network and alumni network samples.

TABLE A.2. Estimation results Increasing set of control variables -Committee network-

Dep. Var.: PAC contributions (\$mil)							
	$\begin{aligned} & \text { MLE } \\ & \text { (1) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MLE } \\ & \text { (2) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MLE } \\ & \text { (3) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MLE } \\ & \text { (4) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MLE } \\ & \text { (5) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MLE } \\ & \text { (6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MLE } \\ & \text { (7) } \\ & \hline \end{aligned}$
Φ	$\begin{aligned} & 0.3649 * * * \\ & (0.0671) \end{aligned}$	$\begin{aligned} & 0.2309 * * * \\ & (0.0714) \end{aligned}$	$\begin{aligned} & 0.2894 * * * \\ & (0.0703) \end{aligned}$	$\begin{aligned} & 0.22143 * * * \\ & (0.0679) \end{aligned}$	$\begin{aligned} & 0.2084^{* * *} \\ & (0.0697) \end{aligned}$	$\begin{aligned} & 0.20884 * * * \\ & (0.0697) \end{aligned}$	$\begin{aligned} & 0.2165 * * * \\ & (0.0703) \end{aligned}$
Party (1=Republican)			$\begin{aligned} & -0.0874 * * \\ & (0.0430) \end{aligned}$	$\begin{aligned} & 0.1519 * * * \\ & (0.0569) \end{aligned}$	$\begin{aligned} & 0.1399 * * \\ & (0.0570) \end{aligned}$	$\begin{aligned} & 0.1443 * * \\ & (0.0573) \end{aligned}$	$\begin{aligned} & 0.1473 * * * \\ & (0.0011) \end{aligned}$
Gender ($1=$ Female)			$\begin{aligned} & -0.1341^{* *} \\ & (0.0561) \end{aligned}$	$\begin{aligned} & -0.0986^{*} \\ & (0.0534) \end{aligned}$	$\begin{gathered} -0.0975 * \\ (0.0534) \end{gathered}$	$\begin{aligned} & -0.0950^{*} \\ & (0.0535) \end{aligned}$	$\begin{aligned} & -0.09472 * * * \\ & (0.001) \end{aligned}$
Chair (1=Yes)			$\begin{aligned} & 0.3774 * * * \\ & (0.1016) \end{aligned}$	$\begin{aligned} & 0.3966^{* * *} \\ & (0.0969) \end{aligned}$	$\begin{aligned} & 0.3992 * * * \\ & (0.097) \end{aligned}$	$\begin{aligned} & 0.4006 * * * \\ & (0.0967) \end{aligned}$	$\begin{aligned} & 0.3959 * * * \\ & (0.0020) \end{aligned}$
Seniority			$\begin{aligned} & -0.0249 * * * \\ & (0.0035) \end{aligned}$	$\begin{aligned} & -0.0168^{* * *} \\ & (0.0034) \end{aligned}$	$\begin{aligned} & -0.0154 * * * \\ & (0.0034) \end{aligned}$	$\begin{aligned} & -0.0154 * * * \\ & (0.0034) \end{aligned}$	$\begin{aligned} & -0.0153 * * * \\ & (0.00001) \end{aligned}$
Margin of Victory				$\begin{aligned} & -0.8428 * * * \\ & (0.0867) \end{aligned}$	$\begin{aligned} & -0.8991 * * * \\ & (0.088) \end{aligned}$	$\begin{aligned} & -0.8972 * * * \\ & (0.0885) \end{aligned}$	$\begin{aligned} & -0.8959 * * * \\ & (0.0019) \end{aligned}$
Per capita Income				$\begin{aligned} & 0.0075 * * * \\ & (0.0025) \end{aligned}$	$\begin{aligned} & 0.0064^{* *} \\ & (0.0025) \end{aligned}$	$\begin{aligned} & 0.0061^{* *} \\ & (0.0025) \end{aligned}$	$\begin{aligned} & 0.0062^{* * *} \\ & (0.00004) \end{aligned}$
DW_ideology				$\begin{aligned} & -1.08766^{* * *} \\ & (0.124) \end{aligned}$	$\begin{aligned} & -1.0771 * * * \\ & (0.1241) \end{aligned}$	$\begin{aligned} & -1.0774 * * * \\ & (0.1241) \end{aligned}$	$\begin{aligned} & -1.0817 * * * \\ & (0.0031) \end{aligned}$
Relevant Committee (1=Yes)					$\begin{aligned} & 0.10437 * * \\ & (0.0413) \end{aligned}$	$\begin{aligned} & 0.1037 * * \\ & (0.0413) \end{aligned}$	$\begin{aligned} & 0.0998 * * * \\ & (0.0007) \end{aligned}$
Joint Committee ($1=\mathrm{Yes}$)					$\begin{aligned} & 0.1695 * * \\ & (0.0861) \end{aligned}$	$\begin{aligned} & 0.1694 * * \\ & (0.0861) \end{aligned}$	$\begin{aligned} & 0.1669 * * * \\ & (0.0016) \end{aligned}$
Top 10 university ($1=$ Yes)						$\begin{aligned} & 0.0581 \\ & (0.0809) \end{aligned}$	$\begin{aligned} & 0.0579 * * * \\ & (0.0011) \end{aligned}$
Unobservables (ψ)							$\begin{aligned} & -0.1132 * * * \\ & (0.0016) \end{aligned}$
Intercept	$\begin{aligned} & 0.5628 * * * \\ & (0.0631) \end{aligned}$	$\begin{aligned} & 0.5767 * * * \\ & (0.0711) \end{aligned}$	$\begin{aligned} & 0.7881 * * * \\ & (0.0781) \end{aligned}$	$\begin{aligned} & 1.3219 * * * \\ & (0.1071) \end{aligned}$	$\begin{aligned} & 1.3032 * * * \\ & (0.1072) \end{aligned}$	$\begin{aligned} & 1.3019 * * * \\ & (0.1072) \end{aligned}$	$\begin{aligned} & 1.2949 * * * \\ & (0.0629) \end{aligned}$
Time dummies	No	Yes	Yes	Yes	Yes	Yes	Yes
N. obs.	2,128	2,128	2,128	2,128	2,128	2,128	2,128

Notes: ML estimated coefficients and standard errors (in parentheses) are reported. In column (7) standard errors are bootstrapped with 1000 replications. A precise definition of control variables can be found in Table A.1. ${ }^{*}$, ${ }^{* *}$, ${ }^{* * *}$ indicate statistical significance at the 10,5 and 1 percent levels.

TABLE A.3. Estimation results Increasing set of control variables -Alumni network-

Dep. Var.: PAC contributions (\$mil)						
	$\begin{aligned} & \hline \text { MLE } \\ & \text { (1) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MLE } \\ & \text { (2) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MLE } \\ & \text { (3) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MLE } \\ & \text { (4) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MLE } \\ & \text { (5) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MLE } \\ & \text { (6) } \\ & \hline \end{aligned}$
Φ	$\begin{aligned} & 0.1025^{* * *} \\ & (0.0273) \end{aligned}$	$\begin{aligned} & 0.0819^{* * *} \\ & (0.0273) \end{aligned}$	$\begin{aligned} & 0.0743 * * * \\ & (0.0271) \end{aligned}$	$\begin{aligned} & 0.0837 * * * \\ & (0.0261) \end{aligned}$	$\begin{aligned} & 0.0858 * * * \\ & (0.0261) \end{aligned}$	$\begin{aligned} & 0.0837 * * * \\ & (0.0262) \end{aligned}$
Party (1=Republican)			$\begin{aligned} & -0.0629 \\ & (0.0608) \end{aligned}$	$\begin{aligned} & 0.2243 * * * \\ & (0.0791) \end{aligned}$	$\begin{aligned} & 0.2112 * * * \\ & (0.0792) \end{aligned}$	$\begin{aligned} & 0.2212 * * * \\ & (0.0801) \end{aligned}$
Gender (1=Female)			$\begin{gathered} -0.1422 * \\ (0.0793) \end{gathered}$	$\begin{aligned} & -0.0743 \\ & (0.076) \end{aligned}$	$\begin{aligned} & -0.0731 \\ & (0.076) \end{aligned}$	$\begin{aligned} & -0.0685 \\ & (0.0761) \end{aligned}$
Chair (1=Yes)			$\begin{aligned} & 0.4377 * * * \\ & (0.1382) \end{aligned}$	$\begin{aligned} & 0.4733 * * * \\ & (0.1322) \end{aligned}$	$\begin{aligned} & 0.4736 * * * \\ & (0.1321) \end{aligned}$	$\begin{aligned} & 0.4759 * * * \\ & (0.1321) \end{aligned}$
Seniority			$\begin{aligned} & -0.0289 * * * \\ & (0.0047) \end{aligned}$	$\begin{aligned} & -0.0186 * * * \\ & (0.0046) \end{aligned}$	$\begin{aligned} & -0.0170^{* * *} \\ & (0.0047) \end{aligned}$	$\begin{aligned} & -0.0169^{* * *} \\ & (0.0047) \end{aligned}$
Margin of Victory				$\begin{aligned} & -0.7281^{* * *} \\ & (0.1174) \end{aligned}$	$\begin{aligned} & -0.7835 * * * \\ & (0.1202) \end{aligned}$	$\begin{aligned} & -0.7793 * * * \\ & (0.1202) \end{aligned}$
Per capita Income				$\begin{aligned} & 0.0080^{* *} \\ & (0.0034) \end{aligned}$	$\begin{aligned} & 0.0073 * * \\ & (0.0035) \end{aligned}$	$\begin{aligned} & 0.0067 * \\ & (0.0035) \end{aligned}$
DW_ideology				$\begin{aligned} & -1.1363 * * * \\ & (0.1669) \end{aligned}$	$\begin{aligned} & -1.1167 * * * \\ & (0.1670) \end{aligned}$	$\begin{aligned} & -1.1171 * * * \\ & (0.1670) \end{aligned}$
Relevant Committee (1=Yes)					$\begin{aligned} & 0.1143 * * \\ & (0.0575) \end{aligned}$	$\begin{aligned} & 0.1135 * * \\ & (0.0575) \end{aligned}$
Joint Committee (1=Yes)					$\begin{aligned} & 0.0792 \\ & (0.1128) \end{aligned}$	$\begin{aligned} & 0.0810 \\ & (0.1128) \end{aligned}$
Top 10 university (1=Yes)						$\begin{aligned} & 0.0790 \\ & (0.0900) \end{aligned}$
Intercept	$\begin{aligned} & 0.80009 * * * \\ & (0.0383) \end{aligned}$	$\begin{aligned} & 0.66081^{* * *} \\ & (0.0711) \end{aligned}$	$\begin{aligned} & 0.93568^{* * *} \\ & (0.0893) \end{aligned}$	$\begin{aligned} & 1.33895 * * * \\ & (0.1309) \end{aligned}$	$\begin{aligned} & 1.29062 * * * \\ & (0.1331) \end{aligned}$	$\begin{aligned} & 1.2895 * * * \\ & (0.1330) \end{aligned}$
Time dummies	No	Yes	Yes	Yes	Yes	Yes
N. obs.	1,166	1,166	1,166	1,166	1,166	1,166

Notes: ML estimated coefficients and standard errors (in parentheses) are reported. A precise definition of control variables can be found in Table A.1. *, **, *** indicate statistical significance at the 10,5 and 1 percent levels.

