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10 Appendix 1: Proof of Propositions 2 and 3

Since Proposition 3 is a generalization of Proposition 2, it suffices to just prove Proposition 3. We

begin with a statement of the problem faced by the period  residents.

10.1 Statement of the problem

The period  residents’ problem is

max
{+1+1 +1}∞=
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(36)

The first constraint is the budget constraint. The second and third constraints are the feasibility

constraints. The non-negativity constraint on +1 will henceforth be ignored, as it will not be

binding. The fourth and fifth constraints are the market equilibrium constraints. The residents also

need to respect the transversality condition that lim→∞  = 0, to prevent them operating a

Ponzi scheme. Finally, the residents face initial conditions ( ). We assume that  ∈ [0 1]

and that  ∈ [0W(1)], where (00) satisfy Assumptions 1-3.

10.2 Solving the problem

Problem (36) involves too many constraints to tackle head on by forming a Lagrangian. Rather,

we must approach it through a process of simplification. Our first result concerns the objective

function.

Fact A.1.1. Suppose that the sequence of policies {+1 +1  +1 }∞= satisfies in each
period  the market equilibrium condition
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µ
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and the price constraint  ≤ . Then, the period  residents’ objective function satisfies
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Proof of Fact A.1.1. From the market equilibrium condition, we have that
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Expanding the right hand side, we have that
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Note that the +1 term in the first line cancels with that in the second line. Similarly, the +2

term in the second line cancels with the +2 term in the third line, etc, etc. Thus, we have
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Given that  ≤  for all  , we have that lim→∞ ()

+1−
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¥

This result reveals that housing prices have a direct impact on the objective function only in

the initial period and that, all else equal, the residents prefer to have future housing stocks as high

as possible.

Our second result concerns the inter-temporal implications of the sequence of budget con-

straints.
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Fact A.1.2. Suppose that the sequence of policies {+1 +1  +1}∞= satisfies in each period
 the budget constraint

(1 + ) + 

µ
+1

1− 
− 

¶
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and that lim→∞  = lim→∞  = 0. Then, {+1  +1}∞= satisfies the intertemporal
budget constraint
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Proof of Fact A.1.2. Suppose that the sequence of policies {+1 +1  +1}∞= satisfies in
each period  the budget constraint (39). From the period  budget constraint, we have that


+1
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− +1 −+1 =

and from the period + 1 budget constraint, we have that
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Substituting the latter into the former yields
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Similarly, the period + 2 budget constraint tells us that
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Substituting this into the period  budget constraint yields
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Iterating this logic, we find that for all periods  ≥ 
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Since lim→∞ − (+1 − +1) = 0, this implies that
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which is (40). ¥

The assumed properties of the public good benefit function  imply that the public good level

will be bounded above and hence that lim→∞  = 0. Moreover, the transversality condition
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requires that lim→∞  = 0. Thus, Fact A.1.2 suggests replacing the sequence of budget

constraints (39) in the period  residents’ problem with the single intertemporal budget constraint

(40). Indeed, this is a standard procedure in models of optimal policy in which decision-makers

face a sequence of budget constraints and have access to bonds. However, in our problem, we also

have the market equilibrium constraints to worry about and these depend on the time path of taxes

and hence local government debt. Specifically, while constraint (40) is independent of the time

path of debt and just depends on the present value of taxes, the market equilibrium conditions

(37) do depend on the time path of taxes. Thus, we need to verify that replacing the sequence of

budget constraints with the single intertemporal budget constraint would not create problems in

satisfying the market equilibrium conditions (37). This is confirmed by our next result.

Fact A.1.3. Suppose that the sequence of policies {+1 +1  +1 }∞= satisfies in each pe-
riod  the market equilibrium condition (37) and the budget constraint (39) and that lim→∞  =

lim→∞  = 0. Then, {+1 +1+1 }∞= satisfies the constraints that
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and that, for all periods  ≥ ,
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Conversely, if {+1 +1+1 }∞= satisfies the constraints (41) and, for all  ≥ , (42),

then there exists {}∞= such that {+1 +1  +1 }∞= satisfies for all  the market
equilibrium condition (37) and the budget constraint (39).

Proof of Fact A.1.3. Let {+1 +1  +1 }∞= be a sequence of policies satisfying in each
period  the market equilibrium condition (37), the budget constraint (39) and the requirement

that lim→∞  = lim→∞  = 0. Then we know from Fact A.1.2 that

∞X
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¸
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Using (37) to solve for  and substituting this into (43) yields (41). That (42) holds follows

immediately from (37) after solving (39) for  and substituting in for  .

For the converse, let {+1 +1+1 }∞= satisfy the constraints (41) and, for all  ≥ ,
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(42). For all  , let
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Simply rearranging this equation reveals that {+1 +1  +1 }∞= satisfies (37) for all  .
Solving (44) for  and using (42) reveals that, for all periods  ,

0 =  −
⎛⎝(1 + ) + 

³
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´
− +1

+1

⎞⎠ 

Rearranging this equation yields (39). ¥

Note that equation (41) is obtained from the intertemporal budget constraint by substituting

in the expression for the tax rate implied by the market equilibrium condition. Equation (42) is

obtained from the market equilibrium condition by substituting in the expression for the tax rate

that is implied by the budget constraint. Thus, both equations reflect both the market equilibrium

conditions and the budget constraint. Fact A.1.3 tells us that we can replace the per-period budget

constraint and the market equilibrium condition with equations (41) and (42). It also allows us to

eliminate  from the set of choice variables. Thus, we can recast the initial residents’ problem as

follows:

max
{+1+1+1}∞=

⎧⎪⎪⎨⎪⎪⎩
 + 

P∞
= ()

−
(+1 − 1) + 
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 +1 ≥ , (41), (42),  ≤  ( = if +1   )
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(45)

Our next result shows that there is no loss of generality in requiring the period  residents

choose policies so that the price of housing is equal to  in all periods except period .

Fact A.1.4. Let {+1 +1+1 }∞= be a sequence of policies satisfying the constraints (41)
and, for all  , (42). Then, there exists {e  e}∞= such that e =  for all  ≥  + 1, e = ,

and e = , with the property that {+1e+1+1 e}∞= satisfies the constraints (41) and, for
all  , (42).

Proof of Fact A.1.4. Let {+1 +1+1 }∞= be a sequence of policies satisfying the
constraints (41) and, for all  , (42). Let { e}∞= be such that e =  for all  ≥  + 1 ande = . Then we claim that {+1+1 e}∞= satisfies the intertemporal budget constraint
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(41). To prove this, it suffices to show that
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Continuing this argument yields the result.
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Fact A.1.4 allows us to write the intertemporal budget constraint (41) as
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The market equilibrium constraints can be written as
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and for all  ≥ + 1
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Finally, the constraint that  ≤  (with equality if +1   ) need only be imposed for period

.

Next observe that given a choice of period + 1 debt, +1, and a sequence of public good and

housing levels {+1+1}∞=, the market equilibrium constraints (48) pin down the sequence of

debt levels {+1}∞=+1. Thus, these constraints can be eliminated and the debt levels {+1}∞=+1
can be removed from the set of choice variables. This allows us to write the period  residents’

problem as:
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Our next result uses this formulation to tie down the public good levels.

Fact A.1.5. In the period  residents’ optimal plan, for all periods  ≥ 

+1 = (1− ) (+1) 
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Proof of Fact A.1.5. Inspecting problem (49), it is clear that for all periods  ≥ +1, +1 must

equal (1 − ) (+1). The only place +1 enters the problem is in the intertemporal budget

constraint and setting +1 equal to the level (1− ) (+1) maximally relaxes this constraint.

Given this, we can eliminate {+1}∞=+1 from the choice variables and use the definition of

W(+1) to write the intertemporal budget constraint as:
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We can now prove that +1 must equal (1 − ) (+1). It is clear that this must be true if

  , since then the optimal +1 must maximize  and hence
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Suppose then that  =  and that, contrary to our claim, +1 is not equal to (1− ) (+1).

Then, we know that
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These policies do not change the price . However, since 
0
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poral budget constraint in the sense that
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+1

This permits the choice of a preferred sequence of housing levels { 0
+1}∞=, which is a contradic-

tion. ¥

Fact A.1.5 allows us to eliminate {+1}∞= from the choice variables. Moreover, substituting

in the optimal public good levels and using the definitions of W(+1) and  , we can write the

period  residents’ problem as

max
{+1{+1}∞=}
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This formulation is particularly insightful as discussed in the text. Using it, we are able to show

that all new construction takes place in periods  and + 1.

Fact A.1.6. In the initial residents’ optimal plan, for all  ≥ + 3

 = +2

Proof of Fact A.1.6. Suppose the Fact is not true. Let  ≥  + 3 be the first period which

violates the claim; that is,

  −1 =  = +2
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Let  be the multiplier on the intertemporal budget constraint in problem (51). Given that we can

raise −1 marginally without violating any of the constraints, we must have that benefits from so

doing, which are  ()
−2−

, are no greater than the costs, which are −2−W 0(−1). This

implies that

−2− ≤ W 0(−1)

Given that we can lower  marginally without violating any of the constraints, we must have

that the benefits from so doing, which are −1−W 0( ), are less than the costs, which are

 ()
−1−

. This implies that

W 0( ) ≤ −1−

Combining these two inequalities we have that W 0( )  W 0(−1), which contradicts the fact

that W() is convex. ¥

Fact A.1.6 allows us to eliminate the housing levels {+1}∞=+2 from the choice variables and

write the period  residents’ problem as

max
{+1+1+2}
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 (52)

Moreover, plugging the market equilibrium constraint into the intertemporal budget constraint

reveals that

 − +1

1− 
+



1− 
W(+2) =



1− 


which immediately implies that +2 = H(+1). The period  residents’ problem then reduces

to

max
{+1+1}

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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 − +1 ≤ (1− )W(+1) ( = if +1  )

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭(53)
This problem involves just a choice of two variables - +1 and +1 - how much wealth to

accumulate in period  and how much new construction to undertake.
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Analyzing this problem, reveals that:

Fact A.1.7. In the period  residents’ optimal plan, there exist wealth levels  ∗() and (),

satisfying W() ≤ ∗() ≤(), such that

(+1+1) =

⎧⎪⎪⎨⎪⎪⎩
(H ()) if  ≥ ∗()

(()) if    ∗()



Moreover, there exists a housing level  ∈ (0
) such that W()   ∗()  () for

all  ∈ [0
) and  ∗() =() =W() for all  ∈ [ 1].

Proof of Fact A.1.7. We know that (+1+1) solves problem (53). There are two possibilities

to consider: i) the period  price constraint holds with equality at the optimal policies, and ii)

the period  price constraint holds with inequality at the optimal policies. We begin with the first

possibility.

Possibility i). If the period  price constraint holds with equality, then (1− )W(+1) = −
+1. It then follows that +1 = H(( − +1) (1 − )). The constraint that +1 ≥ 

implies that H(( − +1) (1− )) ≥  or equivalently that

 − (1− )W()


≥+1

The constraint that H(+1) ≥ +1 implies that+1 ≥. It follows that the range of feasible

+1 values is

+1 ∈ [
 − (1− )W()


]

For this interval to be non-empty it is necessary that  ≥W().

The optimal choice of period + 1 wealth must solve the problem

max
{+1}

⎧⎪⎪⎨⎪⎪⎩
H(−+1

1− ) + 
1−H(+1)

 +1 ∈ [
−(1−)W()


]

⎫⎪⎪⎬⎪⎪⎭ 

The derivative of the objective function is



1− 
H0(+1)− 

1− 
H0(

 − +1

1− 
)

The concavity of the function H( ), implies that this derivative is negative for all +1 ≥ .

The optimal choice of period +1 wealth is therefore This in turn implies that +1 = H().

We conclude that if the period  price constraint holds with equality at the optimal policies,

then the optimal policies are (H ()). A necessary condition for this to be the solution is
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that  ≥W(). Note for future reference that the payoff from this candidate solution is

 +


1− 
(H()− 1) + 

1− 
 (54)

Possibility ii). If the period  price constraint holds as an inequality at the optimal policies, then

(1− )W(+1)   − +1 and +1 = . This means that

+1 
 − (1− )W()




The constraint that H(+1) ≥ +1 requires that +1 ≥ W(). Define the wealth level

() as the solution to the following problem

max{+1}

⎧⎪⎪⎨⎪⎪⎩
−+1


+ 

³

1− (H(+1)− 1)

´
 +1 ≥W()

⎫⎪⎪⎬⎪⎪⎭  (55)

Then, the optimal policies must equal (()) and it must be the case that

() 
 − (1− )W()


 (56)

The payoff from this candidate solution is

 −
µ
(1− )W()− ( − ())



¶
+ 

µ
( − 1) + 

1− 
(H(())− 1)

¶
+



1− 


(57)

We now provide some more information about the wealth level (). Let 
 be the housing

level satisfying the following equality:

(1−)  + () +0()− (1− ) = +

µ
1− 2(1− )

1− 

¶


Assumptions 1 and 2 imply that  is well-defined and lies between 0 and . Then we have

the following claim:

Claim A.1.1. If  ≥ , then () =W() and if   , then () W().

Proof of Claim A.1.1. By definition, the wealth level () solves problem (55). The deriva-

tive of the objective function in problem (55) is

− 



+ 


1− 
H0(+1)

and the second derivative is




1− 
H00(+1)  0

12



The objective function is therefore concave. To prove the claim, it suffices to show that if  ≥ ,

then it is the case that

− 



+ 


1− 
H0(W()) ≤ 0

while if   , then it is the case that

− 



+ 


1− 
H0(W())  0

Because the function H( ) is the inverse of the function W(), we have that

H0(+1) =
1

W 0(H(+1))


Moreover, it is the case that

W 0() =
(1− ) + + − (1−) −  ()−0 ()

1− 
 (58)

It follows that

− 

+  

1−H0(+1)

= − 

+  

1−
h

1−
(1−)++H(+1)−(1−H(+1))−(H(+1))−H(+1)0(H(+1))

i


In particular, therefore, we have that

− 

+  

1−H0(W())

= − 

+  

1−
h

1−
(1−)++−(1−)−()−0()

i


(59)

The right hand side of (59) is non-positive if

2(1− )

1− 

∙
1

(1− ) + + − (1−) −  ()−0 ()

¸
≤ 1





This inequality is equivalent to

(1−) +  () +
0 ()− (1− ) ≤ +

µ
1− 2(1− )

1− 

¶


This follows from the fact that  ≥ . Similarly, the right hand side of (59) is positive if

(1−) +  () +
0 ()− (1− )  +

µ
1− 2(1− )

1− 

¶


and this follows from the fact that   . ¥

Finally, note that it follows from the claim and the fact that the wealth level () solves

problem (55) that when    it must be the case that




1− 
H0(()) =

1



 (60)

13



Which possibility arises? Having understood the two possibilities, we can now analyze which

one arises. Suppose first that  ≥ , so that () = W(). Then condition (56) implies

that a necessary condition for possibility ii) to be the solution is that  W(). Furthermore,

a necessary condition for possibility i) to be the solution is that  ≥W(). Thus, we conclude

that when  ≥  the optimal policies are given by:

(+1+1) =

⎧⎪⎪⎨⎪⎪⎩
(H ()) if  ≥W()

(W()) if  W()

 (61)

The case in which    is more complicated. It remains the case that a necessary condition

for possibility i) to be the solution is that ≥W() and condition (56) implies that a necessary

condition for possibility ii) to be the solution is that   () + (1 − )W(). Given

that ()  W(), we can conclude that the solution is (()) if   W() and

(H ()) if ≥ ()+(1−)W(). For values of in the interval [W() ()+

(1 − )W()) both possibilities are feasible. Thus, which possibility is optimal depends on a

comparison of the payoffs (54) and (57). We can show:

Claim A.1.2. If    there exists  () ∈ (W() () + (1 − )W()) such that

the optimal policies are given by:

(+1+1) =

⎧⎪⎪⎨⎪⎪⎩
(H ()) if  ≥ ()

(()) if    ()

 (62)

Proof of Claim A.1.2. When  ∈ [W() () + (1 − )W()], the solution will be

(H ()) if (54) exceeds (57) and (()) if (54) is less than (57). Differencing (54) and

(57) yields



1− 
H() +

µ
(1− )W()− ( − ())



¶
− 

µ
 +



1− 
H(())

¶
=

µ
(1− )W()− ( − ())



¶
− 

µ
 +



1− 
H(())− 1

1− 
H()

¶


Define the function ( ;) on the interval [W() () + (1 − )W()] to equal this

difference.

Note first that

(W();) =
 (()−W())



− 

µ


1− 
(H(())−H(W()))

¶
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By the Mean-Value Theorem, there exists  ∈ (W()()) such that

(W();) = −
∙




1− 
H0( )− 1



¸
 (()−W()) 

The concavity of the function H( ) then implies that

(W();)  −
∙




1− 
H0(())− 1



¸
 (()−W()) = 0

On the other hand, we have that

(() + (1− )W();)

= −
µ
 +



1− 
H(())− 1

1− 
H(() + (1− )W())

¶
=



1− 
[H(() + (1− )W())− ((1− ) + H(()))]




1− 
[H(() + (1− )W())− ((1− )H(W()) + H(()))]

 0

where the first inequality follows from the fact that  = H(W())  H(()) and the second

inequality follows from the concavity of H( ).

Finally, we have that for all  ∈ [W() () + (1− )W()]

( ;)


= − 1



+ 

µ
1

1− 
H0( )

¶
 0

where the inequality follows from the concavity of H( ) and the fact that   ().

We conclude that there exists a unique  () ∈ (W() ()+(1−)W()) such that

(;)  0 if    () and (;)  0 if    (). ¥

Pulling all this together, if we define the function

 ∗() =

⎧⎪⎪⎨⎪⎪⎩
 () if   

W() if  ≥ 

(63)

and remember that () =W() if  ≥ , Fact A.1.7 follows from (61) and (62). ¥

10.3 Verifying form of solution

We have now completed the characterization of the solution to the period  residents’ problem

and can verify it has the same form as described in Proposition 2. If  ≥  ∗(), then,

given that +1 = H(), in period  the housing stock increases to H(). Moreover, since

15



+1 = (1 − ) (H()), the community invests in (()) −  units of the public good in

period . Given that +1 =, it must be the case that

(1− ) (H())− (1 + )+1 =  − (1 + )

which implies that

(1 + )+1 − (1 + ) =  [(1− ) (H())− ] 

Thus, all but (H()) of the cost of investment is financed with debt. Since  = H(+1)

and  = (1− )( ) for all  ≥ + 2, thereafter, the community maintains the public good at

(H()) and the market provides no more housing. From (48) we have that (1+) = (1+)+1

for all  ≥  + 2, implying that debt remains constant. This means that the community’s wealth

remains at and taxes finance the maintenance of the public good and interest on the debt. The

price of houses is  in period  and in all subsequent periods.

If    ∗(), then, given that +1 = , no new construction takes place in period .

Moreover, since +1 = (1 − )(), the community invests in () −  units of the public

good in period . Given that +1 =(), it must be the case that

(1− )()− (1 + )+1 =()

which implies that

(1 + )+1 − (1 + ) =  [(1− )()− ]− (()−) 

The price of houses in period  is

 −
µ
(1− )W()− ( − ())



¶


which is less than . Given that +2 = H(()), in period  + 1 the housing stock in-

creases to H((1)). Moreover, since +2 = (1− ) (H(())), the community invests in

(H(()))− (1− )() units of the public good in period . From (48), we have that

(1 + )+2 − (1 + )+1 =  [(1− ) (H(()))− (1− )()] 

implying that all but (H(())) of the cost of investment is financed with debt. Since

 = H(())and  = (1 − )( ) for all  ≥  + 3, thereafter, the community maintains

the public good at (H(())) and the market provides no more housing. From (48) we have

that (1+) = (1+)+2 for all  ≥ +3, implying that debt remains constant. This means that

the community’s wealth remains at () and taxes finance the maintenance of the public good

and interest on the debt. The price of houses is  in period + 1 and in all subsequent periods.
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10.4 Properties of the functions  ∗() and ()

It only remains to establish that the functions  ∗() and () have the claimed properties.

We begin with the function (). From the proof of Fact A.1.7, we know that () =

W() if  ≥  and that if    it is the case that () satisfies (60). It follows

immediately from the concavity of H( ) that () is increasing in  if   . Moreover,

it is increasing if  ≥ , since W is increasing. The definition of  along with (60) imply that

lim% () =W(). This implies that () is increasing on the entire interval [0 1]

and is continuous.

We now turn to the function  ∗(). This function is defined by (63). We know that if

  , then  () ∈ (W() () + (1 − )W()). We also claim that  () is

increasing for   . To see this, note that  () is implicitly defined by the equation

( ();) = 0. It follows that





= −
( ;)



( ;)





We have already established that
( ;)


 0. Thus, to establish the claim we need to show that

( ;)


 0. Differentiating and using the first order condition (60), we have that

( ;)



=
(1− )W 0()



−
£
(1− )W()−

¡
 − ()

¢¤
()

2
− 


(1− )W 0()



− 

where the inequality follows from the fact that£
(1− )W()−

¡
 − ()

¢¤
()

2
 0

Using (58) and the definition of W(), we have that

(1− )W 0()



=
(1− )W()

()
2

+  − 0 () 

Thus,

( ;)




(1− )W()

()
2

+ (1− )− 0 () 

It therefore suffices to show that

(1− )W()



+(1− )−
0 ()  0
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Using the definition of W(), we have that

(1− )W()



+(1− )−
0 ()

= (1− ) + (1− ) + − (1−) −  ()−
0 () 

But since   , we have that

(1−) −  ()−
0 ()  (1− ) + +

µ
1− 2(1− )

1− 

¶
 (1− ) + + (1− ) 

where the last inequality follows from the fact that

2(1− )

1− 
 

Given that () ∈ (W() ()+(1−)W()) and that lim% () =W(),

it must also be the case that lim%  () = W(). Given that  ∗() = W() if

 ≥ , this implies that  ∗() is increasing on the entire interval [0 1] and is continuous.
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11 Appendix 2: Proof of Theorem

Let  ∗ ∈ Ψ and let ( ∗) be the associated candidate equilibrium. We need to show that ( ∗)
is an equilibrium if  ∗ satisfies the conditions of the Theorem. This requires showing that the

policy rules and value function defined by (25), (27), (28), (30), and (31) satisfy the conditions for

equilibrium described in Section 5. Recall that there are two such conditions. The first is that,

for all states ( ), the policy rules solve the residents’ problem (17) when the future price and

continuation value are described by (30) and (31). The second is that, for all states ( ), the

value function satisfies the equality (18).

It is helpful to write out problem (17) with all its constraints as follows:

max
(000 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− )
h
 +



1−
i
+ 

h

³
0(1−)
(0)

´
−  +  (0 0 0)

i
 (1 + )+ 

³
0

1− − 
´
= 0 + 0

0 ≥ 0 &  0 ≥ 

 = (1− 0) +(
0(1−)
(0) )−  +  (0 0 0)− 

 ≤  ( = if  0  ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭



Solving the budget constraint for the tax  , substituting this into the objective function and

market equilibrium condition, and using the notation  and  0 to describe current and future

wealth, we can remove the tax as a choice variable and write the problem as:

max
(0 00 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− )
h
 +



1−
i
+ 

∙
(

0(1−)
(0) )− 


0
1−−0


0 + − 0

0 +  (0 0 0)
¸

 0 ≥ 0 &  0 ≥ 

 = (1− 0) +(
0(1−)
(0) )−(

0(1−)
(0) )− 


0
1−−0


0

+− 0

0 +  (0 0 0)− 

 ≤  ( = if  0  ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(64)

While the wealth level  0 replaces the debt level 0 in the set of choice variables, the latter can

be immediately recovered from the equation 0 =  ( 0 − 0). This is the form of the residents’

problem we will work with. Since behavior in our candidate equilibrium differs in states in which

the housing stock is greater than  and states in which the housing stock is less than , we

consider the two situations separately. We begin with the former case, since it is simpler.
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11.1 States ( ) such that  ≥ 

11.1.1 Policy rules and value function

The policy rules and value function depend on the functions  ∗(), ( ), and (). Since

 ∗ ∈ Ψ, we know that for states ( ) such that  ≥ ,  ∗() =W(). Moreover, in this
range, the functions ( ) and () turn out to be very simple. Our first result describes the

function ( ).

Fact A.2.1. If  ≥ ∗() and  ≥ , then ( ) = H( ).

Proof of Fact A.2.1. Using (26) and (29), in this range ( ) is implicitly defined as the

solution to the system

P(W() ) =  & W() ≥ (65)

From the definition of W(), it is clear that

P(H( )W(H( )) ) = P(H( )W(H( ))W(H( ))) = 

and that W(H( )) =  . This implies that H( ) is indeed a solution to (65). Suppose

there is another solution, say,  0. Given the constraint that W( 0) ≥  , we know that  0

exceeds H( ) and is thus greater than . Given the definition of W(), this implies that
P( 0W( 0)W( 0)) equals . Thus, since P( 0W( 0) ) must equal ,  =W( 0) which

contradicts the fact that  0 exceeds H( ). ¥

Given Fact A.2.1, (25) implies that the equilibrium public good and housing rules are:

(0( ) 0( )) =

⎧⎪⎪⎨⎪⎪⎩
((1− )()) if  W()

((1− )(H( ))H( )) if  ≥W()
 (66)

Moreover, from (31) and (32), the value function is

 ( ) =

⎧⎪⎪⎨⎪⎪⎩
 ∗(W()) + −W()


if  W()

 ∗( ) if  ≥W()
 (67)

where

 ∗( ) =  +


1− 
+

µ


1− 

¶
(H( )− 1) (68)
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It is clear that  ∗ is increasing, since

 ∗( )


=

µ


1− 

¶
H0( )  0 (69)

Moreover,  ∗ is strictly concave, since

2 ∗( )

 2
=

µ


1− 

¶
H00( )  0 (70)

Importantly, it is also the case that


 ∗(W())


=

1


 (71)

and that for all   


 ∗(W())



1


 (72)

To understand these findings note that


 ∗(W())


− 1


=

µ


1− 

¶
H0(W())− 1




As shown in the proof of Fact A.1.7 (see proof of Claim A.1.1), this derivative equalsµ


1− 

¶


∙
1− 

(1− ) + + − (1−) −  ()−0 ()

¸
− 1




We know from (24) that, by definition,

+ −

µ
2(1− )

1− 

¶
= (1−) +  () +0 ()− (1− )

Rearranging this, yieldsµ


1− 

¶


∙
1− 

(1− ) + + − (1−) −  ()−0 ()

¸
=

1




which establishes (71). For (72), it is enough to show that for all   ,

+ −

µ
2(1− )

1− 

¶
 (1−) +  () +0 ()− (1− ) (73)

This follows from (24) and Assumption 1(i).

Our next result describes the function ().

Fact A.2.2. If  ≥ , then () =W().

Proof of Fact A.2.2. Using (29) and (33), we have that

() ≡ argmax
 0

⎧⎪⎪⎨⎪⎪⎩


1− + P( 0W()) + ( − 1) +  ∗( 0)

 P( 0W()) ≤ 

⎫⎪⎪⎬⎪⎪⎭  (74)
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The constraint in this problem is slack for all  0 ≥ W() and is violated for all  0  W().
Thus, if the objective function is decreasing in  0 for all  0 ≥ W(), it must be the case that
() =W(). The derivative of the objective function is


 ∗( 0)


− 1




From (70) and (72), we have that


 ∗( 0)


− 1


≤ 

 ∗(W())


− 1


 0

as required. ¥

Given Facts A.2.1 and A.2.2, (27) implies that the equilibrium debt rule is

0( ) =

⎧⎪⎪⎨⎪⎪⎩
(1−)()−W()

1+
if  W()

(1−)(H( ))−
1+

if  ≥W()
 (75)

This, together with the public good rule, imply that next period’s wealth  0 is W() when
 W() and  when  ≥W(). The price rule is

 ( ) =

⎧⎪⎪⎨⎪⎪⎩
P(W() ) if  W()

 if  ≥W()
 (76)

11.1.2 The residents’ problem

We are now ready to show that the policy rules defined by (66), (75), (76) solve the residents’

problem (64) given that the future price and continuation value are as described in (76) and (67)

and (68). Our first observation is that we can assume that the residents’ policy choices are such

that next period’s wealth is at least as big as the threshold W( 0).

Fact A.2.3. Suppose that  ≥  and let (0 0 0  ) solve problem (64) with future price and

continuation value as described by (76) and (67) and (68). Then, we may assume without loss of

generality that  0 ≥W( 0).

Proof of Fact A.2.3. Suppose that  0  W( 0). We will show that increasing  0 to W( 0)

will not violate the constraints or change the value of the objective function in problem (64).

Regarding the former, note that using the equilibrium price rule, the definition of P in (29), and
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the definition of W( 0) in (20), we have

 = (1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  0

 0 +  (0 0 0)− 

= (1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  0

 0 + P( 0W( 0) 0)− 

= (1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 − W( 0)

 0 + P( 0W( 0)W( 0))− 

= (1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 − W( 0)

 0 +  − 

Regarding the latter, note that using the equilibrium value function and the definition of W( 0)

in (20), we have

(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  0

 0 +  (0 0 0)

= (
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  0

 0 + 

∙
 ∗(W( 0)) +

 0 −W( 0)
 0

¸

= (
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 − W( 0)

 0 +  ∗(W( 0))

¥

Fact A.2.3 simplifies matters considerably as it ties down the form of the value function and

fixes the future housing price at . It allows us to rewrite problem (64) as

max
(0 00 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− )
h
 +



1−
i
+ 

∙

³
0(1−)
(0)

´
− 


0
1−−0


0 + − 0

0 +  ∗( 0)
¸

 0 ≥ 0 &  0 ≥ 

 = (1− 0) +(
0(1−)
(0) )− 


0
1−−0


0 + − 0

0 +  − 

 ≤  ( = if  0  )

 0 ≥W( 0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭



(77)

Our next result shows that public good provision is efficient.

Fact A.2.4. Suppose that  ≥  and let (0 0 0  ) solve problem (77) with  ∗( 0) given

by (68). Then, 0 = (1− )( 0).
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Proof of Fact A.2.4. Note first that

(1− )( 0) = argmax
0

⎧⎨⎩

µ
0(1− )

( 0)

¶
−


³

0

1− − 0
´

 0

⎫⎬⎭ 

Thus, provided that such a choice does not make  greater than , it will clearly be optimal to

set 0 equal to (1 − )( 0). Suppose then that such a choice does violate the price constraint;

i.e.,

(1− 0) + ( 0) +
 −  0

 0 +  −   

Then clearly it must be the case that the price constraint binds under the policies (0 0 0),

which means that

 = (1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  0

 0 +  − 

This implies that the payoff from the policies (0 0 0) is

(1− )

µ
 +



1− 

¶
+ ( 0 − 1) +  ∗( 0)

Now choose c greater than  0 to satisfy the price constraint with the efficient level of the

public good; i.e.,

(1− 0) + ( 0) +
 − c

 0 +  −  = 

Consider the alternative policies ((1− )( 0)c 0) which involve the efficient level of public

good and a higher level of wealth passed to next period’s residents. Clearly, these policies satisfy

the constraints. Moreover, the payoff from them is

(1− )

µ
 +



1− 

¶
+ ( 0 − 1) +  ∗(c )

This exceeds the payoff from the policies (0 0 0) since  ∗(·) is increasing in wealth (see (69)).
¥

Fact A.2.4 allows us to write the residents’ problem as

max
( 00 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− )
h
 +



1−
i
+ 

h
( 0) + − 0

0 +  ∗( 0)
i

  0 ≥ 

 = (1− 0) + ( 0) + − 0

0 +  − 

 ≤  ( = if  0  )

 0 ≥W( 0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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or, eliminating  , as

max
( 00)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− )
h
(1− 0) +  − +



1−
i
+ ( 0) + − 0

0 +  ∗( 0)

  0 ≥ 

(1− 0) + ( 0) + − 0

0 − (1− ) ≤  ( = if  0  )

 0 ≥W( 0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (78)

Our next result ties down the optimal ( 0 0).

Fact A.2.5. Suppose that  ≥  and let ( 0 0) solve problem (78) with  ∗( 0) given by

(68). Then,

( 0 0) =

⎧⎪⎪⎨⎪⎪⎩
(W()) if  W()

(H ( )) if  ≥W()


Proof of Fact A.2.5. There are two possibilities to consider: i) the price constraint holds with

equality at the optimal policies, and ii) the price constraint holds with inequality at the optimal

policies. We begin with the first possibility.

Possibility i). If the price constraint holds with equality, then (1 − )W( 0) =  −  0.

It then follows that  0 = H(( −  0) (1 − )). The constraint that  0 ≥  implies that

H(( −  0) (1− )) ≥  or equivalently that

 − (1− )W()


≥ 0

The constraint that  0 ≥W( 0) implies that H( 0) ≥  0 = H(( −  0) (1− )) and hence

that  0 ≥ . It follows that the range of feasible  0 values is

 0 ∈ [
 − (1− )W()


]

For this interval to be non-empty it is necessary that  ≥W().
Using (68), the optimal choice of wealth must solve the problem

max
{ 0}

⎧⎪⎪⎨⎪⎪⎩
H(− 0

1− ) + 
1−H( 0)

  0 ∈ [
−(1−)W()


]

⎫⎪⎪⎬⎪⎪⎭ 

The derivative of the objective function in this problem is



1− 
H0( 0)− 

1− 
H0(

 −  0

1− 
)
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The concavity of the function H( ), implies that this derivative is negative for all  0 ≥ . The

optimal choice of wealth is therefore  This in turn implies that  0 = H( ).

We conclude that if the price constraint holds with equality at the optimal policies, then

the optimal policies are (H ( )). A necessary condition for this to be the solution is that

 ≥W().

Possibility ii). If the price constraint holds as an inequality at the optimal policies, then (1 −
)W( 0)   −  0 and  0 = . This means that

 0 
 − (1− )W()




The constraint that  0 ≥ W( 0) requires that  0 ≥ W(). Using (68), the optimal choice of
wealth must solve the problem

max{ 0}

⎧⎪⎪⎨⎪⎪⎩
− 0


+ 

³

1− (H( 0)− 1)

´
  0 ≥W()

⎫⎪⎪⎬⎪⎪⎭ 

This problem is identical to problem (74) and hence, by Fact A.2.2, the solution isW(). For the
price constraint to hold as an inequality it must be the case that

W()   − (1− )W()




which requires that  W().
We conclude that if the price constraint holds as an inequality at the optimal policies, then

the optimal policies are (W()). A necessary condition for this to be the solution is that

 W().

Which possibility arises? Having understood the two possibilities, we can now analyze which

one arises. A necessary condition for possibility ii) to be the solution is that   W(). Fur-
thermore, a necessary condition for possibility i) to be the solution is that  ≥W(). Thus, we
conclude that the optimal policies are given by:

( 0 0) =

⎧⎪⎪⎨⎪⎪⎩
(W()) if  W()

(H ( )) if  ≥W()


as required. ¥

Using Facts A.2.4 and A.2.5, it is clear that the residents want to follow the equilibrium policy

rules described in (66), (75), and (76).
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11.1.3 Verifying form of value function

It remains to verify that the value function as described by (67) and (68) satisfies (18). Suppose

first that ( ) is such that  ≥W(). Then, we have that

(1− )

∙
 (·) + 

1− 

¸
+ 

∙


µ
0(·)(1− )

 0(·)
¶
−  (·) +  (0(·) 0(·) 0(·))

¸
= (1− )

∙
 +



1− 

¸
+ 

∙
(H( )) +

 − 

H( )
+  ∗( )

¸
=  ∗( )

as required. Now suppose that ( ) is such that  W(). Then, we have that

(1− )

∙
 (·) + 

1− 

¸
+ 

∙


µ
0(·)(1− )

 0(·)
¶
−  (·) +  (0(·) 0(·) 0(·))

¸
= (1− )

∙
P(W() ) +



1− 

¸
+ 

∙
() +

 − W()


+  ∗(W())
¸

= (1− )

∙
 +



1− 

¸
+ 

∙
() +

W()− W()


+  ∗(W())
¸
+

 −W()


=  ∗(W()) +  −W()




as required.

11.2 States ( ) such that   

11.2.1 Policy rules and value function

The functions ( ) and () are defined by (26) and (33) and are more complicated in this

range. We present two key results that establish some important properties of these functions.

The first result concerns the function ( ).

Fact A.2.6 If  ∈ [ ∗()W()) and   , then ( ) is uniquely defined, belongs to

the interval (), and is increasing in  . Moreover, for any initial housing level 0  ,

the sequence hi∞=1 defined inductively by  = (
∗(−1)) converges monotonically to .

Similarly, for any initial wealth level 0  W(), the sequence hi∞=1 defined inductively by
 = ∗((−1))) converges monotonically to W().

Proof of Fact A.2.6 Using (26) and (29), ( ) satisfies the equation P(
∗() ) = .

Because ∈ [ ∗()W()) and ∗ ∈ Ψ we know from the assumed properties of  ∗() that

P( ∗() ) ≥ P( ∗() ∗())  

and that

P( ∗() )  P( ∗() ∗()) = 
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Thus, by the Intermediate Value Theorem, there must exist a solution  ∈ () at which

P(
∗() ) = . Moreover, at this solution, we must have that  ∗()   . If not,

then  ∗() ≤ . But then we have that

 = P(
∗() ) ≥ P(

∗()
∗())  

which is a contradiction.

For uniqueness, it is sufficient that

P( ∗() )


 0

at any solution of the equation P( ∗() ) = . Note from (29), that

P( ∗() )


= − + 0 ()− 



 ∗()


− ( −  ∗())
2



Moreover, at a solution

−( −  ∗())


=
£
(1−) +  ()− (1− )− 

¤


Thus, at a solution

P( ∗() )


= − + 0()− 



 ∗()


+

£
(1−) +  ()− (1− )− 

¤


= −
"
(1− ) + − (1− 2) −0()−  () + 

∗()




#


Given that  ∗() is increasing, we have

P( ∗() )


 −

"
+ − ¡(1−) + () +0()− (1− )

¢


#
 0

where the last inequality follows from Assumptions 1(i) and 2.

A similar logic implies that ( ) is increasing in  . Given that the solution satisfies  =

P(
∗() ), we have that




= −

P(
∗() )


P(∗() )



= − 1


P(∗() )





Given that P(
∗() ) is negative, the result follows.

Now let0   and consider the sequence hi∞=0 defined inductively by  = (
∗(−1)).

We first show the sequence is increasing. To see this, recall that we showed that for any   ,

if  ∈ [ ∗()W()), then ( ) belongs to the interval (). Taking  = −1
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and  =  ∗(−1), this implies that (
∗(−1)) belongs to the interval (−1). It

remains to show that the sequence converges to . Since the sequence is bounded by 

and is increasing, it converges. Let ∞ denote this limit. We know that for all  ≥ 1, we

have that P(
∗()

∗(−1)) = . Given that  ∗() is continuous, it follows that

P(∞ ∗(∞) ∗(∞)) = . Since P( ∗() ∗())   for all   , this im-

plies that ∞ must equal  (recall that P( ∗() ∗()) = ).

Finally, let 0  W() and consider the sequence hi∞=1 defined inductively by  =

 ∗((−1))). Associated with this sequence of wealth levels, is a sequence of housing lev-

els hi∞=0 defined inductively by  = (−1). This sequence satisfies the equation  =

(
∗(−1)) and hence converges monotonically to . Given that the function  ∗() is in-

creasing and ∗() equalsW(), it follows that the sequence hi∞=1 converges monotonically
to  (). ¥

We can use Fact A.2.6 to shed light on the form of the function  ∗( ) defined in (32). For

any  W(), we can construct a sequence h( )i∞=0 that starts at  (i.e., 0( ) =  )

and is defined inductively by ( ) = ∗((−1( )))) as in Fact A.2.6. We can then write

 ∗( ) = (1− )

∙
 +



1− 

¸
+ 

∙
 ((0( ))) +

0( )− 1( )

(0( ))
+  ∗(1( ))

¸


Similarly, we can write

 ∗(1( )) = (1−)

∙
 +



1− 

¸
+

∙
 ((1( ))) +

1( )− 2( )

(1( ))
+  ∗(2( ))

¸


Iterating, we obtain

 ∗( ) =

∞X
=0

()


µ
(1− )

∙
 +



1− 

¸
+ 

∙
 ((( ))) +

( )− +1( )

(( ))

¸¶


We know from the definition of the function ( ) that for all 

(1−(( ))) +  ((( ))) +
( )− +1( )

(( ))
− (1− ) = 

This implies that (( )) = H(( )−+1( )

1− ) and allows us to write

 ∗( ) =  +


1− 
+

∞X
=0

()



∙
H(( )− +1( )

1− 
)− 1

¸
 (79)

Combining (68) and (79), we may conclude that

 ∗( ) =

⎧⎪⎪⎨⎪⎪⎩
 +



1− +
P∞

=0 ()


h
H(( )−+1( )

1− )− 1
i
if  ∈ [ ∗(0)W())

 +


1− +
³


1−

´
(H( )− 1) if  ∈ [W()W(1)]

(80)
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There are several points to note about the  ∗( ) function. First, note that it is continuous

at  =W(), since for all 

lim
%W()

( )− +1( ) = (1− )W()

Second, the function is increasing. We have already demonstrated that this is true on the interval

[W()W(1)] (see (69)). To see that it is true on the interval [ ∗(0)W()), it is easiest to

write the function as

 ∗( ) =  +


1− 
+

∞X
=0

()

 [(( ))− 1] 

It follows that

 ∗( )


=

∞X
=0

()



(( ))


 0

( )

As shown in the proof of Fact A.2.6, (( )) is positive. We claim that for all , 0
( ) is

also positive. The proof is by induction. We know that 0( ) = and hence the result is true

for  = 0. Now suppose the result is true for all  ≤  − 1 and consider if it is true for  By
definition, we have that ( ) = ∗((−1( ))). Thus, we have that

 0
( ) =

 ∗((−1( ))))



(−1( ))


 0
−1( )

Each term on the right hand side of this expression is positive, and hence  0
( ) is positive as

required.

Third, the value function is likely to be kinked at  =W(). This is because

 ∗( )


=

⎧⎪⎪⎨⎪⎪⎩

P∞

=0 ()
H0(( )−+1( )

1− )(
 0
( )− 0

+1( )

1− ) if  ∈ [ ∗(0)W())³


1−
´
H0( ) if  ∈ [W()W(1)]

Under the assumption that  ∗( ) is concave, it follows from (71) that for all ∈ [ ∗(0)W())36


 ∗( )




1




Finally, note that for all  ∈ [ ∗(0)W()), the second derivative of the function  ∗( ) is

2 ∗( )
 2

= 

∞X
=0

()


⎡⎢⎢⎣ H00(( )−+1( )

1− )(
 0
( )− 0

+1( )

1− )2

+H0(( )−+1( )

1− )(
 00
 ( )− 00

+1( )

1− )

⎤⎥⎥⎦ 
36 It can be shown analytically (see the proof of Fact A.4.1) that, if the value function is concave and kinked

at W(), then the left hand derivative of the value function at W() must be equal to (1− )[(1− )].

Accordingly, a necessary condition for concavity is that  exceed 1(1 + ). For realistic parameterizations, this

condition will be always be satisfied.
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The first part of the terms that is summed is clearly negative, but the second part is harder to

sign. This is why it is difficult to establish analytically that the  ∗( ) function in this range is

concave. Our assumption that  ∗( ) is concave amounts to assuming that the second part, if

positive, does not fully offset the first part.

The second fact concerns the function ().

Fact A.2.7. If   , then ()   ∗(). Moreover, P(()
∗())  .

Proof of Fact A.2.7. We begin with the first claim. By definition (33), we know that P(()
∗())

must be less than or equal to . Suppose, to the contrary, that () ≤  ∗(). Then, since

 ∗ ∈ Ψ, we have
P(()

∗()) ≥ P( ∗() ∗())  

This is a contradiction.

Turning to the second claim, we will show that if P(()
∗()) =  it must be that

the payoff from the policies (()) when the state is (
∗()) is strictly lower than the

payoff from the equilibrium policies ( ∗((
∗()))(

∗())). But this is inconsistent with

equality (34) being satisfied at , which is a contradiction. This will imply that it must be the

case that P(()
∗())  .

Consider first the payoff from the policies (()) when the state is (
∗()). By the

first claim, we know that ()   ∗() so that there will be new construction next period. It

then follows that next period’s price will be P( ∗((()))()) = . Moreover, the

payoff from (()) can be written as

(1− )

∙
(1−) +  + 



1− 

¸
+  () +

 ∗()− ()


+  ∗(())

(81)

Since P(()
∗()) is equal to , we have that

 () +
 ∗()− ()


= (1− ) + − (1−)

We can therefore write (81) as

(1− ) +

µ
1− 

1− 

¶
+ ( − 1) +  ∗(())

Now note that  = H(∗()−()

1− ), so we can write this as

(1− ) +

µ
1− 

1− 

¶
+ 

∙
H(

∗()− ()

1− 
)− 1

¸
+  ∗(()) (82)
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Next observe from (79) that

 ∗(()) =  +


1− 
+

∞X
=0

()



∙
H((())− +1(())

1− 
)− 1

¸


Substituting this into (82), the payoff from (()) can be written as

+


1− 
+

∙
H(

∗()− ()

1− 
)− 1

¸
+

∞X
=0

()
+1



∙
H((())− +1(())

1− 
)− 1

¸
Note also that the payoff from the equilibrium policies ( ∗((

∗()))(
∗())) in state

( ∗()) can be written in a similar way as

 +


1− 
+ 

∙
H(

∗()−  ∗((
∗()))

1− 
)− 1

¸
+

∞X
=0

()
+1



∙
H((

∗((
∗())))− +1(

∗((
∗())))

1− 
)− 1

¸
Moreover, we know that since

 = H(
∗()− ()

1− 
)  (

∗()) = H(
∗()−  ∗((

∗()))
1− 

)

we must have that ()   ∗((
∗())).

Now define the function ( ) on the interval [ ∗((
∗()))()] as follows:

( ) = +


1− 
+

∙
H(

∗()− 

1− 
)− 1

¸
+

∞X
=0

()
+1



∙
H(( )− +1( )

1− 
)− 1

¸
If we can show that this function is decreasing in  , we will have established that (())

must yield a smaller payoff than ( ∗((
∗()))(

∗())) in state ( ∗()), which

contradicts equality (34).

Consider then differentiating ( ). Ignoring multiplicative constants, the derivative is

−H0(
 ∗()− 

1− 
) +

∞X
=0

()
+1H0(

( )− +1( )

1− 
)( 0

( )−  0
+1( ))

Rearranging, and using the fact that  0
0( ) = 1, we can write this as

−
∙
H0(

 ∗()− 

1− 
)− H0(

0( )− 1( )

1− 
)

¸
−
∞X
=1

()



∙
H0(

−1( )− ( )

1− 
)− H0(

( )− +1( )

1− 
)

¸
 0

( )

We know that for all  ≥ 1,  0
( )  0. In addition, we know ∗()−  0( )−1( )

and that for all  ≥ 1, −1( ) − ( )  ( ) − +1( ). Since H is concave, this
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implies that the above expression is negative. We conclude that the derivative is decreasing in 

as required. ¥

Given Fact A.2.7, we know from (33) that

() = argmax
 0

½
(1− )

∙
P( 0 ∗()) +



1− 

¸
+ 

∙
 () +

 ∗()−  0


+  ∗( 0)

¸¾


The derivative of the objective function is



µ

 ∗( 0)


− 1



¶


We know from (70) and (71) that for any  0 W() we have that


 ∗( 0)


 

 ∗(W())


=

1



1




Accordingly,() ≤W(). Recall, however, that the value function may be kinked atW().

It follows that () must either satisfy the first order condition


 ∗(())


=
1


(83)

or equal W() if it is the case that

lim
%W()


 ∗( )


≥ 1




11.2.2 The residents’ problem

We are now ready to show that the policy rules defined by (25), (27), (30) solve the residents’

problem given that the future price and continuation value are as described in (30) and (31) and

(80). Our first observation is that the residents’ policy choices are such that next period’s wealth

is at least as big as the threshold W( 0).

Fact A.2.8. Suppose that  ≥  and let (0 0 0  ) solve problem (64) with future price and

continuation value as described in (30) and (31) and (80). Then,  0 ≥ ∗( 0).

Proof of Fact A.2.8. Suppose, to the contrary, that  0   ∗( 0). Then, from (30) and (31)

 (0  ( 0 − 0)  0) = P( 0(
0) 0)

and

 (0  ( 0 − 0)  0) =  ∗( ∗( 0)) +
 0 − ∗( 0)

 0 
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Thus, the current price is

 = (1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  0

 0 + P( 0(
0) 0)− 

and the payoff is

(1−)
∙
 +



1− 

¸
+

⎡⎣(0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  0

 0 + 

µ
 ∗( ∗( 0)) +

 0 − ∗( 0)
 0

¶⎤⎦
Note that neither the price nor the payoff vary with respect to  0 for any  0   ∗( 0). How-

ever, at  0 =  ∗( 0), the price jumps up reflecting the fact that the future price jumps from

P( 0(
0) ∗( 0)) (which is less than  by Fact A.2.7) to . If it is the case, that

(1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  ∗( 0)

 0 +  −  ≤ 

Then it is clear that we can replace (0 0 0  ) with a policy in which  0 =  ∗( 0) and we

will have increased the value of the objective function. Since this is a contradiction, we can assume

that

(1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  ∗( 0)

 0 +  −   

We can also write the payoff under (0 0 0  ) as

(1− )

∙
 +



1− 

¸
+ 

⎡⎣(0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  ∗( 0)

 0 +  ∗( ∗( 0))

⎤⎦ 
(84)

Now choose a wealth level c   ∗( 0) which keeps the current price equal to  , but makes

the future price equal . This price satisfies

(1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 − c

 0 +  −  =  (85)

The policies (0c 0  ) yield a payoff

(1− )

∙
 +



1− 

¸
+ 

⎡⎣(0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 − c

 0 +  ∗(c )

⎤⎦ 
(86)

Comparing (84) and (86), we see that choosing the alternative policies (0c 0  ) will increase

the objective function if

 ∗(c )−
c
 0 ≥  ∗( ∗( 0))−  ∗( 0)

 0 
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Given that  ∗ is strictly concave, this will be true if

 ∗(c )


≥ 1

 0 

We know from (83) that

 ∗((
0))




1

 0 

thus it is sufficient to show that c is less than (
0).

To establish this, note first from (85) that

(1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 −  ∗( 0)

 0 + P( 0(
0) ∗( 0))− 

= (1− 0) +(
0(1− )

( 0)
)−


³

0

1− − 0
´

 0 +
 − c

 0 +  − 

Cancelling terms and dividing through by , this implies that

P( 0(
0) ∗( 0)) +

c − ∗( 0)
 0 = 

Recall that, by definition,

P( 0(
0) ∗( 0)) ≡ (1− 0) + ( 0) +

 ∗( 0)− (
0)

 0 +  − 

Thus, this implies that

(1− 0) + ( 0) +
c − (

0)
 0 +  −  = 

or, equivalently, that

P( 0(
0)c ) = 

This equality implies that c  (
0). Suppose, to the contrary, that c ≥ (

0). Then, by

Fact A.2.7 and the fact that (by definition)  ∗( 0) W( 0), we have that

P( 0(
0)c ) ≥ P( 0(

0)(
0))

 P( 0 ∗( 0) ∗( 0))

 P( 0W( 0)W( 0)) = 

which is a contradiction. ¥

Fact A.2.8 allows us to rewrite problem (64) as
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max
(0 00 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− )
h
 +



1−
i
+ 

∙

³
0(1−)
(0)

´
− 


0
1−−0


0 + − 0

0 +  ∗( 0)
¸

 0 ≥ 0 &  0 ≥ 

 = (1− 0) +(
0(1−)
(0) )− 


0
1−−0


0 + − 0

0 +  − 

 ≤  ( = if  0  )

 0 ≥ ∗( 0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(87)

Our next result shows that public good provision is efficient.

Fact A.2.9. Suppose that    and let (0 0 0  ) solve problem (87) with  ∗( 0) as

described in (80). Then, 0 = (1− )( 0).

Proof of Fact A.2.9. The argument is identical to the proof of Fact A.2.4. ¥

Fact A.2.9 allows us to write the residents’ problem as

max
( 00)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− )
h
(1− 0) +  − +



1−
i
+ ( 0) + − 0

0 +  ∗( 0)

  0 ≥ 

(1− 0) + ( 0) + − 0

0 − (1− ) ≤  ( = if  0  )

 0 ≥ ∗( 0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭


(88)

Our next result ties down the optimal ( 0 0).

Fact A.2.10. Suppose that  ≥  and let ( 0 0) solve problem (88) with  ∗( 0) as described

in (80). Then,

( 0 0) =

⎧⎪⎪⎨⎪⎪⎩
(()) if    ∗()

( ∗(( ))( )) if  ≥ ∗()


Proof of Fact A.2.10. There are two possibilities to consider: i) the price constraint holds with

equality at the optimal policies, and ii) the price constraint holds with inequality at the optimal

policies. We begin with the first possibility.

Possibility i). If

(1− 0) + ( 0) +
 −  0

 0 − (1− ) = 

then  0 = H(( −  0) (1 − )). The constraint that  0 ≥  then implies that  −  0 ≥
(1− )W() which means that

 0 ≤  − (1− )W()
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The constraint that  0 ≥ ∗( 0) implies that  0 ≥ ∗(H(( −  0) (1− ))). Since

( ) = H( −  ∗(( ))

1− 
)

this inequality requires that  0 ≥ ∗(( )). It follows that the range of feasible  0 values is

 0 ∈ [ ∗(( ))
 − (1− )W()


]

For this interval to be non-empty, it is necessary that

 ∗(( )) + (1− )W() ≤

If this condition is not satisfied, then there exist no values of 0 such that bothH(( −  0) (1−
)) ≥  and  0 ≥ ∗(H(( −  0) (1− ))). This condition is equivalent to the requirement

that  ≥  ∗() + (1− )W(). To see this, note that

P( ∗()−1 ()) = 

Thus,

−1 ()−  ∗() = (1− )W()

which implies that

−1 () =  ∗() + (1− )W()

If  ≥ −1 (), then ( ) ≥  and

P(( ) ∗(( )) ) = 

This implies that

 −  ∗(( )) = (1− )W(( )) ≥ (1− )W()

If   −1 (), then ( )   and

P(( ) ∗(( )) ) = 

This implies that

 −  ∗(( )) = (1− )W(( ))  (1− )W()

Using the fact that the price constraint binds, we can write the objective function as

(1− ) +

µ
1− 

1− 

¶
+ 

∙
H( −  0

1− 
)− 1

¸
+  ∗( 0)
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Note from (80) that the form of the function  ∗( 0) depends on whether  0 is greater than or

less than W(). This requires us to distinguish three cases: a)  ≤ W() + (1 − )W();
b)  ≥W(); and c)  ∈ (W() + (1− )W()W())

In case a),
−(1−)W()


≤ W(). Using (80), the optimal  0 must therefore solve the

problem

max
 0

⎧⎪⎪⎨⎪⎪⎩

h
H(− 0

1− )− 1
i
+
P∞

=0 ()
+1


h
H((

0)−+1(
0)

1− )− 1
i

  0 ∈ [ ∗(( ))
−(1−)W()


]

⎫⎪⎪⎬⎪⎪⎭ 

We claim that the objective function is decreasing in  0 and hence that the solution to this

problem is  ∗(( )). Ignoring multiplicative constants, the derivative of the objective function

is

−H0(
 −  0

1− 
) +

∞X
=0

()
+1H0(

(
0)− +1(

0)
1− 

)( 0
(

0)−  0
+1(

0))

Rearranging, and using the fact that  0
0(

0) = 1, we can write this as

−
∙
H0(

 −  0

1− 
)− H0(

0(
0)− 1(

0)
1− 

)

¸
−
∞X
=1

()



∙
H0(

−1( 0)− (
0)

1− 
)− H0(

(
0)− +1(

0)
1− 

)

¸
 0

(
0)

We know that for all  ≥ 1,  0
(

0)  0. In addition, we know  −  0  0(
0)− 1(

0)

and that for all  ≥ 1, −1( 0) − (
0)  (

0) − +1(
0). Since H is concave, this

implies that the above expression is negative.

In case b), ( ) = H( ) ≥  and  ∗(( )) =  ≥ W(). Using (80), the optimal

 0 must solve the problem

max
 0

⎧⎪⎪⎨⎪⎪⎩

h
H(− 0

1− )− 1
i
+
³


1−

´
(H( 0)− 1)

  0 ∈ [
−(1−)W()


]

⎫⎪⎪⎬⎪⎪⎭ 

Ignoring multiplicative constants, the derivative of the objective function is



1− 
H0( 0)− 

1− 
H0(

 −  0

1− 
)

The concavity of the functionH( ), implies that this derivative is negative for all 0 ∈ [
−(1−)W()


].

The optimal choice of wealth is therefore  = ∗(( ))

In case c), the optimal choice of wealth maximizes the objective function:⎧⎪⎪⎨⎪⎪⎩

h
H(− 0

1− )− 1
i
+
P∞

=0 ()
+1


h
H((

0)−+1(
0)

1− )− 1
i
if  0 ∈ [ ∗(( ))W())


h
H(− 0

1− )− 1
i
+
³


1−

´
(H( 0)− 1) if  0 ∈ [W()

−(1−)W()


]

38



As shown in case a), this objective function is decreasing on [ ∗(( ))W()), and, as shown

in case b), it is also decreasing on [W()
−(1−)W()


]. Given that the objective function is

continuous at W(), the optimal choice of wealth is  ∗(( )).

We conclude that if the price constraint holds with equality at the optimal policies, then the

optimal policies are ( ∗(( ))( )). A necessary condition for this to be the solution is

that  ≥  ∗() + (1− )W(). Note for future reference that the payoff from this candidate

solution is  ∗( ).

Possibility ii). If the price constraint holds as an inequality at the optimal policies, then  0 = 

and  −  0  (1− )W( 0). This means that

 0 
 − (1− )W()




The constraint that  0 ≥  ∗( 0) requires that  0 ≥  ∗(). The optimal choice of wealth

therefore solves the problem

max
 0

⎧⎪⎪⎨⎪⎪⎩
(1− )

h
(1−) +  − +



1−
i
+ () + − 0


+  ∗( 0)

 0 ≥ ∗()

⎫⎪⎪⎬⎪⎪⎭
We claim that the solution is () as defined in (33). Notice from (29) that the objective

function in this problem is equal to

(1− )

∙
P( 0 ) +



1− 

¸
+ 

∙
() +

 −  0


+  ∗( 0)

¸


Given that  enters as an additive constant and can have no impact on the solution, this is

equivalent to an objective function

(1− )

∙
P( 0 ∗()) +



1− 

¸
+ 

∙
() +

 ∗()−  0


+  ∗( 0)

¸


From (33) and Fact A.2.7, we know that

() = argmax
 0
(1− )

∙
P( 0 ∗()) +



1− 

¸
+ 

∙
() +

 ∗()−  0


+  ∗( 0)

¸
and that ()   ∗(). Thus, the solution is () as claimed.

We conclude that if the price constraint holds as an inequality at the optimal policies, then

the optimal policies are (()). A necessary condition for this to be the solution is that

  () + (1− )W(). If this condition is not satisfied, then the price constraint cannot
hold as an inequality when the policies are (()). The payoff from this candidate solution

is

39



(1− )

∙
P(() ) +



1− 

¸
+ 

∙
() +

 − ()


+  ∗(())

¸

Which possibility arises? Having understood the two possibilities, we can now analyze which

one arises. A necessary condition for possibility ii) to be the solution is that   () +

(1 − )W(). Furthermore, a necessary condition for possibility i) to be the solution is that
 ≥  ∗() + (1 − )W(). Given that by Fact A.2.7, ()   ∗(), we can conclude

that the solution is (()) if    ∗() + (1 − )W() and ( ∗(( ))( )) if

 ≥ ()+(1−)W(). For values of in the interval [ ∗()+(1−)W() ()+

(1 − )W()) both possibilities are feasible. Thus, which possibility is optimal depends on a
comparison of the payoffs. We claim that:

( 0 0) =

⎧⎪⎪⎨⎪⎪⎩
(()) if    ∗()

( ∗(( ))( )) if  ≥ ∗()


Define the function ( ;) on the interval [ ∗()+(1−)W() ()+(1−)W())
to be equal to the difference between the payoffs from the two candidate solutions; that is,

( ;) =  ∗( )−(1−)
∙
P(() ) +



1− 

¸
−

∙
() +

 − ()


+  ∗(())

¸


Condition (34) implies that ( ∗();) = 0. Thus, it is sufficient to show that ( ;) is

increasing in  . Differentiating, we have that

( ;)


=

 ∗( )


− 1




We know that   () and from (83) that

 ∗(())



1




Thus, it follows from the concavity of  ∗( ), that ( ;) is increasing in  as required. ¥

Using Facts A.2.9 and A.2.10, it is clear that the residents want to follow the equilibrium policy

rules described in (25), (27), and (30).
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11.2.3 Verifying form of value function

It remains to verify that the value function as described by (31) and (80) satisfies (18). Suppose

first that ( ) is such that  ≥ ∗(). Then, we have that

(1− )

∙
 (·) + 

1− 

¸
+ 

∙


µ
0(·)(1− )

 0(·)
¶
−  (·) +  (0(·) 0(·) 0(·))

¸
= (1− )

∙
 +



1− 

¸
+ 

∙
(( )) +

 −  ∗(( ))

( )
+  ∗( ∗(( )))

¸
=  ∗( )

as required. Now suppose that ( ) is such that    ∗(). Then, using (34), we have that

(1− )

∙
 (·) + 

1− 

¸
+ 

∙


µ
0(·)(1− )

 0(·)
¶
−  (·) +  (0(·) 0(·) 0(·))

¸
= (1− )

∙
P(() ) +



1− 

¸
+ 

∙
() +

 − ()


+  ∗(())

¸
= (1− )

∙
P(()

∗()) +


1− 

¸
+ 

∙
() +

 ∗()− ()


+  ∗(())

¸
+
 − ∗()



=  ∗( ∗()) +
 − ∗()




as required. ¥
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12 Appendix 3: Proofs of Propositions 5, 6, and 7

12.1 Proof of Proposition 5

We begin by verifying the claims about housing, public good investment, and wealth. We first

claim that 0 exceeds 
∗(0). Remember that 

∗() is increasing. Our Assumptions imply

that 0   ≤ H(0), so it is the case that 
∗(0)   ∗() ≤  ∗(H(0)). Recall also

that  ∗() is equal toW() for housing levels larger than  which implies that  ∗(H(0)) =

W(H(0)). Given that the function H( ) is the inverse of the function W(), it follows that
 ∗(H(0)) =0.

Given that0 exceeds
∗(0), it follows from (25) that (11) = ((1−)((0))(0)).

Next note that (0) = H(0). As shown in the proof of the Theorem (Fact A.2.1), if

 ≥  ∗() and  ≥ , then ( ) = H( ). But we know that 0 ≥  ∗() and

hence (0) = H(0). Given this, we have that (11) = ((1 − )(H(0))H(0)) and,

from (27), that

1 = 1 − (1 + )1 = 1 − (1 + )

µ
(1− )(H(0))− ∗(H(0))

1 + 

¶
=0

This means that (11) = (0H(0)).

Since  ∗(H(0)) = 0, it follows from (25) that (22) = ((1 − )((0))(0)).

As just argued, we have that (0) = H(0) and thus (22) = ((1 − )(H(0))H(0))

which in turn implies that 2 = 0. Repeated application of this argument implies that for all

 ≥ 1, ( ) = (0H(0) (1− )(H(0))).

Turning to what is happening to debt, from (27), we have that

1 − 0 =
(1− )(H(0))−0

1 + 
− 0 −0

1 + 

=
(1− )(H(0))− 0

1 + 


Furthermore, for all  ≥ 2

+1 −  =
(1− )(H(0))−0

1 + 
− (1− )(H(0))−0

1 + 
= 0

Thus, the value of outstanding debt increases by  ((1− )(H(0))− 0) in period 0 and then

remains constant. Finally, given that for all periods  ≥  ∗(), (30) implies that the price of

housing is constant at the construction cost . ¥
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12.2 Proof of Proposition 6

Recall first that our Assumptions imply that 0  . Since 0 ≥ ∗(0), (25) and (27) tell us

that 1 = (0) and 1 = ∗(1). Repeated application of (25) and (27) reveals that in each

period  beyond period 1,  is equal to (
∗(−1)) and  is equal to  ∗(). As shown

in the proof of the Theorem (Fact A.2.6), the sequence of housing levels hi∞=0 is increasing and
converges asymptotically to . This implies that new construction takes place in each period

and that the size of the community approaches . Given that the threshold wealth function

 ∗(·) is increasing and  ∗() = W(), this implies that wealth is increasing and converging

asymptotically to W(). Equation (25) tells us that in each period  ≥ 1,  = (1− )(+1)

implying that in each period  the public good level enjoyed by the residents is (+1).

Regarding the value of outstanding debt, equation (27) implies that for all 

+1 −  =
+1 −+1

1 + 
−  −

1 + 


Thus, since +1  , we have that

(1 + ) (+1 − ) = (+1 − )− (+1 −)

 (+1 − )

as required. Equation (30) implies that the price of housing is equal to the construction cost in

each period. ¥

12.3 Proof of Proposition 7

Since 0   ∗(0), (25) and (27) tell us that 1 = 0 and 1 = (0). As shown in the

proof of the Theorem (Fact A.2.7), the fact that 0  , implies that (0)   ∗(0) and

that  (0(0)0)  . If (0)  W(), we can set 0 = (0) and reapply

the arguments made to establish Proposition 6. If (0) = W(), then we can reapply the

arguments made in the proof of Proposition 5. ¥
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13 Appendix 4: Numerical Analysis

In this Appendix we investigate the existence of equilibrium in our model using numerical meth-

ods. We first describe our parametrization strategy, and in particular, the set of parameters over

which our investigation is conducted. We then describe our method for checking Assumptions 1-2,

constructing equilibrium objects, and analyzing whether these objects have the required properties.

13.0.1 Parameters

To start we need to specify the public good benefit function. We assume that it is a power

function: () = 0
 where  is positive but less than one. With this assumption, there are

ten parameters in our model:

    ̄    0 

1
106

01 1 0 1 (0 1) (0 1) [0 1] ? ?

Parameters  and  are commonly used in the literature and we set them accordingly. In

particular, we set the discount rate  equal to 1106 and the depreciation rate of the public good

 equal to 01.

Parameters , , and ̄ can be normalized. We set them equal to 1, 0, and 1, respectively. To see

that the cost of the public good  can be normalized note that the optimized public good surplus

function defined in (5) can be written as () = 0 ·1 where 0 =
1−


0

h
0

[1−(1−)]
i 
1−

and

1 = (1− ) 
1− . Thus, while  influences the level of surplus obtained from any given housing

stock, any change in  can be mimicked by an appropriate change in the benefit function parameter

0. The utility households obtain from living outside the community  can be normalized, because

it does not play an independent role. It is both intuitive and straightforward to verify that what

matters is  + (1 − ) Thus, any change in  can be mimicked by an appropriate change in

the housing price . Finally, to see that the upper bound on the preference distribution ̄ can be

normalized, take a given parameterization incorporating the normalizations to parameters  and .

Consider now a different parameterization that keeps all parameters unchanged except ̄ is set to

one, 0 is adjusted so that 0 is divided by ̄, and  is divided by ̄. Such a parameterization will

generate a model that is isomorphic to the original model: all value functions, prices and wealth

levels will equal their respective original values divided by ̄

This leaves five parameters: , , , 0, and . The first three range between 0 and 1 and

have simple interpretations:  reflects population turnover;  the concavity of public good benefits;
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and  the congestibility of the public good. Accordingly, it is easy to specify a priori a range of

plausible values for these parameters. This is not the case for the remaining two parameters 0

and . The way we deal with this pair is to note that, given the rest of the parameters, they

determine the values of  and  Recall that  is the socially optimal housing level and 

is the steady state level under the wealth accumulation path. We know that both these housing

levels lie between 0 and 1 and that  is less than . Accordingly, our approach is to specify 

and  directly along with the other parameter values and then check to see whether there are

underlying values 0 and  which generate these housing levels.

In sum, we have five fixed parameters (    ̄) and five parameters which vary (  0 ).

For the variable parameters, we let  take ten values: from 090 to 099 with an increment of 001;

 take nine values: from 01 to 09 with an increment of 01; and  take eleven values from 0 to

1 with an increment of 01. Finally, for a given set of values for , , and , we entertain eighty

one possible pairs of (0 ) that correspond to eighty one pairs of (
). To get these eighty

one pairs, we allow  to vary from 01 to 09 with an increment of 01 and, for each such , we

consider nine values of  of the form  = , where  varies from 01 to 09.

In total, we have 10 · 11 · 9 · 9 · 9 = 80190 different parameterizations. For each of these

parameterizations, we implement the numerical procedure described below. We find that:

1. In 374% of the cases there does not exist a pair of parameters (0 ) in the feasible range

(i.e., <2+) that, given the other parameters, generate the specified values of  and .

2. In 376% of the cases there does not exist an 0 for which Assumptions 1-2 are satisfied.

3. In 248% (19854) of the cases there exists a non-empty interval [) such that Assumptions

1-2 are satisfied for any 0 ∈ [). Moreover, for all 0 ∈ [), there exists an

equilibrium threshold wealth function.

4. In 13% (1024) of the cases there exists a non-empty interval [) such that Assumptions

1-2 are satisfied for any 0 ∈ [). Moreover, there exists ̂ ∈ () such that for all

0 ∈ [̂), there exists an equilibrium threshold wealth function.

Summarizing these findings, we have 20878 different parameterizations under which there exist

an interval of initial housing levels 0 that satisfy Assumptions 1-2. These are the relevant para-

meterizations for our purposes. The key point to note is that for 19854 of these, there exists an

equilibrium threshold wealth function for any of the initial housing levels 0 that satisfy Assump-

tions 1-2. Thus, for over 95% of the parameterizations satisfying our assumptions, existence of an
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equilibrium threshold wealth function is not problematic. In the remaining 1024 cases, there exists

an equilibrium threshold wealth function for only some of the initial housing levels 0 that satisfy

Assumptions 1-2. For a range of initial housing levels, an equilibrium threshold wealth function

does not exist.

The overwhelming majority of these problematic cases feature high  In fact, 880 of the 1024

cases have  = 099.37 We have investigated what is going on in a handful of randomly picked

cases in this category. In all these cases, there does exist an equilibrium. Moreover, it involves a

threshold wealth function  ∗ and is described by E( ∗). However, the threshold wealth function
does not belong to the set Ψ and, moreover, the associated function  ∗( ) is not concave.38

Figure 2 illustrates one of these problematic cases. The associated values of the parameters

(  ) are (099 05 1). The values of (0 ) are chosen to generate a (
) pair equal

to (005 01). Panel  illustrates the threshold wealth function  ∗() along with the function

W(). Notice that  ∗() is kinked at housing level 0037 and is not differentiable. Moreover, as
illustrated, at housing level 0037,  ∗() is equal to W(), as opposed to exceeding it. Panel 
illustrates the associated  ∗( ) function. Between wealth levels 00036 and 0008, the function is

not concave. Panel  illustrates the function () along with the function 
∗(). Notice that

at housing level 0037, () is equal to 
∗() and hence equal to W().

What is happening in this equilibrium is that at housing level 0037, if the community is

endowed with wealth W(), the residents are not willing to build wealth to attract new residents.
This is the case despite the fact that the housing level is less than . Recall that, when we

introduced it in Section 6.2, we stated that  was the smallest housing level such that, if the

community is endowed with wealth W(), it will never choose to build wealth to attract new
residents. However, this was under the assumption that increasing wealth by  will simply increase

the future housing level to H(W()+) and future wealth toW()+. At housing level 0037, the
future consequences of increasing wealth marginally are much more complicated and determined

by the behavior of the threshold wealth function  ∗() between 0037 and . Evidently, these

consequences are less advantageous to current residents than simply increasing the future housing

level to H(W() + ) and future wealth to W() + . The value of these changes is reflected in

37 Another noteworthy pattern is that the problematic cases happen mostly for values of  (the ratio of  to )

in the medium-high range. There are 444 cases with  = 07; 182 cases with  = 06; and 105 cases with  = 05.

However, there are only 48 cases for  = 08. Exactly why  matters is unclear.

38 Because the concavity of  ∗( ) is lost, we cannot use the Theorem to conclude that the candidate equilibrium

E(∗) associated with ∗ is indeed an equilibrium. Instead, we rely on numerical methods to confirm that E(∗)
is indeed an equilbrium.
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Figure 2: A problematic case
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the derivative of the value function at wealth levelW(0037). At the kink, it must be the case that
lim&W(0037) 

∗( ) is less than 10037.

Substantively, the evolution of the community in this equilibrium differs from that described in

Propositions 6 and 7. If the community’s initial wealth 0 is less than W(0037) it will converge
asymptotically to (W(0037) 0037) as opposed to (W()). Qualitatively, the way in which

the community develops remains the same, it is just that it approaches a different point. This point

involves less development, so the extent to which the community will be undersized is enhanced.

It should be noted, however, that the steady state (W(0037) 0037) is not stable: any positive
wealth shock will result in the community converging to (W()).

13.1 Numerical Procedure

For a given set of parameters values we take a 100000 point uniform grid over [0, 1]. We find the

smallest point  at which Assumptions 1 and 2 are satisfied. If such a point does not exist, we

stop. Otherwise, we search for the smallest 0 greater or equal to  for which an equilibrium

threshold wealth function can be shown to exist. If this smallest 0 is equal to  then, for these

parameter values, an equilibrium threshold wealth function exists whenever the Assumptions are

satisfied.

13.1.1 Constructing equilibrium

Showing that an equilibrium threshold wealth function exists for a given set of parameter values

and initial conditions (00) amounts to showing that we can construct an increasing function

 ∗() on [0
] such that: i)  ∗()  W() for all  ∈ [0

); ii)  ∗() =  ();

iii) the resulting  ∗( ) is increasing and concave; and iv) the indifference condition is satisfied.

Two notes are in order. Rather than constructing function  ∗() directly it is more convenient

to obtain it indirectly by constructing its inverse function, ∗( ) This naturally implies that

lower bound on  ’s,  , for which the function ∗( ) should be constructed must be such that

∗( ) ≤ 0

We assume and ex-post confirm that  ∗( ) is kinked at W(). This implies, as shown in

Fact A.4.1 below, that () = W() on [ (1−)
(1−) 

]. We use this fact in the first leg of

our procedure.

Leg 1. We start by constructing the equilibrium objects in the neighborhood of the steady

state (W()). We rely on knowledge of lim%W()
 ∗( )


(established in the proof of
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Fact A.4.1 below) to construct an approximation to the function  ∗( ) in this neighborhood. In

particular:

1. For  close to ,  = ∗() should be close to W(). Consider interval [ W()],

where  =W()(1− ) and  is set to be small: specifically,  = 5 · 10−4.
2. Take a twenty one point uniform grid on [ W()]. Call this grid   For each point on

the grid, approximate function  ∗( ) using its first order Taylor expansion at W() :

 ∗( ) =  ∗(W()) + lim
%W()

 ∗( )


( −W())

where lim%W()
 ∗( )


is as computed in the proof of Fact A.4.1 below.

3. For each  ∈  construct 
∗( ) as the solution to the following indifference condition:

 ∗( ) = P(∗( )W() ) + (∗( )− 1) + ( ∗(W())− )

If for any  , ∗( ) is lower than  (1−)
(1−) , reset  to a smaller number, e.g.  = 2 and

repeat Steps 2-3.

4.

• Verify that ∗( ) is increasing, that ∗( )  H( ) and that  ∗( ) is increasing and

concave on [ W()]. To do this, check that for any point  on 

(1 + )∗()  H();

check that for any two adjacent points on  ,   

(1 + )∗() ≥ ∗() and (1 + ) ∗() ≥  ∗();

and check that for any three adjacent points on  ,     

(1 + ) ∗() ≥  ∗() + (1− ) ∗()

where  = −
− and  = 10−4. A small  is necessary to avoid interpreting numerical error

in evaluating  when (a) it is near linear and (b) grid points are too close to each other, as a

failure of concavity. We now have constructed ∗( ) on the interval [ W()]. Observe

that, by construction, we have that ∗(W()) =  and that the indifference condition

(34) is satisfied for all  ’s on the grid.

• If not, find  ∈ [ 
] such that the four conditions above are satisfied on [W()]

and stop. Equilibrium exists for all 0 ≥ max(∗( )).
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It is important to note here that we have built the equilibrium objects only on our grid. In what

follows, when necessary, to construct either ∗ or  ∗ at any other point on [  ()] we will

use a shape preserving (cubic Hermite) interpolant of the relevant function

Leg 2. We now extend our construct to the left using the knowledge of ∗( ) and  ∗( )

on   The idea is to build ∗( ) and  ∗( ) at wealth levels for which we know ( ) and

 ∗ (( ))  Clearly, the lowest value of wealth for which this can be done is the wealth level for

which ( ) = ∗() Call that point  . Consider now interval [  ]. By construction,

we have that

P(∗() ) = 

1. For each 1 ∈ \W() find 2 = 2(1) (this is an abuse of notation, but we do so

to avoid adding more notation) such that

P(∗(1)12) = 

Note that  =2(). Call this collection of points  . If all elements of    proceed

to the next step. Otherwise, return to Leg 1, set  = 2 and proceed.

2. For each 2 ∈  construct function  ∗( ) as follows:

 ∗(2) =  + (∗(1)− 1) + ( ∗(1)− )

where 1 is such that 2 =2(1)

3. For each 2 ∈  construct function ∗( ) as the solution to the following indifference

condition:

 ∗(2) = max
1

⎧⎪⎪⎨⎪⎪⎩
P(2)) + ( − 1) + (̃ ()− )

 P(2) ≤ 

⎫⎪⎪⎬⎪⎪⎭
where1 is such that2 =2(1) and ̃ () is a shape preserving (cubic Hermite) interpolant

of  ∗( ) on [ W()]39

The indifference condition above differs from the one in (34) because of the constraint that

  1 This is without loss of generality because, as shown in Fact A.4.3 below, all wealth

levels , for which the inequality P(2) ≤  holds, will necessarily be larger than 1

39 Again, we use interpolant here because we have only constructed  ∗ at the grid points, but the search for 

is over the entire interval (1W()]
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Indeed, Fact A.4.3 states that  ∗((
∗()))  () and hence that 1 =  ∗((2))

should be less than (
∗(2)).

4.

• Verify that ∗( ) is increasing, that ∗( )  H( ) and that  ( ) is increasing and

concave on [ W()]. To do this, check that for any point  on  ∪ 

(1 + )∗()  H();

check that for any two adjacent points on  ∪  ,   

(1 + )∗() ≥ ∗() and (1 + ) ∗() ≥  ∗();

and check that for any three adjacent points on  ∪  ,     

(1 + ) ∗() ≥  ∗() + (1− ) ∗()

where  = −
− and  = 10−4.

Note that by construction we have that∗(W()) =  and that the indifference condition

(34) is satisfied for all  ’s on the grid.

• If not, find  ∈ [  ] such that the four conditions above are satisfied on [ ] and

stop. Equilibrium exists for all 0 ≥ max(∗( )).

Leg 3. We now extend our construct to the left using the knowledge of ∗( ) and  ∗( )

on  ∪   The idea again is to build ∗( ) and  ∗( ) at wealth levels for which we know

( ) and ( ) Clearly, the lowest value of wealth for which this can be done is the wealth

level for which ( ) = ∗() Call that point   By construction, we have that

P(∗() ) = 

1. For each 2 ∈  find 3(2) such that

P(∗(2)23) = 

Note that  =3(). Call this collection of points  

2. For each 3 ∈  construct function  ∗( ) as follows:

 ∗(3) =  + (∗(2)− 1) + ( ∗(2)− )
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where 2 is such that 3 =3(2)

3. For each 3 ∈  construct function ∗( ) as the solution to the following indifference

condition:

 ∗(3) = max
2

⎧⎪⎪⎨⎪⎪⎩
P(3)) + ( − 1) + (̃ ()− )

 P(3) ≤ 

⎫⎪⎪⎬⎪⎪⎭
where2 is such that3 =3(2) and ̃ () is a shape preserving (cubic Hermite) interpolant

of  ∗( ) on [ W()]

Note here that we do not require that the wealth levels in  are less than  . Even if

an element of  is larger than   we keep it, as it provides an additional point where we

constructed the values of  ∗ and ∗ This implies there is an asymmetry between Leg 2 and Leg

3 because in Leg 2 we required all wealth levels in  to be less than   The reason for this

asymmetry is to ensure that the initial range [ W()] where we use the Taylor approximation

to construct  ∗and hence, ∗, is small relative to the “length of the step” between the values of

 in successive Legs.

4.

• Verify that ∗( ) is increasing, that ∗( )  H( ) and that  ( ) is increasing and

concave on [ W()]. To do this, check that for any point  on  ∪  ∪ 

(1 + )∗()  H();

check that for any two adjacent points on  ∪  ∪  ,   

(1 + )∗() ≥ ∗() and (1 + ) ∗() ≥  ∗();

and check that for any three adjacent points on  ∪  ∪  ,     

(1 + ) ∗() ≥  ∗() + (1− ) ∗()

where  = −
− and  = 10−4.

Note that by construction we have that∗( ()) =  and that the indifference condition

(34) is satisfied for all  ’s on the grid.

• If not, find  ∈ [  ] such that the four conditions above are satisfied on [ ]

and stop. Equilibrium exists for all 0 ≥ max(∗( )).

Leg 4. etc... Repeat the previous leg as long as ∗()  
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13.1.2 Facts for the Numerical Procedure

Fact A.4.1. Suppose that Assumptions 1-2 are satisfied. Let ∗ be an equilibrium threshold wealth

function and let E( ∗) be the associated equilibrium. Suppose that the function  ∗( ) defined in

(32) has a kink at W(). Then, if 0   (1−)
(1−) , it must be the case that (0) W().

Moreover, for all  ∈ [ (1−)
(1−) 

], () =W().

Proof of Fact A.4.1. From the proof of the Theorem (see, in particular, the discussion following

Fact A.2.7) we know that () must either satisfy the first order condition


 ∗(())


=
1


(89)

or equal W() if it is the case that

lim
%W()


 ∗( )


≥ 1




To prove the first statement, we show that if 0   (1−)
(1−)

lim
%W()


 ∗( )




1

0

 (90)

To establish this, we make use of three preliminary results.

Claim A.4.1. If  ∗( ) has a kink at W(), it must be the case that () =W() on some

interval []  ∈ [0
].

Proof of Claim A.4.1. If  ∗( ) kinks at W(), then we have that

lim
%W()


 ∗( )


− 1


 lim

&W()

 ∗( )


− 1


= 0

By continuity, for ’s smaller than but close to  we have

lim
%W()


 ∗( )


− 1


 0  lim

&W()

 ∗( )


− 1




implying that () =W() on some interval []. ¥

Claim A.4.2. Assuming that () = W() on some interval [], the left derivative of

the function ( ) ≡ ∗(( )) at W() is

lim
%W()

0( ) =
1

(1 + )


Proof of Claim A.4.2. Note from Fact A.4.2 below that, since () =W() on the interval

[], it follows that

 ((( )) ( ) ) = 0 (91)
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where the function  is defined below. Differentiating (91) with respect to  , we obtain

1((( )) ( ) )0(( ))0( ) + 2((( )) ( ) )0( )

+3((( )) ( ) ) = 0

Using the fact that (W()) =W(), we have that

1

∙
lim

%W()
0( )

¸2
+ 2 lim

%W()
0( ) + 3 = 0 (92)

where  is the partial derivative evaluated at (W()W()W()).

We know from the discussion prior to Fact A.4.2 that

1 =

µ


1− 

H(W())



¶µ
 − 2

1− 

¶


2 =

µ


1− 

H(W())



¶µ
−  + 2 − 1

1− 

¶


and

3 =

µ


1− 

H(W())



¶µ
1− 

1− 

¶


Thus, (92) simplifies to

¡
 − 2

¢ ∙
lim

%W()
0( )

¸2
+
¡
−  + 2 − 1¢ ∙ lim

%W()
0( )

¸
+ 1−  = 0

The relevant root is

lim
%W()

0( ) =
1− 

 − 2
=

1

(1 + )


¥

Claim A.4.3. Assuming that () = W() on some interval [], the left derivative of

the function  ∗( ) at W() is

lim
%W()


 ∗( )


= 2
H(W())



µ
1

1− 

¶


Proof of Claim A.4.3. For  ∈ [ ∗()W()], we have that

 ∗( )−  − 

1− 
= (H( − ( )

1− 
)− 1) + 

µ
 ∗(( ))−  − 

1− 

¶


Differentiating, taking the limit as  % W(), and using the fact that (W()) = W(),

we have that

lim
%W()

 ∗( )


= 

H(W())


(
1−  lim%W() 

0( )

1− 
)+ lim

%W()


 ∗( )


lim

%W()
0( )
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It follows from this equation that

lim
%W()

 ∗( )


= 

1

1− 

H(W())



µ
1−  lim%W() 

0( )
1−  lim%W() 

0( )

¶
 (93)

It follows from Claim A.4.2 that

lim
%W()

 ∗( )


= 

1

1− 

H(W())



Ã
1− 

(1+)

1− 
(1+)

!

= 


1− 

H(W())




¥

Given Claim A.4.3, to establish (90), we therefore need to show that

3
1

1− 

H(W())




1

0



We know from the definition of  that

1


=

µ


1− 

¶


H(W())



This implies that

H(W())


=
1− 

2

and hence that40

3
1

1− 

H(W())


=

 (1− )

(1− )


Thus, since

1

0


 (1− )

(1− )


3
1

1− 

H(W())




1

0

 (94)

as required.

For the second statement, note that following the same argument used to establish (90), if

   (1−)
(1−) , then it must be the case that

lim
%W()


 ∗( )



1


 (95)

40 This also implies that

lim
%W()

 ∗( )


=
1− 

1− 

1
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This implies that for such , () =W(). ¥

Our next result concerns the function  (123) which is defined as follows:

 (123) ≡ 2−3−(W()−2)

H(3−
1− )

+ (H(3−2

1− )− 1) + 
³
 ∗(W())−  − 

1−
´

−

⎡⎢⎢⎣(H(2−1

1− )− 1) + 

⎛⎜⎜⎝
1−2−(W()−1)

H(−1
1− )

+(H(2−1

1− )− 1) + 
³
 ∗(W())−  − 

1−
´
⎞⎟⎟⎠
⎤⎥⎥⎦ 

This function is well defined and differentiable on the domain [W()−W()]3 for  sufficiently

small. Moreover, the functions’ partial derivatives are

1(123) = 


1− 

H(2−1

1− )


+ 2

2

1− 

H(2−1

1− )



−
⎛⎝( + 1)H(2−1

1− ) +
H(2−1

1− )



1− (1 −2 − (W()−1))

H(2−1

1− )2

⎞⎠ 

2(123) =
( + 1)H(3−2

1− ) + 
1−

H(3−2
1− )


(2 −3 − (W()−2))

H(3−2

1− )2

− 

1− 

H(3−2

1− )


− 

1

1− 

H(2−1

1− )


− 2



1− 

H(2−1

1− )



+

⎡⎣
⎛⎝H(2−1

1− ) +
H(2−1

1− )


1

1− (1 −2 − (W()−1))

H(2−1

1− )2

⎞⎠⎤⎦ 
and

3(123) = −
⎛⎝H(3−2

1− ) +
H(3−2

1− )


1

1− (2 −3 − (W()−2))

H(3−2

1− )2

⎞⎠
+

1

1− 

H(3−2

1− )




Letting  = (W()W()W()) and using the fact that

2
H(W())



µ
1

1− 

¶
=

1


 (96)

these expressions imply that

1 =

µ


1− 

H(W())



¶µ
 − 2

1− 

¶


2 =

µ


1− 

H(W())



¶µ
−  + 2 − 1

1− 

¶
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and that

3 =

µ


1− 

H(W())



¶µ
1− 

1− 

¶


Fact A.4.2. Suppose that Assumptions 1-2 are satisfied. Let ∗ be an equilibrium threshold wealth

function and let E( ∗) be the associated equilibrium. Suppose that the function  ∗( ) defined

in (32) has a kink at W() and that on the interval [] we have that () = W().

Define the sequence h( )i∞=0 inductively by 0 =  and  =  ∗((−1))). Then, if

 ∈ [ ∗()W()], it is the case that for all   1

 (+1( )( )−1( )) = 0

Proof of Fact A.4.2. For all  the indifference condition implies that

 ∗(( )) =
1− 

1− 
+ P(W()( )) + ( − 1) + ( ∗(W())− )

where  = (−1) Moreover, from the definition of  ∗(( )) in (32), we have that

 ∗(( ))−  =
1− 

1− 
+ (+1 − 1) +  ( ∗(+1( ))− ) 

It follows that for all , it must be the case that

P(W()( )) + ( − 1) +  ( ∗(W())− )

= (+1 − 1) + 

µ
1− 

1− 
+ P(+1W()+1( )) + (+1 − 1) + ( ∗(W())− )

¶


Moreover, we know that both P(( )−1( )) and P(+1+1( )( )) are equal

to  and so we can write this equality as

P(W()( ))− P(( )−1( )) + ( − 1) + 

µ
 ∗(W())−  − 

1− 

¶

= (+1 − 1) + 

⎛⎜⎜⎝ P(+1W()+1( ))− P(+1+1( )( ))

+(+1 − 1) + 
³
 ∗(W())−  − 

1−
´

⎞⎟⎟⎠ 

Using the pricing equation (29), we can rewrite this equality as
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( )−−1( )− (W()−( ))

H(−1( )−( )

1− )
+ (H(−1( )− ( )

1− 
)− 1)

+

µ
 ∗(W())−  − 

1− 

¶
= (H(( )− +1( )

1− 
)− 1)

+

⎛⎜⎜⎝
+1( )−( )−(W()−+1( ))

H(()−+1()

1− )
+ (H(( )−+1( )

1− )− 1)

+
³
 ∗(W())−  − 

1−
´

⎞⎟⎟⎠ 

This implies that

 (+1( )( )−1( )) = 0

as required. ¥

Fact A.4.3. Suppose that Assumptions 1-2 are satisfied. Let  ∗ be an equilibrium threshold

wealth function and let E( ∗) be the associated equilibrium. Then, if  ∈ [0
), it is the case

that

 ∗((
∗()))  ()

Proof of Fact A.4.3. We begin by showing that

P( ∗((
∗())) ∗())   (97)

Note that since P(( ) ∗(( )) ) = ,  (
∗()), and P is a continuous function,

it is sufficient to show that

P( 0 )


 0

at any solution of the equation P( 0 ) = . Indeed, if the above inequality holds, for any

 0 and  , there cannot be more than one level of the housing stock at which P( 0 ) = 

To prove the inequality note from (29), that

P( 0 )


= − + 0 ()− ( −  0)

2


Moreover, at a solution

−( −  0)


=
£
(1−) +  ()− (1− )− 

¤
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Thus, at a solution

P( 0 )


= − + 0() +

£
(1−) +  ()− (1− )− 

¤


= −
∙
(1− ) + − (1− 2) −0()−  ()



¸
= −

"
+ − ¡(1−) + () +0()− (1− )

¢


#
 0

where the last inequality follows from Assumptions 1(i) and 2.

By definition, we know that

P(()
∗()) ≤ 

Thus, given (97), () must be larger than  ∗((
∗())) as required. ¥
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