Financial Constraints, Institutions, and Foreign Ownership

Online Appendix

January 14, 2018

Ron Alquist¹ Nicolas Berman² Rahul Mukherjee³ Linda L. Tesar⁴

¹AQR Capital Management. Address: Two Greenwich Plaza, Greenwich, CT 06830. E-mail: ron.alquist@aqr.com ²Aix-Marseille University (Aix-Marseille School of Economics), CNRS, EHESS, Graduate Institute Geneva

and CEPR. E-mail: nicolas.berman@univ-amu.fr.

³Department of Economics, Graduate Institute of International and Development Studies. Address: Avenue de la Paix 11A, 1202 Genève, Switzerland. Phone: +41 79 958 6655. E-mail: rahul.mukherjee@graduateinstitute.ch.

⁴Department of Economics, University of Michigan, on leave at the Council of Economic Advisers, and NBER. Address: 611 Tappan Street, Ann Arbor, MI 48109 E-mail: ltesar@umich.edu.

Contents

1	Technical Appendix	ii
2	Data and descriptive statistics	xii
	2.1 Additional data description	xii
	2.2 Additional descriptive evidence	xiii
3	Descriptive statistics – transaction-level	xix
4	Additional results	xx
	4.1 Transaction level results	xx
	4.2 Full baseline results	xxii
	4.3 Robustness: alternative clustering strategies	xxiv
	4.4 Robustness: nonlinear estimators	xxvi
	4.5 Robustness: the role of financial development	xxviii
	4.6 Robustness: The role of institutions	xxix
	4.7 Robustness: external finance dependance and financial development	xxx

1 Technical Appendix

The setup of the model, which builds on Alquist et al. (2016), is provided in the main body of the paper. We embed in their framework a shared input provision decision as in Eswaran and Kotwal (1985) and Asiedu and Esfahani (2001) to determine the optimal ownership structure chosen by a foreign firm when acquiring a domestic firm. This appendix proceeds in a few steps. First, we prove the properties of a few key value functions that are associated with the maximization problems of the domestic and foreign firms. These are $V_{ic}^{D,0}$ and $V_{ic}^{D,\alpha_{ic}}$ for the domestic firm, and $V_{ic}^{F,1}$ and $V_{ic}^{F,\alpha_{ic}}$ for the foreign firm. We then derive the necessary conditions for there to be a foreign acquisition of a representative domestic firm in industry *i*, i.e., the conditions under which either a full acquisition $(S_{ic}^{F,1} \ge 0)$, or a partial acquisition $(S_{ic}^{F,\alpha_{ic}} \ge 0,$ $S_{ic}^{D,\alpha_{ic}} \ge 0)$ can take place. We then perform some comparative statics regarding when these necessary conditions are more or less likely to hold. Second, we derive the conditions under which $S_{ic}^{F,1} \ge S_{ic}^{F,\alpha_{ic}}$, so that full ownership is chosen over partial (or vice versa if the inequality reverses), and perform similar comparative statics.

The function $V_{ic}^{D,0}$: The value $V_{ic}^{D,0}$ solves:

$$V_{ic}^{D,0} \equiv \max_{L_{ic}} \{ \pi_{i,1} + A_{ic,2} l_{ic}^{\beta_I} L_{ic}^{\beta_L} - l_{ic} - pL_{ic} \}$$

where investment in capital, I_{ic} , is constrained to be $l_{ic} = \frac{\pi_{i,1}}{(1-\tau_c)}$. The maximization problem with respect to L_{ic} gives:

$$L_{ic} = \left(\frac{A_{ic,2}\beta_L l_{ic}^{\beta_I}}{p}\right)^{\frac{1}{1-\beta_I}}$$

Inserting this back into the expression for $V^{D,0}_{ic}$ we have:

$$V_{ic}^{D,0} = \pi_{i,1} - l_{ic} + \left(\beta_L^{\frac{\beta_L}{1-\beta_L}} - \beta_L^{\frac{1}{1-\beta_L}}\right) \left[\frac{A_{ic,2}}{p^{\beta_L}} l_{ic}^{\beta_I}\right]^{\frac{1}{1-\beta_L}}.$$

Taking the partial derivative with respect to l_{ic} gives:

$$\frac{\partial V_{ic}^{D,0}}{\partial l_{ic}} = -1 + \frac{\beta_I}{1 - \beta_L} \left(\beta_L^{\frac{\beta_L}{1 - \beta_L}} - \beta_L^{\frac{1}{1 - \beta_L}} \right) \left[\frac{A_{ic,2}}{p^{\beta_L}} \right]^{\frac{1}{1 - \beta_L}} l_{ic}^{-\frac{1 - \beta_I - \beta_L}{1 - \beta_L}}.$$

A sufficient condition for this expression to be positive is that

$$l_{ic} < \left[A_{ic,2}\beta_I^{1-\beta_L}\beta_L^{\beta_L}p^{-\beta_L}\right]^{\frac{1}{1-\beta_I-\beta_L}} = I_{ic}^*.$$

Here $I_{ic}^* = \left[A_{ic,2}\beta_I^{1-\beta_L}\beta_L^{\beta_L}p^{-\beta_L}\right]^{\frac{1}{1-\beta_I-\beta_L}}$, is the first-best investment level. Therefore, $V_{ic}^{D,0}$ is increasing in l_{ic} as long as the liquidity constraint is binding. The total derivative of $V_{ic}^{D,0}$ with respect to $\pi_{i,1}$ is:

$$\frac{dV_{ic}^{D,0}}{d\pi_{i,1}} = \frac{\partial V_{ic}^{D,0}}{\partial \pi_{i,1}} + \frac{\partial V_{ic}^{D,0}}{\partial l_{ic}}\frac{dl_{ic}}{d\pi_{i,1}} = 1 + \frac{\partial V_{ic}^{D,0}}{\partial l_{ic}}\frac{1}{1 - \tau_c} > 0,$$

because the partial derivative is positive (as shown above). The total derivative of $V_{ic}^{D,0}$ with respect to τ_c is:

$$\frac{dV_{ic}^{D,0}}{d\tau_c} = \frac{\partial V_{ic}^{D,0}}{\partial \tau_c} + \frac{\partial V_{ic}^{D,0}}{\partial l_{ic}} \frac{dl_{ic}}{d\tau_c} = \frac{\partial V_{ic}^{D,0}}{\partial l_{ic}} \frac{\pi_{i,1}}{(1-\tau_c)^2} > 0$$

Taking the total derivative of $V_{ic}^{D,0}$ with respect to l_{ic} gives:

$$\frac{dV_{ic}^{D,0}}{dl_{ic}} = \frac{\partial V_{ic}^{D,0}}{\partial l_{ic}} + \frac{\partial V_{ic}^{D,0}}{\pi_{i,1}} \frac{d\pi_{i,1}}{dl_{ic}} = \frac{\partial V_{ic}^{D,0}}{\partial l_{ic}} + 1 - \tau_c > 0.$$

 $V^{D,0}_{ic}$ can be simplified as

$$V_{ic}^{D,0} = \pi_{i,1} - l_{ic} + (1 - \beta_L) \left(A_{ic,2} \beta_L^{\beta_L} p^{-\beta_L} l_{ic}^{\beta_I} \right)^{\frac{1}{1 - \beta_L}},$$

which gives the partial derivative of $V_{ic}^{D,0}$ with respect to $A_{ic,2}$:

$$\frac{\partial V_{ic}^{D,0}}{\partial A_{ic,2}} = A_{ic,2}^{\frac{\beta_L}{1-\beta_L}} \left(\beta_L^{\beta_L} p^{-\beta_L} l_{ic}^{\beta_I}\right)^{\frac{1}{1-\beta_L}} > 0.$$

The function $V_{ic}^{F,1}$: The value $V_{ic}^{F,1}$ solves:

$$V_{ic}^{F,1} \equiv \max_{I_{ic}, L_{ic}} \{ \phi A_{ic,2} I_{ij}^{\beta_I} L_{ij}^{\beta_L} - I_{ic} - \omega_c p L_{ic} - \Gamma \}.$$

Maximization of this function yields:

$$V_{ic}^{F,1} = (1 - \beta_I - \beta_L) \left(\phi A_{ic,2}(\omega_c p)^{-\beta_L} \beta_I^{\beta_I} \beta_L^{\beta_L} \right)^{\frac{1}{1 - \beta_I - \beta_L}} - \Gamma.$$

Taking partial derivatives with respect to $A_{ic,2}$ and ω_c we get:

$$\frac{\partial V_{ic}^{F,1}}{\partial A_{ic,2}} = A_{ic,2}^{\frac{\beta_L + \beta_L}{1 - \beta_I - \beta_L}} \left(\phi(\omega_c p)^{-\beta_L} \beta_I^{\beta_I} \beta_L^{\beta_L} \right)^{\frac{1}{1 - \beta_I - \beta_L}} > 0,$$

and

$$\frac{\partial V_{ic}^{F,1}}{\partial \omega_c} = -\beta_L \left(\phi A_{ic,2} p^{-\beta_L} \beta_I^{\beta_I} \beta_L^{\beta_L} \omega_c^{-(1-\beta_I)} \right)^{\frac{1}{1-\beta_I-\beta_L}} < 0$$

The function $S_{ic}^{F,1}$: The function $S_{ic}^{F,1}$ is defined as $S_{ic}^{F,1} \equiv V_{ic}^{F,1} - P_1 = V_{ic}^{F,1} + \pi_{i,1} - V_{ic}^{D,0}$. Using the expressions derived before, after some algebra, $S_{ic}^{F,1}$ can be expressed as:

$$S_{ic}^{F,1} = \mu_0 A_{ic,2}^{\frac{1}{\mu_1}} \omega_c^{-\frac{\beta_L}{\mu_1}} - \mu'_0 A_{ic,2}^{\frac{1}{\mu_2}} l_{ic}^{\frac{1}{\mu_2}} + l_{ic} - \Gamma,$$

where $\mu_1 = 1 - \beta_I - \beta_L$, $\mu_2 = 1 - \beta_L$, $\mu_0 = \mu_1 \phi^{\frac{1}{\mu_1}} p^{-\frac{\beta_L}{\mu_1}} \beta_I^{\frac{\beta_L}{\mu_1}} \beta_L^{\frac{\beta_L}{\mu_1}}$, and $\mu'_0 = \mu_2 p^{-\frac{\beta_L}{\mu_2}} \beta_L^{\frac{\beta_L}{\mu_2}}$. Taking

the derivatives with respect to $A_{ic,2}$ and l_{ic} , we have

$$\frac{\partial S_{ic}^{F,1}}{\partial A_{ic,2}} = \frac{\mu_0}{\mu_1} A_{ic,2}^{\frac{1-\mu_1}{\mu_1}} \omega_c^{-\frac{\beta_L}{\mu_1}} - \frac{\mu_0^{'}}{\mu_2} A_{ic,2}^{\frac{1-\mu_2}{\mu_2}} l_{ic}^{\frac{1}{\mu_2}},$$

and

$$\frac{\partial S_{ic}^{F,1}}{\partial l_{ic}} = 1 - \frac{\mu_0'}{\mu_2} A_{ic,2}^{\frac{1}{\mu_2}} l_{ic}^{\frac{1-\mu_2}{\mu_2}}.$$

Using the implicit function theorem, the slope of the $S_{ic}^{F,1} = 0$ line on the $(l_{ic}, A_{ic,2})$ plane is

$$\frac{dA_{ic,2}}{dl_{ic}}|_{S_{ic}^{F,1}=0} = -\frac{\frac{\partial S_{ic}^{F,1}}{\partial l_{ic}}}{\frac{\partial S_{ic}^{F,1}}{\partial A_{ic,2}}} = -\frac{1 - \frac{\mu_0'}{\mu_2} A_{ic,2}^{\frac{1}{\mu_2}} l_{ic}^{\frac{1-\mu_2}{\mu_2}}}{\frac{\mu_0}{\mu_1} A_{ic,2}^{\frac{1-\mu_1}{\mu_1}} \omega_c^{-\frac{\beta_L}{\mu_1}} - \frac{\mu_0'}{\mu_2} A_{ic,2}^{\frac{1-\mu_2}{\mu_2}} l_{ic}^{\frac{1}{\mu_2}}}$$

A sufficient condition for $\frac{dA_{ic,2}}{dl_{ic}}|_{S_{ic}^{F,1}=0} > 0$ is that the profit from a full acquisition declines in the liquidity of the representative target firm $\left(\frac{\partial S_{ic}^{F,1}}{\partial l_{ic}} < 0\right)$ and increases in the productivity of the representative target firm $\left(\frac{\partial S_{ic}^{F,1}}{\partial A_{ic,2}} > 0\right)$. Note as well that in $S_{ic}^{F,1} = V_{ic}^{F,1} + \pi_{i,1} - V_{ic}^{D,0}$, only $V_{ic}^{F,1}$ involves ω_c . Thus,

$$\frac{\partial S_{ic}^{F,1}}{\partial \omega_c} = \frac{\partial V_{ic}^{F,1}}{\partial \omega_c} = -\beta_L \left(\phi A_{ic,2} p^{-\beta_L} \beta_I^{\beta_I} \beta_L^{\beta_L} \omega_c^{-(1-\beta_I)} \right)^{\frac{1}{1-\beta_I-\beta_L}} < 0.$$

The function $S_{ic}^{F,\alpha_{ic}}$: We briefly remind the reader about the timing of the stages in the case of a partial acquisitions. In the first stage, the foreign acquirer offers to buy a share α of the firm for the price $P_{\alpha_{ic}}$. If the domestic target accepts this offer, we move to the second stage in which investment and local input procurement decisions are made by the foreign and domestic owners respectively. The characterization of $S_{ic}^{F,\alpha_{ic}}$ proceeds in three steps. We work backwards from the second stage involving the input decisions. We first assume a non-cooperative input provision game between the foreign acquirer and domestic co-owner and solve for the Nashequilibrium levels of inputs provided in the second stage game. We then use these optimal input supplies as given and solve the first stage maximization problem of the foreign acquirer. In the last step we show how the value of the foreign and domestic agents move when the participation constraint binds, which gives our main result.

Second stage Nash-equilibrium level of inputs: As before we assume decreasing returns in the inputs provided by the private foreign and domestic agents to be able to solve for an optimal pair of inputs (I_{ic}, L_{ic}) . Under partial foreign ownership, the payoffs for the foreign entity and the domestic owner are then given by

$$V_{ic}^{F,\alpha_{ic}} = -P_{\alpha_{ic}} + \alpha_{ic}\phi_{ic}A_{ic,2}I_{ic}^{\beta_I}L_{ic}^{\beta_L} - I_{ic} - \Gamma$$

and

$$V_{ic}^{D,\alpha_{ic}} = P_{\alpha_{ic}} + (1 - \alpha_{ic})\phi_{ic}A_{ic,2}I_{ic}^{\beta_I}L_{ic}^{\beta_L} - pL_{ic},$$

Using the assumed form of the transfer, the payoffs can be written as

$$V_{ic}^{F,\alpha_{ic}} = (1-\zeta)\phi_{ic}A_{ic,2}I_{ic}^{\beta_{I}}L_{ic}^{\beta_{L}} - I_{ic} - \Gamma$$

and

$$V_{ic}^{D,\alpha_{ic}} = \zeta \phi_{ic} A_{ic,2} I_{ic}^{\beta_I} L_{ic}^{\beta_L} - p L_{ic}$$

where $\zeta = 1 - \alpha_{ic}(1 - \kappa)$ is the effective share of the domestic agent in the acquired firm's revenues (the industry subscript is suppressed for ζ). Maximizing with respect to I_{ic} and L_{ic} gives the reactions functions:

$$I_{ic} = L_{ic}^{\frac{\beta_L}{1-\beta_I}} [\beta_I (1-\zeta)\phi_{ic}A_{ic,2}]^{\frac{1}{1-\beta_I}}$$

and

$$L_{ic} = I_{ic}^{\frac{\beta_I}{1-\beta_L}} \left[\frac{\beta_L \zeta \phi_{ic} A_{ic,2}}{p}\right]^{\frac{1}{1-\beta_L}}.$$

The Nash-equilibrium levels of inputs supplied are:

$$I_{ic}(\alpha_{ic}) = \psi_I \zeta^{\frac{\beta_L}{1-\beta_I-\beta_L}} (1-\zeta)^{\frac{1-\beta_L}{1-\beta_I-\beta_L}}$$

and

$$L_{ic}(\alpha_{ic}) = \psi_L \zeta^{\frac{1-\beta_I}{1-\beta_I-\beta_L}} (1-\zeta)^{\frac{\beta_I}{1-\beta_I-\beta_L}}.$$

where

$$\psi_I = \beta_L^{\frac{\beta_L}{1-\beta_I-\beta_L}} \beta_I^{\frac{1-\beta_L}{1-\beta_I-\beta_L}} (\phi_{ic}A_{ic,2})^{\frac{1}{1-\beta_I-\beta_L}} p^{-\frac{\beta_L}{1-\beta_I-\beta_L}}$$

and

$$\psi_L = \beta_L^{\frac{1-\beta_I}{1-\beta_I-\beta_L}} \beta_I^{\frac{\beta_I}{1-\beta_I-\beta_L}} (\phi_{ic}A_{ic,2})^{\frac{1}{1-\beta_I-\beta_L}} p^{-\frac{1-\beta_I}{1-\beta_I-\beta_L}}$$

First stage problem of the foreign acquirer: From the analysis above it can be seen that the optimal I_{ic} and L_{ic} depend on α_{ic} . The optimization problem of α_{ic} for the foreign acquirer can thus be written as:

$$S_{ic}^{F,\alpha_{ic}} \equiv \max_{\alpha_{ic}} \Big\{ \alpha_{ic}(1-\kappa) \big(\phi A_{ic,2} I_{ic}(\alpha_{ic})^{\beta_I} L_{ic}(\alpha_{ic})^{\beta_L} \big) - I_{ic}(\alpha_{ic}) - \Gamma \Big\}.$$

subject to the domestic agent's participation constraint (PC),

$$V_{ic}^{D,\alpha_{ic}} \equiv (1 - \alpha_{ic}(1 - \kappa)) \left(\phi A_{ic,2} I_{ic}(\alpha_{ic})^{\beta_I} L_{ic}(\alpha_{ic})^{\beta_L} \right) - p L_{ic}(\alpha_{ic}) \ge V_{ic}^{D,0} - \pi_{i,1},$$

or, $S_{ic}^{D,\alpha_{ic}} \equiv V_{ic}^{D,\alpha_{ic}} + \pi_{i,1} - V_{ic}^{D,0} \ge 0.$

Plugging in the optimal values of investment and local input from the Stage 2 problem into the Stage 1 problem in terms of the effective share of the domestic agent, $\zeta = 1 - \alpha_{ic}(1 - \kappa)$, we

write the above problem as:

$$S_{ic}^{F,\alpha_{ic}} \equiv \max_{\zeta} \left\{ (\psi - \psi_I) (\zeta^{\frac{\beta_L}{1 - \beta_I - \beta_L}} (1 - \zeta)^{\frac{1 - \beta_L}{1 - \beta_I - \beta_L}}) - \Gamma \right\}$$

subject to

$$S_{ic}^{D,\alpha_{ic}} \equiv (\psi - p\psi_L)(\zeta^{\frac{1-\beta_I}{1-\beta_I-\beta_L}}(1-\zeta)^{\frac{\beta_I}{1-\beta_I-\beta_L}}) + \pi_{i,1} - V_{ic}^{D,0} \ge 0,$$

where $\psi = \phi_{ic} A_{ic,2} \psi_I^{\beta_I} \psi_L^{\beta_L}$. Note that for $0 < \kappa < 1$ the Karush-Kuhn-Tucker conditions for maximizing with respect to ζ or α_{ic} are the same as long as we assume that there is an interior solution for α_{ic} .

The Lagrangian for this problem is:

$$\mathbb{L} = \mathbb{F}(\zeta) + \lambda \mathbb{G}(\zeta),$$

where

$$\mathbb{F}(\zeta) = (\psi - \psi_I)(\zeta^{\frac{\beta_L}{1 - \beta_I - \beta_L}}(1 - \zeta)^{\frac{1 - \beta_L}{1 - \beta_I - \beta_L}}) - \Gamma$$

and

$$\mathbb{G}(\zeta) = (\psi - p\psi_L)(\zeta^{\frac{1-\beta_I}{1-\beta_I-\beta_L}}(1-\zeta)^{\frac{\beta_I}{1-\beta_I-\beta_L}}) + \pi_{i,1} - V_{ic}^{D,0}$$

Assuming an interior solution for α_{ic} , and hence $\zeta = 1 - \alpha_{ic}(1 - \kappa)$, the first order necessary conditions for a maximum are:

$$\begin{split} \mathbb{F}_{\zeta} &= -\lambda \mathbb{G}_{\zeta} \\ \mathbb{G}(\zeta) &\geq 0, \ \lambda \geq 0, \ \lambda.\mathbb{G}(\zeta) = 0, \end{split}$$

where

$$\mathbb{F}_{\zeta} = \frac{\zeta^{\frac{\beta_L}{1-\beta_I-\beta_L}} (1-\zeta)^{\frac{1-\beta_L}{1-\beta_I-\beta_L}} (\psi-\psi_I) (\frac{\beta_L}{\zeta} - \frac{1-\beta_L}{1-\zeta})}{1-\beta_I - \beta_L},$$

and

$$\mathbb{G}_{\zeta} = \frac{\zeta^{\frac{1-\beta_I}{1-\beta_I-\beta_L}} (1-\zeta)^{\frac{\beta_I}{1-\beta_I-\beta_L}} (\psi-P\psi_L) (\frac{1-\beta_I}{\zeta} - \frac{\beta_I}{1-\zeta})}{1-\beta_I-\beta_L}.$$

Case 1 (non-binding constraint): When the constraint is slack, so that $S_{ic}^{D,\alpha_{ic}} > 0$ and $\lambda = 0$, the optimal ζ solves $\mathbb{F}_{\zeta} = 0$. The solution to $\mathbb{F}_{\zeta} = 0$ is simply $\zeta = \beta_L$, which is analogous to Asiedu and Esfahani (2001). Intuitively, the effective share of the domestic agent is given by her relative importance in terms of input provision, since all the surplus from the acquisition accrues from production in period 2. Thus in the non-binding participation constraint case, the share of the foreign owner, α_{ic} , is insensitive to financial factors and is $\alpha_{ic} = \frac{1-\beta_L}{1-\kappa}$.

Substituting the optimal value of $\zeta = \beta_L$, the maximized values of the foreign acquirer and domestic target can be expressed as:

$$S_{ic}^{F,\alpha_{ic}} = (\psi - \psi_I) \left(\beta_L^{\frac{\beta_L}{1 - \beta_I - \beta_L}} (1 - \beta_L)^{\frac{1 - \beta_L}{1 - \beta_I - \beta_L}}\right) - \Gamma$$

and

$$S_{ic}^{D,\alpha_{ic}} = (\psi - p\psi_L)(\beta_L^{\frac{1-\beta_I}{1-\beta_I-\beta_L}}(1-\beta_L)^{\frac{\beta_I}{1-\beta_I-\beta_L}}) + l_{ic} - (1-\beta_L)\left(A_{ic,2}\beta_L^{\beta_L}p^{-\beta_L}l_{ic}^{\beta_I}\right)^{\frac{1}{1-\beta_L}},$$

where ψ , ψ_I , and ψ_L are as defined before. Simplifying $S_{ic}^{F,\alpha_{ic}}$, we get

$$S_{ic}^{F,\alpha_{ic}} = \mu_3 A_{ic,2}^{\frac{1}{\mu_1}} - \Gamma,$$

where $\mu_3 = \beta_L^{\frac{2\beta_L}{\mu_1}} (1-\beta_L)^{\frac{1-\beta_L}{\mu_1}} \beta_I^{\frac{\beta_I}{\mu_1}} (1-\beta_I) \phi^{\frac{1}{\mu_1}} p^{\frac{-\beta_L}{\mu_1}}$ and $\mu_1 = 1 - \beta_I - \beta_L$. Note that in this case $S_{ic}^{F,\alpha_{ic}} = 0$ when $A_{ic,2} = \frac{\Gamma}{\mu_3}$. Taking the derivatives with respect to $A_{ic,2}$ and l_{ic} , we have

$$\frac{\partial S_{ic}^{F,\alpha_{ic}}}{\partial A_{ic,2}} = \frac{\mu_3}{\mu_1} A_{ic,2}^{\frac{1-\mu_1}{\mu_1}},$$

and

$$\frac{\partial S_{ic}^{F,\alpha_{ic}}}{\partial l_{ic}} = 0.$$

Lemma 1 When $G(\zeta) > 0$, i.e., PC does not bind, the foreign ownership share in the case of partial acquisitions is determined by non-financial factors and $\alpha_{ic} = \frac{1-\beta_L}{1-\kappa}$. The differential payoff from a full versus partial acquisition, given by the function $S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}} = \mu_0 A_{ic,2}^{\frac{1}{\mu_1}} \omega_c^{-\frac{\beta_L}{\mu_1}} - \mu'_0 A_{ic,2}^{\frac{1}{\mu_2}} l_{ic}^{\frac{1}{\mu_2}} + l_{ic} - \mu_3 A_{ic,2}^{\frac{1}{\mu_1}} = 0$, is positively sloped and concave on the $(l_{ic}, A_{ic,2})$ plane as long as the profit from a full acquisition declines in the liquidity of the representative target firm $(\frac{\partial S_{ic}^{F,1}}{\partial l_{ic}} < 0)$ and increases in the productivity of the representative target firm increases profits from a full acquisition faster than that from a partial acquisition $(\frac{\partial S_{ic}^{F,1}}{\partial A_{ic,2}} > \frac{\partial S_{ic}^{F,\alpha_{ic}}}{\partial A_{ic,2}})$.

Proof: For the first part of the statement see prior discussion. Then using the implicit function theorem and our earlier results on the partial derivatives of $S_{ic}^{F,1}$ and $S_{ic}^{F,\alpha_{ic}}$, the slope of the $S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}} = 0$ line on the $(l_{ic}, A_{ic,2})$ plane is given by

$$\frac{dA_{ic,2}}{dl_{ic}}|_{S_{ic}^{F,1}-S_{ic}^{F,\alpha_{ic}}=0} = -\frac{\frac{\partial S_{ic}^{F,1}}{\partial l_{ic}} - \frac{\partial S_{ic}^{F,\alpha_{ic}}}{\partial l_{ic}}}{\frac{\partial S_{ic}^{F,1}}{\partial A_{ic,2}} - \frac{\partial S_{ic}^{F,\alpha_{ic}}}{\partial A_{ic,2}}} = -\frac{1 - \frac{\mu_0'}{\mu_2} A_{ic,2}^{\frac{1}{\mu_2}} l_{ic}^{\frac{1-\mu_2}{\mu_2}}}{\frac{1-\mu_1}{\mu_1}} > 0.$$

Differentiating w.r.t. l_{ic} we get

$$\frac{d^{2}A_{ic,2}}{dl_{ic}^{2}}|_{S_{ic}^{F,1}-S_{ic}^{F,\alpha_{ic}}=0} = \frac{\frac{\mu_{0}^{'}}{\mu_{2}^{2}}A_{ic,2}^{\frac{1}{\mu_{2}}}l_{ic}^{\frac{1-2\mu_{2}}{\mu_{2}}}(1-\mu_{2}+\frac{dA_{ic,2}}{dl_{ic}}\frac{l_{ic}}{A_{ic,2}})}{\frac{\frac{1-\mu_{1}}{\mu_{1}}}{\mu_{1}}(\mu_{0}\omega_{c}^{-\frac{\beta_{L}}{\mu_{1}}}-\mu_{3})-\frac{\mu_{0}^{'}}{\mu_{2}}A_{ic,2}^{\frac{1-\mu_{2}}{\mu_{2}}}l_{ic}^{\frac{1}{\mu_{2}}}} < 0.$$

i.e., the function is concave. The sufficient conditions mentioned above hold for positive values of $A_{ic,2}$ and l_{ic} whenever $S_{ic}^{F,1} \ge 0$ and/or $S_{ic}^{F,\alpha_{ic}} \ge 0$.

Case 2 (binding constraint): When the constraint binds the optimal ζ solves $\mathbb{G}(\zeta) = 0$. Note that $\lambda = -\frac{\mathbb{F}_{\zeta}}{\mathbb{G}_{\zeta}} > 0$ as long as at the relevant ζ , $\mathbb{F}_{\zeta} < 0$ (which is true upon inspection of \mathbb{F}_{ζ} for $\zeta > \beta_L$) and $\mathbb{G}_{\zeta} > 0$ (which is true upon inspection of \mathbb{G}_{ζ} for $\zeta < 1 - \beta_I$).

Lemma 2 When $G(\zeta) = 0$, i.e., PC binds, the foreign ownership share in the case of partial acquisitions is determined by financial factors. In particular, the optimal equity share of the foreign acquirer declines in both $\pi_{i,1}$ and τ_c , and is not affected by ω_c .

Proof: $\mathbb{G}(\zeta) = 0 \Rightarrow \mathbb{G}_{\pi_{i,1}} d\pi_{i,1} + \mathbb{G}_{\zeta} d\zeta + \mathbb{G}_{V_{ic}^{D,0}} dV_{ic}^{D,0} = 0 \Rightarrow \mathbb{G}_{\pi_{i,1}} d\pi_{i,1} + \mathbb{G}_{\zeta} d\zeta - \frac{dV_{ic}^{D,0}}{d\pi_{i,1}} d\pi_{i,1} = 0 \Rightarrow (\mathbb{G}_{\pi_{i,1}} - \frac{dV_{ic}^{D,0}}{d\pi_{i,1}}) d\pi_{i,1} + \mathbb{G}_{\zeta} d\zeta = 0 \Rightarrow \frac{d\zeta}{d\pi_{i,1}} = -\frac{(\mathbb{G}_{\pi_{i,1}} - \frac{dV_{ic}^{D,0}}{d\pi_{i,1}})}{\mathbb{G}_{\zeta}} > 0, \text{ since } \mathbb{G}_{\pi_{i,1}} = 1 \text{ and } \frac{dV_{ic}^{D,0}}{d\pi_{i,1}} > 1 \text{ (the latter was shown earlier when establishing the properties of } V_{ic}^{D,0}).$ Thus, $\frac{d\alpha}{d\pi_{i,1}} = \frac{d\zeta}{d\pi_{i,1}} \frac{d\alpha}{d\zeta} < 0, \text{ since } \frac{d\alpha}{d\zeta} = \frac{1}{\kappa - 1} < 0.$ In words, the optimal equity share of the foreign acquirer declines in first period profit $\pi_{i,1}$ of the domestic firm in the case that the participation constraint binds.

Similarly, $\mathbb{G}(\zeta) = 0 \Rightarrow \mathbb{G}_{\tau_c} \mathrm{d}\tau_c + \mathbb{G}_{\zeta} \mathrm{d}\zeta + \mathbb{G}_{V_{ic}^{D,0}} \mathrm{d}V_{ic}^{D,0} = 0 \mathbb{G}_{\tau_c} \mathrm{d}\tau_c + \mathbb{G}_{\zeta} \mathrm{d}\zeta - \frac{\mathrm{d}V_{ic}^{D,0}}{\mathrm{d}\tau_c} \mathrm{d}\tau_c = 0 \Rightarrow \mathbb{G}_{\zeta} \mathrm{d}\zeta - \frac{\mathrm{d}V_{ic}^{D,0}}{\mathrm{d}\tau_c} \mathrm{d}\tau_c = 0 \Rightarrow \frac{\mathrm{d}\zeta}{\mathrm{d}\tau_c} = -\frac{-\frac{\mathrm{d}V_{ic}^{D,0}}{\mathrm{d}\tau_c}}{\mathbb{G}_{\zeta}} > 0$, since $\mathbb{G}_{\tau_c} = 0$ and $\frac{\mathrm{d}V_{ic}^{D,0}}{\mathrm{d}\tau_c} > 0$ (the latter was shown earlier). Thus, $\frac{\mathrm{d}\alpha}{\mathrm{d}\tau_c} = \frac{\mathrm{d}\zeta}{\mathrm{d}\tau_c} \frac{\mathrm{d}\alpha}{\mathrm{d}\zeta} < 0$. Thus the optimal equity share of the foreign acquirer declines in domestic financial development τ_c .

 ω_c does not feature in the partial acquisition problem and hence does not influence the ownership structure. \blacksquare

Lemma 3 The $S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}} = 0$ line shifts down in the $(l_{ic}, A_{ic,2})$ plane when ω_c increases with $\frac{d^2 A_{ic,2}}{d\omega_c dl_{ic}}|_{S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}} = 0} > 0.$

Proof: It is clear from the preceding analysis that $S_{ic}^{F,\alpha_{ic}}$ does not involve ω_c . Hence,

$$\frac{\partial (S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}})}{\partial \omega_c} = \frac{\partial S_{ic}^{F,1}}{\partial \omega_c} = \frac{\partial V_{ic}^{F,1}}{\partial \omega_c} = -\beta_L \left(\phi A_{ic,2} p^{-\beta_L} \beta_I^{\beta_I} \beta_L^{\beta_L} \omega_c^{-(1-\beta_I)}\right)^{\frac{1}{1-\beta_I-\beta_L}} < 0,$$

which together with either of the (jointly) sufficient conditions mentioned earlier $\left(\frac{\partial S_{ic}^{F,1}}{\partial l_{ic}} < 0 \text{ and} \frac{\partial S_{ic}^{F,1}}{\partial A_{ic,2}} > \frac{\partial S_{ic}^{F,\alpha_{ic}}}{\partial A_{ic,2}}\right)$ implies that the $S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}} = 0$ line shifts down in the $(l_{ic}, A_{ic,2})$ plane when ω_c increases. Taking the derivative of

$$\frac{dA_{ic,2}}{dl_{ic}}|_{S_{ic}^{F,1}-S_{ic}^{F,\alpha_{ic}}=0} = -\frac{1-\frac{\mu_0'}{\mu_2}A_{ic,2}^{\frac{1}{\mu_2}}l_{ic}^{\frac{1-\mu_2}{\mu_2}}}{\frac{1-\mu_1}{\mu_1}}(\mu_0\omega_c^{-\frac{\beta_L}{\mu_1}}-\mu_3)-\frac{\mu_0'}{\mu_2}A_{ic,2}^{\frac{1-\mu_2}{\mu_2}}l_{ic}^{\frac{1}{\mu_2}}$$

w.r.t. ω_c we have

$$\frac{d}{d\omega_c} \frac{dA_{ic,2}}{dl_{ic}} |_{S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}} = 0} = -\frac{\left(1 - \frac{\mu_0'}{\mu_2} A_{ic,2}^{\frac{1}{\mu_2}} l_{ic}^{\frac{1-\mu_2}{\mu_2}}\right) A_{ic,2}^{\frac{1-\mu_1}{\mu_1}} \frac{\mu_0 \beta_L}{\mu_1^2} \omega_c^{-(1 + \frac{\beta_L}{\mu_1})}}{\left(\frac{A_{ic,2}^{\frac{1-\mu_1}{\mu_1}}}{\mu_1} (\mu_0 \omega_c^{-\frac{\beta_L}{\mu_1}} - \mu_3) - \frac{\mu_0'}{\mu_2} A_{ic,2}^{\frac{1-\mu_2}{\mu_2}} l_{ic}^{\frac{1}{\mu_2}}\right)^2} > 0$$

since $\frac{\partial S_{ic}^{F,1}}{\partial l_{ic}} = 1 - \frac{\mu'_0}{\mu_2} A_{ic,2}^{\frac{1}{\mu_2}} l_{ic}^{\frac{1-\mu_2}{\mu_2}} < 0$ by assumption.

We now clarify some terms that we use in our comparative static exercises.

Definition 1 (i) For any two sectors i and i' in the same country, sector i is more external finance dependent than i' if $\pi_{i,1} < \pi_{i',1}$.

(ii) For any two sector-country pair ic and i'c', sector-country ic is more productive than i'c' if $A_{ic,2} > A_{i'c',2}$.

(iii) For any two countries c and c', country c is less financially developed than c' if $\tau_c < \tau_{c'}$.

(iv) For any two countries c and c', procuring the local input in country c' is more difficult than in c if $\omega_{c'} > \omega_c$.

Using Lemmas 1, 2, and 3 we will now prove the following proposition.

Proposition 1 Probability of Full Foreign Acquisition versus Partial Acquisition

Let N_{ic}^1 be the proportion of full foreign acquisitions in all foreign acquisitions in sector *i* of country *c*.

(i) External finance dependence increases probability: For any two sectors i and i' in the same country, if $\pi_{i,1} < \pi_{i',1}$ then $N_{ic}^1 > N_{i'c}^1$.

(ii) **Productivity increases probability**: For any two sector-country pairs ic and i'c', if $A_{ic,2} > A_{i'c',2}$ then $N_{ic}^1 > N_{i'c'}^1$.

(iii) Financial development lowers probability: For any sector in two countries c and c', if $\tau_c < \tau_{c'}$ then $N_{ic}^1 > N_{ic'}^1$.

(iv) Lower input price markup increases probability: For any sector in two countries c and c', if $\omega_c < \omega_{c'}$ then $N_{ic}^1 > N_{ic'}^1$.

(v) Financial development lowers probability more in external finance dependent sectors: For different sectors i and i' in two countries c and c', if $\tau_c < \tau_{c'}$ and $\pi_{i,1} < \pi_{i',1}$ then $N_{ic}^1 - N_{ic'}^1 > N_{i'c}^1 - N_{i'c'}^1$.

(vi) Lower local input price markup increases probability more in external finance dependent sectors: For different sectors i and i' in two countries c and c', if $\omega_c < \omega_{c'}$ and $\pi_{i,1} < \pi_{i',1}$ then $N_{ic}^1 - N_{ic'}^1 > N_{i'c}^1 - N_{i'c'}^1$.

Proof: Let H_{ic} and G_i denote the c.d.f.s for productivity $A_{ic,2}$ and first period profit $\pi_{i,1}$ across sectors identified by subscript *i* and countries identified by subscript *c*. We assume that H_{ic} and G_i and independent, and suppress the sector and country subscripts whenever convenient.

(i) For two industries i and i', with $\pi_{i,1} < \pi_{i',1}$, we have $l_{ic} < l_{i'c}$. Let $\bar{A}_{ic,2}$ and $\bar{A}_{i'c,2}$ be corresponding $A_{ic,2}$ such that $S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}} = 0$. From Lemma 1, $\bar{A}_{ic,2} < \bar{A}_{i'c,2}$. Then $N_{ic}^1 - N_{i'c}^1 = \int_{\underline{A}}^{\bar{A}_{ic,2}} dH - \int_{\underline{A}}^{\bar{A}_{i'c,2}} dH < 0$.

(ii) For two sector-country pairs *ic* and *i'c'*, with $A_{ic,2} > A_{i'c',2}$ we have $\bar{l}_{ic} > \bar{l}_{i'c'}$ from Lemma 1, where these are corresponding l_{ic} such that $S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}} = 0$. Then $N_{ic}^1 - N_{i'c'}^1 = \int_{l}^{\bar{l}_{ic}} dG - \int_{l}^{\bar{l}_{i'c'}} dG > 0$.

(iii) For two countries c and c', with $\tau_c < \tau_{c'}$, we have $l_{ic} < l_{ic'}$. Let $\bar{A}_{ic,2}$ and $\bar{A}_{ic',2}$ be corresponding $A_{ic,2}$ such that $S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}} = 0$. From Lemma 1, $\bar{A}_{ic,2} < \bar{A}_{ic',2}$. Then $N_{ic}^1 - N_{ic'}^1 = \int_A^{\bar{A}_{ic,2}} dH - \int_A^{\bar{A}_{ic',2}} dH < 0$.

(iv) For the same sector in two countries c and c' with $\omega_c < \omega_{c'}$ (c has a lower input price markup than c'), Lemma 3 shows that $\bar{l_{ic}}(A_{ic,2},\omega_c) > \bar{l_{ic'}}(A_{ic,2},\omega_{c'}) \forall A_{ic,2}$. We then have:

$$\int_{\underline{l}}^{\overline{l}_{ic}} dG - \int_{\underline{l}}^{\overline{l}_{ic'}} dG = G(\overline{l_{ic}}) - G(\overline{l_{ic'}}) > 0 \quad \forall \quad A_{ic,2}.$$

Since integrating over all values of $A_{ic,2}$ preserves the inequality, we have the mass of full foreign acquisitions in country c compared to country c' as $N_{ic}^1 - N_{ic'}^1 = \int G(\bar{l_{ic}}) dH - \int G(\bar{l_{ic'}}) dH \ge 0$, since $G(\bar{l_{ic}}) \ge G(\bar{l_{ic'}}) \forall A_{ic,2}$.

(v) Consider different sectors i and i' in two countries c and c' with $\tau_c < \tau_{c'}$ and $\pi_{i,1} < \pi_{i',1}$. We have to show that $N_{ic}^1 - N_{ic'}^1 > N_{i'c}^1 - N_{i'c'}^1$. Following the same notation as in (iii) $N_{ic}^1 - N_{ic'}^1 > N_{i'c}^1 - N_{i'c'}^1 \Leftrightarrow \int_{\underline{A}}^{\bar{A}_{ic,2}} dH - \int_{\underline{A}}^{\bar{A}_{ic,2}} dH > \int_{\underline{A}}^{\bar{A}_{i'c',2}} dH - \int_{\underline{A}}^{\bar{A}_{i'c',2}} dH \Leftrightarrow \bar{A}_{ic,2} - \bar{A}_{ic',2} > \bar{A}_{i'c,2} - \bar{A}_{i'c',2}$. It will suffice to show that $\frac{d\bar{A}_{ic,2}}{d\tau_c}|_{\pi_{i,1}} > \frac{d\bar{A}_{ic,2}}{d\tau_c}|_{\pi_{i',1}}$, or $\frac{d^2A_{ic,2}}{dl_{ic}^2}|_{S_{ic}^{F,1}-S_{ic}^{F,\alpha_{ic}}=0} < 0$. The last inequality was shown in Lemma 1.

(vi) Consider different sectors i and i' in two countries c and c' with $\omega_c < \omega_{c'}$ and $\pi_{i,1} < \pi_{i',1}$. We have to show that $N_{ic}^1 - N_{ic'}^1 > N_{i'c}^1 - N_{i'c'}^1$. Following the same notation as before, $N_{ic}^1 - N_{ic'}^1 > N_{i'c}^1 - N_{i'c'}^1 \Leftrightarrow \int_{\underline{A}}^{\overline{A}_{ic,2}} dH - \int_{\underline{A}}^{\overline{A}_{ic',2}} dH > \int_{\underline{A}}^{\overline{A}_{i'c,2}} dH - \int_{\underline{A}}^{\overline{A}_{i'c',2}} dH \Leftrightarrow \overline{A}_{ic,2} - \overline{A}_{ic',2} > \overline{A}_{i'c,2} - \overline{A}_{i'c',2}$. It will suffice to show that $\frac{d\overline{A}_{ic,2}}{d\omega_c}|_{\pi_{i,1}} > \frac{d\overline{A}_{ic,2}}{d\omega_c}|_{\pi_{i',1}}$, or $\frac{d^2A_{ic,2}}{d\omega_c dl_{ic}}|_{S_{ic}^{F,1} - S_{ic}^{F,\alpha_{ic}} = 0} > 0$. The last inequality was shown in Lemma 3.

Proposition 2 Ownership Structure in Partial Acquisition

(i) External finance dependence weakly increases ownership stakes: For any two sectors i and i' in the same country c, if $\pi_{i,1} < \pi_{i',1}$ then $\bar{\alpha}_{ic} \geq \bar{\alpha}_{i'c}$.

(ii) Financial development weakly lowers ownership stakes: For any sector in two countries c and c', if $\tau_c < \tau_{c'}$ then $\bar{\alpha}_c \geq \bar{\alpha}_{c'}$.

(iii) Lower input price markup has no effect on ownership stakes: For any sector in two countries c and c', if $\omega_c < \omega_{c'}$ then $\bar{\alpha}_c = \bar{\alpha}_{c'}$.

Proof: All parts (i)-(iii) follow immediately from the fact that conditional on partial ownership being optimal, $\bar{\alpha}_{ic}$ is an average across sectors which fall under either Case 1 or Case 2 of the solution to the partial ownership problem. In Case 1, $\alpha_{ic} = \frac{1-\beta_L}{1-\kappa}$ does not depend on financial factors. Case 2 is governed by Lemma 2. Thus statements (i)-(iii) about $\bar{\alpha}_{ic}$ follow immediately.

Proposition 3 Probability of Foreign Acquisitions

Let N_{ic} be the probability of foreign acquisitions in sector *i* of country *c*.

(i) External finance dependence increases probability: For any two sectors i and i' in the same country c, if $\pi_{i,1} < \pi_{i',1}$ then $N_{ic} > N_{i'c}$.

(ii) Financial development lowers probability: For any sector *i* in two countries *c* and *c'*, if $\tau_c < \tau_{c'}$ then $N_{ic} > N_{ic'}$.

(iii) **Productivity increases probability**: For any two sector-country pairs ic and i'c', if $A_{ic,2} > A_{i'c',2}$ then $N_{ic} > N_{i'c'}$.

(iv) Lower input price markup increases probability: For any sector *i* in two countries *c* and *c'*, if $\omega_c < \omega_{c'}$ then $N_{ic} > N_{ic'}$.

(v) Financial development lowers probability more in external finance dependent sectors: For different sectors i and i' in two countries c and c', if $\tau_c < \tau_{c'}$ and $\pi_{i,1} < \pi_{i',1}$ then $N_{ic} - N_{ic'} > N_{i'c} - N_{i'c'}$.

(vi) Lower local input price markup increases probability more in external finance dependent sectors: For different sectors i and i' in two countries c and c', if $\omega_c < \omega_{c'}$ and $\pi_{i,1} < \pi_{i',1}$ then $N_{ic} - N_{ic'} > N_{i'c} - N_{i'c'}$.

Proof: Note for all parts of the proof that the foreign acquisitions are either full or partial. Partial acquisitions are insensitive to target liquidity as shown before. Thus the probability of foreign acquisitions overall inherits all the properties of the probability of full acquisitions. Thus (i)-(vi) follow from steps very similar to the proof of Proposition 1. \blacksquare

2 Data and descriptive statistics

2.1 Additional data description

Mergers and acquisitions. Our M&A data come from the Securities Data Company (SDC) Thompson's International Mergers and Acquisitions database.⁵ This dataset reports all public and private M&A transactions involving at least a 5% ownership stake in the target company. We focus on the acquisitions taking place between 1990 and 1997 in the manufacturing sector (SIC codes 2000-4000), in the following fifteen emerging-market economies: Argentina, Brazil, Chile, China, India, Indonesia, Malaysia, Mexico, Peru, Philippines, Singapore, South Africa, South Korea, Thailand, and Vietnam. The information about the transactions is obtained from a variety of news sources, regulatory agencies, trade publications, and surveys.

For each merger or acquisition transaction, we utilize only the following variables for our analysis: the share of a firm acquired in an acquisition, the share of a firm owned after an acquisition (different from the previous variable if a prior stake was owned by the same acquirer), the names of the acquirer and target firms involved, both their primary four-digit SIC industry classifications, the country of the acquirer and target firm, and the date on which the transaction was completed (thereby pre-selecting the sample to deals that were actually completed, eliminating those that were announced but never completed). We drop transactions that are missing any of these variables except for the share of a firm owned after an acquisition (which we use only to perform the cross-checks below but not in our baseline regressions). Of note, our baseline results use data aggregated up to the industry-country-year level and thus are not sensitive to issues regarding precise acquisition dates (an issue in event studies) and identities of target and acquiring firms (an issue in studies about divestitures). Our main concern is regarding duplication of transactions. Hence we clean the SDC data using the following steps:

(i) We drop observations that are exact duplicates, i.e. those with the same name for the target and acquirer, date, and fraction acquired and owned after being very close each other (+/-0.001).

(ii) If for transactions that are duplicates in terms of name for the target and acquirer, and date, the sum of duplicates' fraction acquired is equal to one of the duplicates' fraction owned after, then we use the sum as the unique fraction acquired and drop the duplicates. This could happen, for example, when an acquiring firm completes a 50% acquisition by buying 25% each from two prior minority owners.

(iii) If in the cases above, the sum of stake acquired exceeds 1 by a small amount (0.01), we replace the fraction acquired by 1. If it exceeds 1 by greater than 0.01 we drop the transaction.

(iv) On the remaining transactions we performed the following manual check. We sorted all transactions by the target's country and date. For transactions within +/-15 days of each other we searched for the individual parts of the target firm name (e.g., for a target firm named Telefonica de Argentina SA, we searched for Telefonica and Argentina). In some cases, we found the same exact target firm with a separate transaction within +/-15 days; in some other cases we discovered minor errors where the firm appeared again, but a small part of the name had been dropped, for example the SA. In both these cases we treated this transaction as a duplicate

⁵https://financial.thomsonreuters.com/en/products/data-analytics/market-data/sdc-platinum-financial-securities.html.

in terms of target name and date, and followed steps (iii) and (iv). If the acquirer was different in the duplicate transaction, this was treated as a distinct transaction.

Industry-specific variables. The data comes from Rajan and Zingales (1998), and is defined as the ratio of capital expenditures minus cash flow from operations to capital expenditures. This ratio is calculated for each industry using U.S. data from the 1980s. In section 5.3 we use the additional following industry-level controls: the capital-to-labor ratio and the research and development (R&D) expenditures as a fraction of sales, both Antràs (2003); the measure of upstreamness of industries computed by Chor et al. (2012).

Country-specific variables. Our baseline measure of financial development is the private credit-to-GDP ratio from the World Bank's Global Financial Development Database⁶. Our baseline measure of institutional quality is the the index of *control-of-corruption*, from the WGI ("Worldwide Governance Indicators") dataset (Kaufmann, Kraay, and Mastruzzi, 2013). In our robustness exercises of Table A.15 we use alternative indicators: the perception of corruption index from Transparency International; an indicator of the quality of government from the International Country Risk Guide (2013); and an indicator of Business Freedom from the World Bank's Doing Business database. All these series have been downloaded from the 2013 version of the Quality of Government Basic Database.⁷ Finally, we use as control variables the change in the nominal exchange rate (quarterly), the use of IMF credit and loans as a percentage of a country's quota (quarterly), real GDP per capita (annual), and real GDP growth (annual). The data are from the Penn World Tables, the IMF's *International Financial Statistics*, Taiwan's National Statistical Office, and the Central Bank of the Republic of China.

Sector-country data. In all estimations we control for the level of productivity of the target industry-country relative to that of the US. The data come from Levchenko and Zhang (2011). In section 5.3 we additionally control for measure of market potential, at the country and industry level, from Mayer (2008)⁸, and for average applied tariffs at the target country and two-digit SIC industry level; these are obtained from the World Bank's *World Integrated Trade Solution* database.⁹

2.2 Additional descriptive evidence

This section contains additional statistics about our M&A data. Figure A.1 the evolution of acquisitions — and of their size — over time. In Table A.1 we split the transaction by 5-year period and country of origin of the target firm. Table A.2 and A.3 split the transactions by region of origin and by sector of the acquirers. Finally, Table A.4 shows the distribution of the fraction acquired for both foreign and domestic acquisitions.

⁸http://www.cepii.fr/cepii/fr/bdd_modele/presentation.asp?id=9.

 $^{^{6}}$ http://data.worldbank.org/data-catalog/global-financial-development.

⁷http://qog.pol.gu.se/data/datadownloads/qogbasicdata.

⁹These data are available at the following web address: http://wits.worldbank.org/.

Figure A.1: Acquisitions by over time

(a) Total number of acquisitions

(b) Foreign acquisitions

			NO. C	of Transact.	IOIIS				nnhar ngi	2
Latin America		1990-94	1995-99	2000-04	2005-07	<u>Total</u>	1990-94	1995-99	2000-04	2005-07
	Argentina	67	256	154	57	534	0.70	0.63	0.52	0.63
	Brazil	107	415	318	<u> 06</u>	930	0.42	0.59	0.49	0.43
	Chile	23	71	58	34	186	0.78	0.69	0.47	0.59
	Mexico	151	205	190	91	637	0.60	0.65	0.61	0.74
	Peru	12	47	21	14	94	0.33	0.60	0.24	0.57
	Total	360	994	741	286	2,381	0.57	0.62	0.52	0.59
Asia		0			0		0			
	China	86	346	1,021	066	2,443	0.69	0.52	0.40	0.42
	India	50	33	118	754	955	0.58	0.27	0.32	0.29
	Indonesia	35	84	100	51	270	0.49	0.62	0.60	0.49
	Malaysia	122	417	464	446	1,449	0.19	0.15	0.14	0.18
	Philippines	14	62	63	36	192	0.71	0.53	0.43	0.39
	Singapore	131	224	114	203	672	0.39	0.33	0.33	0.41
	South Korea	30	156	304	458	948	0.47	0.62	0.35	0.12
	Thailand	43	141	191	130	505	0.49	0.57	0.36	0.38
	Vietnam	9	14	26	21	67	0.33	0.79	0.77	0.62
	Total	517	1,494	2,401	3,089	7,501	0.44	0.41	0.34	0.31
South Africa		104	388	150	73	715	0.15	0.30	0.41	0.51
All Countries		981	2,876	3,292	3,448	10,597	0.46	0.46	0.39	0.34

Table A.1: Transactions by Country Origin of Target, over time

	# transactions	Share foreign	Share full	Share acquired	Share acquired
Sample	A	11	Foreig	a acquisitions	Foreign partial acq.
United States	1163	1.00	0.53	0.70	0.36
Europe	1322	1.00	0.39	0.64	0.40
Asia	6178	0.21	0.24	0.52	0.37
Australia, Canada, New Zealand	213	1.00	0.47	0.71	0.45
Latin America	1155	0.13	0.45	0.68	0.42
Other	566	0.15	0.14	0.35	0.24
All countries	10597	0.40	0.39	0.62	0.38

Table A.2: Acquisitions by country of acquirer

Source: Authors' computation from Thompson's International Mergers and Acquisitions database. # transactions is the total number of transactions (domestic and foreign). Share foreign is the share of transactions with a foreign acquirer. Share full is the share of full acquisitions (100% stake) in total number of foreign acquisitions. Share acquired is the average share acquired among foreign acquisitions or foreign partial acquisitions (last column).

Sample		# transactions All	Share foreign	Share full Foreign	Share acquired acquisitions	Share acquired Foreign partial ac
SIC	Industry					
0	Agriculture. Forestry. and Fishing	121	0.31	0.43	0.66	0.41
1	Mining and Construction	227	0.35	0.38	0.61	0.37
2	Manufacturing (food.textiles petroleum)	3211	0.44	0.45	0.69	0.43
33	Manufacturing (rubber. electronics)	3383	0.48	0.39	0.63	0.40
4	Transport and Communications	207	0.33	0.41	0.62	0.36
5	Wholesale and Retail	381	0.40	0.34	0.57	0.35
6	Finance. Insurance. and Real Estate	2692	0.27	0.23	0.45	0.28
7	Services (hotels. amusement)	234	0.34	0.49	0.73	0.47
8	Services (education. legal. other)	136	0.38	0.45	0.69	0.44
6	Public Administration	5	0.00	ı	ı	I
	All industries	10597	0.40	0.39	0.62	0.38

Table A.3: Acquisitions by sector of the acquirer

Source: Authors' computation from Thompson's International Mergers and Acquisitions database. # transactions is the total number of transactions (domestic and foreign). Share foreign is the share of transactions with a foreign acquirer. Share full is the share of full acquisitions (100% stake) in total number of foreign acquisitions. Share acquired is the average share acquired among foreign acquisitions or foreign partial acquisitions (last column).

Dor	mestic	Fo	reign	
Freq.	Percent	Freq.	Percent	<u>Total</u>
695	10.9%	336	7.9%	1,031
696	10.9%	354	8.4%	$1,\!050$
586	9.2%	369	8.7%	955
394	6.2%	268	6.3%	662
383	6.0%	293	6.9%	676
533	8.4%	505	11.9%	1,038
343	5.4%	220	5.2%	563
138	2.2%	89	2.1%	227
153	2.4%	105	2.5%	258
111	1.7%	58	1.4%	169
$2,\!339$	36.7%	$1,\!629$	38.6%	$3,\!968$
6,371	100.0%	4,226	100.0%	10,597
$5,\!676$	89.1%	$3,\!890$	91.0%	9,566
$3,\!617$	56.8%	$2,\!606$	61.7%	6,223
	Don Freq. 695 696 586 394 383 533 343 138 153 111 2,339 6,371 5,676 3,617	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccc} Domestic & Fo\\ \hline Freq. & Percent & Freq. \\ \hline 695 & 10.9\% & 336 \\ \hline 696 & 10.9\% & 354 \\ \hline 586 & 9.2\% & 369 \\ \hline 394 & 6.2\% & 268 \\ \hline 383 & 6.0\% & 293 \\ \hline 533 & 8.4\% & 505 \\ \hline 343 & 5.4\% & 220 \\ \hline 138 & 2.2\% & 89 \\ \hline 153 & 2.4\% & 105 \\ \hline 111 & 1.7\% & 58 \\ \hline 2,339 & 36.7\% & 1,629 \\ \hline 6,371 & 100.0\% & 4,226 \\ \hline 5,676 & 89.1\% & 3,890 \\ \hline 3,617 & 56.8\% & 2,606 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table A.4: Distribution of Fractions Acquired in Manufacturing Acquisitions

Source: Authors' computation from Thompson's International Mergers and Acquisitions database.

3 Descriptive statistics – transaction-level

Table A.5 below contains descriptive statistics about our sample before we aggregate the data by target country and industry. The estimations that use this version of the data are reported in the next section.

	Obs.	Mean	S.D.	Q1	Median	Q3
				•		
Foreign acquisition	10591	0.40	0.49	0.00	0.00	1.00
Full acquisition (all)	10591	0.37	0.48	0.00	0.00	1.00
Full acquisition (foreign)	4224	0.39	0.49	0.00	0.00	1.00
Full acquisition (domestic)	6367	0.37	0.48	0.00	0.00	1.00
Fraction acquired (all)	10591	0.60	0.36	0.25	0.55	1.00
Fraction acquired (foreign)	4224	0.62	0.36	0.30	0.58	1.00
Fraction acquired (foreign. partial acq.)	2595	0.38	0.24	0.18	0.37	0.51
Fraction acquired (domestic)	6367	0.59	0.37	0.23	0.55	1.00
Fraction acquired (domestic. partial acq.)	4030	0.35	0.25	0.13	0.30	0.51
External finance dependence	10591	0.27	0.19	0.15	0.21	0.45
Private credit / GDP (average)	10591	0.73	0.36	0.33	0.95	1.10
Anti-corruption index (average)	10591	0.06	0.71	-0.46	-0.20	0.36
GDP per capita	9643	9414	7732	4760	8255	11358
Real GDP growth	9643	6.96	6.88	2.99	7.79	11.03
Technology relative to US	8948	0.04	0.11	0.00	0.00	0.02

Table A.5: Sample statistics (transaction level)

Source: Authors' computation from Thompson's International Mergers and Acquisitions database, World Bank, IMF and Rajan and Zingales (1998). Foreign acquisition is a dummy which equals 1 for foreign acquisitions. Full acquisition is a dummy which equals 1 for foreign acquisitions. Full acquisition is a dummy which equals 1 for 100% acquisitions. Anti-corruption index comes from the World Bank Governance Indicators and is a measure of perceptions of corruption. Technology relative to the US is from Levchenko and Zhang (2011).

4 Additional results

4.1 Transaction level results

Table A.6: Determinants of the probability of full foreign acquisitions: transaction-level

	(1)	(2)	(3)	(4)	(5)
Dep. var.		Full foreig	n Acquisi	tion dumr	ny
Test of	— Ну	pothesis	1.a ——	– Hypotl	nesis 1.b –
External dependence	0.166^{a}				
	(0.063)				
	· · · ·				
Average fin. dev.		-0.104^{a}	-0.135^{a}		
		(0.038)	(0.038)		
Control of corruption index			0.075^{c}		
			(0.042)		
External den × average fin dev				0.218	0.331b
External dep. \wedge average ini. dev.				(0.137)	(0.131)
				(0.101)	(0.101)
External dep. \times control of corruption					0.377^{a}
					(0.096)
Tech relative to US	0.064	0.025	0.004	0.026	0.067
	(0.108)	(0.145)	(0.120)	(0.020)	(0.119)
	(0.100)	(0.140)	(0.125)	(0.105)	(0.115)
Observations	3963	3963	3963	3963	3963
R^2	0.150	0.065	0.068	0.164	0.167
Macroeconomic controls	No	Yes	Yes	No	No
Year FE	Yes	Yes	Yes	No	No
Target sector FE	No	Yes	Yes	Yes	Yes
Target country \times Year FE	Yes	No	No	Yes	Yes

Notes: c significant at 10%; b significant at 5%; a significant at 1%. OLS estimations. Standard errors clustered by target country × target industry. Estimations at the transaction × year level. These estimations are restricted to the sample of foreign acquisitions. External dependence target is the level of external finance dependence of the target sector from Rajan and Zingales (1998). Financial development is the average ratio of private credit over GDP over the period of the target country from the World Bank GFDD. Control of corruption index is the average country-level score of control of corruption from the WGI dataset. Macroeconomic controls include the lagged real GDP and GDP per capita, both in logs. Technology relative to the US is from Levchenko and Zhang (2011).

Dep. var. Test of	(1) Size of f	(2) foreign sta — 1	(3) ike (only j Hypothesi	(4) partial acc s 2 —	(5) quisitions)
External dependence	0.049^b (0.024)				
Average fin. dev.		-0.017 (0.019)	-0.003 (0.022)		
Control of corruption index			-0.043^b (0.020)		
External dep. \times average fin. dev.				-0.015 (0.070)	-0.007 (0.073)
External dep. \times control of corruption					-0.035 (0.062)
Tech. relative to US	-0.057 (0.051)	$0.003 \\ (0.044)$	$\begin{array}{c} 0.013 \\ (0.045) \end{array}$	-0.060 (0.056)	-0.063 (0.057)
Observations R^2 Macroeconomic controls Ver FE	2435 0.153 No Ves	2435 0.054 Yes Ves	2435 0.057 Yes Ves	2435 0.174 No No	2435 0.174 No No
Target sector FE Target country \times Year FE	No Yes	Yes No	Yes	Yes Yes	Yes Yes

Table A.7: Determinants of the size of partial foreign stake: transaction-level

Notes: c significant at 10%; b significant at 5%; a significant at 1%. OLS estimations. Standard errors clustered by target country × target industry. Estimations at the transaction × year level. These estimations are restricted to the sample of partial foreign acquisitions. External dependence target is the level of external finance dependence of the target sector from Rajan and Zingales (1998). Financial development is the average ratio of private credit over GDP over the period of the target country from the World Bank GFDD. Control of corruption index is the average country-level score of control of corruption from the WGI dataset. Macroeconomic controls include the lagged real GDP and GDP per capita, both in logs. Technology relative to the US is from Levchenko and Zhang (2011).

4.2 Full baseline results

This section reports specification akin to our baseline ones (sections 4.4 and 4.5 in the main text), with less restrictive combinations of fixed effects.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dep. var. Test of		— Hypot	Full f – hesis 1.a	oreign Aco	quisition c	lummy — Hypoti	hesis 1.b –	
External dependence	0.188^a (0.063)	$\begin{array}{c} 0.197^{a} \\ (0.065) \end{array}$			$\begin{array}{c} 0.192^{a} \\ (0.063) \end{array}$	$\begin{array}{c} 0.283^{a} \\ (0.062) \end{array}$		
Average fin. dev.			-0.098^b (0.041)	-0.143^a (0.043)				
Control of corruption index				$ \begin{array}{c} 0.094^b \\ (0.044) \end{array} $				
External dep. \times average fin. dev.					-0.180 (0.165)	-0.419^a (0.148)	-0.192 (0.155)	-0.431^a (0.141)
External dep. \times control of corruption						$\begin{array}{c} 0.471^{a} \\ (0.106) \end{array}$		$\begin{array}{c} 0.471^{a} \\ (0.096) \end{array}$
Tech. relative to US	$\begin{array}{c} 0.099 \\ (0.072) \end{array}$	$\begin{array}{c} 0.125 \\ (0.095) \end{array}$	$0.067 \\ (0.088)$	$\begin{array}{c} 0.038 \\ (0.083) \end{array}$	$\begin{array}{c} 0.134 \\ (0.092) \end{array}$	0.182^{c} (0.093) (0.052)	$0.051 \\ (0.111)$	0.106 (0.112) (0.052)
Observations R^2	$1529 \\ 0.161$	$1529 \\ 0.291$	$1529 \\ 0.113$	$1529 \\ 0.119$	$1529 \\ 0.292$	(0.055) 1529 0.304	$1529 \\ 0.318$	(0.052) 1529 0.329
Macroeconomic controls	Yes	No	Yes	Yes	No	No	No	No
Target country FE	Yes	No	No	No	No	No	No	No
Year FE	Yes	No	Yes	Yes	No	No	No	No
Target sector FE	No	No	Yes	Yes	No	No	Yes	Yes
Target country \times Year FE	No	Yes	No	No	Yes	Yes	Yes	Yes

Table A.8: Determinants of full foreign acquisitions: extended baseline results

Notes: ^c significant at 10%; ^b significant at 5%; ^a significant at 1%. OLS estimations. These estimations are restricted to the sample of foreign acquisitions. Standard errors clustered by target country \times target industry. Estimations at the target country \times target industry \times year. External dependence target is the level of external financial dependence of the target sector from Rajan and Zingales (1998). Financial development is the average ratio of private credit over GDP over the period of the target country from the World Bank GFDD. Control of corruption index is the average country-level score of control of corruption from the WGI dataset. Country-level variables are demeaned in columns (5) to (8). Macroeconomic controls include the lagged real GDP and GDP per capita, both in logs. Technology relative to the US is from Levchenko and Zhang (2011).

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dep. var.	. ,	Size	of foreign	ı stake (o	nly partia	l acquisiti	ons)	~ /
Test of				— Hypot	hesis 2 —			
External dependence	0.073^{a}	0.049^{c}			0.049^{c}	0.043		
	(0.026)	(0.028)			(0.029)	(0.034)		
	()	()						
Average fin. dev.			-0.053^{a}	-0.039^{c}				
			(0.018)	(0.021)				
Control of corruption index				-0.033^{c}				
Control of corruption much				(0.019)				
				()				
External dep. \times average fin. dev.					-0.042	-0.032	0.014	0.030
					(0.078)	(0.078)	(0.076)	(0.077)
External den × control of corruption						-0.026		-0.038
						(0.072)		(0.065)
						()		()
Tech. relative to US	-0.024	-0.054	0.022	0.036	-0.050	-0.053	-0.035	-0.039
	(0.063)	(0.078)	(0.053)	(0.054)	(0.078)	(0.079)	(0.085)	(0.086)
Observations	1162	1163	1163	1163	1163	1163	1163	1163
R^2	0.000	0.257	0.000	0 102	0.258	0.258	0.308	0.309
Macroeconomic controls	Yes	No	Yes	Yes	No	No	No	0.505 No
Target country FE	Yes	No	No	No	No	No	No	No
Year FE	Yes	No	Yes	Yes	No	No	No	No
Target sector FE	No	No	Yes	Yes	No	No	Yes	Yes
Target country \times Year FE	No	Yes	No	No	Yes	Yes	Yes	Yes

Table A.9: Determinants of the size of partial foreign stake: extended baseline results

Notes: ^c significant at 10%; ^b significant at 5%; ^a significant at 1%. OLS estimations. These estimations are restricted to the sample of partial foreign acquisitions. Standard errors clustered by target country × target industry. Estimations at the target country × target industry × year. External dependence target is the level of external financial dependence of the target sector from Rajan and Zingales (1998). Financial development is the average ratio of private credit over GDP over the period of the target country from the World Bank GFDD. Control of corruption index is the average country-level score of control of corruption from the WGI dataset. Country-level variables are demeaned in columns (5) to (8). Macroeconomic controls include the lagged real GDP and GDP per capita, both in logs. Technology relative to the US is from Levchenko and Zhang (2011).

4.3 Robustness: alternative clustering strategies

Don you	(1)	(2) Shara fu	(3)	(4)	(5)
Test of	— Ну	pothesis	1.a —	– Hypotl	hesis 1.b –
External dependence	$\begin{array}{c} 0.197 \\ (0.065) \\ (0.063) \\ (0.057) \end{array}$				
Average fin. dev.		$\begin{array}{c} -0.098 \\ (0.041) \\ (0.032) \\ (0.037) \end{array}$	$\begin{array}{c} -0.143 \\ (0.043) \\ (0.042) \\ (0.040) \end{array}$		
Control of Corruption index			$\begin{array}{c} 0.094 \\ (0.044) \\ (0.048) \\ (0.037) \end{array}$		
External dep. \times average fin. dev.				$\begin{array}{c} -0.192 \\ (0.155) \\ (0.132) \\ (0.156) \end{array}$	$\begin{array}{c} -0.431 \\ (0.141) \\ (0.129) \\ (0.152) \end{array}$
External dep. \times Control of corruption					$\begin{array}{c} 0.471 \\ (0.096) \\ (0.109) \\ (0.090) \end{array}$
Tech. relative to US	$\begin{array}{c} 0.125 \\ (0.095) \\ (0.050) \\ (0.105) \end{array}$	$\begin{array}{c} 0.067 \\ (0.088) \\ (0.095) \\ (0.081) \end{array}$	$\begin{array}{c} 0.038 \\ (0.083) \\ (0.090) \\ (0.081) \end{array}$	$\begin{array}{c} 0.051 \\ (0.111) \\ (0.047) \\ (0.119) \end{array}$	$\begin{array}{c} 0.106 \\ (0.112) \\ (0.055) \\ (0.119) \end{array}$
Observations R^2 Macroeconomic controls Year FE Target sector FE Target country × Year FE	1529 0.291 No Yes No Yes	1529 0.113 Yes Yes Yes No	1529 0.119 Yes Yes Yes No	1529 0.318 No Yes Yes	1529 0.329 No No Yes Yes

Table A.10: Determinants of the probability of full foreign acquisitions: alternative clustering

Notes: OLS estimations. Below the coefficients are shown the standard errors, which are either clustered at the target country \times target industry (baseline case, first number) or at the sector-level (second number) or at the country \times year level (third number). Estimations at the target country \times target industry \times year. These estimations are restricted to the sample of foreign acquisitions. Compared to the baseline results, the sample has been aggregated by target country, target sector and year. External dependence target is the level of external finance dependence of the target sector from Rajan and Zingales (1998). Financial development is the average ratio of private credit over GDP over the period of the target country from the World Bank GFDD. Control of corruption index is the average country-level score of controls or corruption from the WGI dataset. Macroeconomic controls include the lagged real GDP and GDP per capita, both in logs. Technology relative to the US is from Levchenko and Zhang (2011).

Dep. var.	(1) Size of f	(2) oreign sta	(3) ke (only j	(4) partial acc	(5) (uisitions)
lest of			Typotnesi	s 2	
External dependence	$\begin{array}{c} 0.049 \\ (0.028) \\ (0.036) \\ (0.037) \end{array}$				
Average fin. dev.		$\begin{array}{c} -0.053 \\ (0.018) \\ (0.018) \\ (0.019) \end{array}$	$\begin{array}{c} -0.039\\ (0.021)\\ (0.021)\\ (0.022)\end{array}$		
Control of corruption index			$\begin{array}{c} -0.033 \\ (0.019) \\ (0.019) \\ (0.019) \end{array}$		
External dep. \times average fin. dev.				$\begin{array}{c} 0.014 \\ (0.076) \\ (0.102) \\ (0.098) \end{array}$	$\begin{array}{c} 0.030 \\ (0.077) \\ (0.105) \\ (0.103) \end{array}$
External dep. \times control of corruption					$\begin{array}{c} -0.038\\ (0.065)\\ (0.053)\\ (0.085) \end{array}$
Tech. relative to US	$\begin{array}{c} -0.054 \\ (0.078) \\ (0.054) \\ (0.092) \end{array}$	$\begin{array}{c} 0.022 \\ (0.053) \\ (0.042) \\ (0.056) \end{array}$	$\begin{array}{c} 0.036 \\ (0.054) \\ (0.043) \\ (0.058) \end{array}$	$\begin{array}{c} -0.035 \\ (0.085) \\ (0.048) \\ (0.099) \end{array}$	$\begin{array}{c} -0.039\\(0.086)\\(0.050)\\(0.100)\end{array}$
Observations R^2 Macroeconomic controls Year FE Target sector FE Target country × Year FE	1163 0.257 No Yes No Yes	1163 0.099 Yes Yes Yes No	1163 0.102 Yes Yes Yes No	1163 0.308 No Yes Yes	1163 0.309 No Yes Yes

Table A.11: Determinants of the size of partial foreign stake: alternative clustering

Notes: OLS estimations. Below the coefficients are shown the standard errors, which are either clustered at the target country \times target industry (baseline case, first number) or at the sector-level (second number) or at the country \times year level (third number). Estimations at the target country \times target industry \times year. These estimations are restricted to the sample of partial foreign acquisitions. Compared to the baseline results, the sample has been aggregated by target country, target sector and year. External dependence target is the level of external finance dependence of the target country from Rajan and Zingales (1998). Financial development is the average ratio of private credit over GDP over the period of the target country from the World Bank GFDD. Control of corruption index is the average country-level score of control of corruption from the WGI dataset. Macroeconomic controls include the lagged real GDP and GDP per capita, both in logs. Technology relative to the US is from Levchenko and Zhang (2011).

4.4 Robustness: nonlinear estimators

	(1)	(2)	(3)	(4)	(5)		
Dep. var.	Share full foreign acquisitions						
Test of	— Hypothesis 1.a — – Hypothesis 1.b						
External dependence	1.005^{a}			0.986^{a}	1.497^{a}		
-	(0.306)			(0.297)	(0.324)		
Average fin. dev.		-0.426^{b}	-0.629^{a}				
		(0.186)	(0.200)				
Control of corruption index			0.417^{b}				
			(0.193)				
External den × average fin dev				-0.905	-2.290^{a}		
				(0.769)	(0.739)		
External dep. \times control of corruption					2.827^{a}		
					(0.661)		
Tech. relative to US	0.610	0.301	0.170	0.653^{c}	0.909^{b}		
	(0.402)	(0.414)	(0.376)	(0.391)	(0.415)		
Observations	1529	1529	1529	1529	1529		
Macroeconomic controls	No	Yes	Yes	No	No		
Year FE	Yes	Yes	Yes	No	No		
Target sector FE	No	Ves	Yes	No	No		
Target country \times Year FE	Yes	No	No	Yes	Yes		
ranget country // rear r E	100	110	110	100	100		

Table A.12: Determinants of full foreign acquisitions: fractional logit estimation

Notes: c significant at 10%; b significant at 5%; a significant at 1%. Fractional logit estimations. Standard errors clustered by target country \times target industry. Estimations at the target country \times target industry \times year. These estimations are restricted to the sample of foreign acquisitions. External dependence target is the level of external financial dependence of the target sector from Rajan and Zingales (1998). Financial development is the average ratio of private credit over GDP over the period of the target country from the World Bank GFDD. Control of corruption index is the average country-level score of control of corruption from the WGI dataset. Macroeconomic controls include the lagged real GDP and GDP per capita, both in logs. Technology relative to the US is from Levchenko and Zhang (2011).

Dep. var. Test of	(1) (2) (3) (4) (5) Size of foreign stake (only partial acquisitions) —							
External dependence	0.214^c (0.112)			0.215^c (0.113)	0.186 (0.132)			
Average fin. dev.		-0.227^{a} (0.074)	-0.165^c (0.088)					
Control of corruption index			-0.142^c (0.082)					
External dep. \times average fin. dev.				-0.191 (0.310)	-0.145 (0.307)			
External dep. \times control of corruption					-0.113 (0.282)			
Tech. relative to US	-0.240 (0.319)	$0.101 \\ (0.222)$	$\begin{array}{c} 0.158 \\ (0.222) \end{array}$	-0.224 (0.321)	-0.235 (0.324)			
Observations Macroeconomic controls Year FE Target sector FE Target country × Year FE	1163 No Yes No Yes	1163 Yes Yes Yes No	1163 Yes Yes Yes No	1163 No No Yes	1163 No No Yes			

Table A.13: Determinants of the size of partial foreign stake: fractional logit estimation

Notes: c significant at 10%; b significant at 5%; a significant at 1%. Fractional logit estimations. Standard errors clustered by target country × target industry. Estimations at the target country × target industry × year. These estimations are restricted to the sample of partial foreign acquisitions. External dependence target is the level of external financial dependence of the target sector from Rajan and Zingales (1998). Financial development is the average ratio of private credit over GDP over the period of the target country from the World Bank (GFDD. Control of corruption index is the average country-level score of control of corruption from the WGI dataset. Macroeconomic controls include the lagged real GDP and GDP per capita, both in logs. Technology relative to the US is from Levchenko and Zhang (2011).

4.5 Robustness: the role of financial development

In Table A.14 we show the robustness of the effect of financial development (and its interaction with external finance dependence) to the use of alternative measures of financial development: a time-varying measure (instead of the country average) in columns (1), (2), (5) and (6) or a time-invariant pre-period measure (the average private credit to GDP ratio over the 1985-1989 period, the five years before the start of our sample period) in columns (3), (4), (7)and (8).

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dep. var.	Share full acquisitions				Average fraction acquired (partial acq.)			
Financial development	Time-varying		Pre-period		Time-varying		Pre-period	
Financial development	-0.130^{a}		-0.222^{a}		-0.046^{b}		-0.054^{b}	
1 I	(0.038)		(0.059)		(0.018)		(0.027)	
	(0.000)		(0.000)		(0.010)		(0.0=.)	
Control of corruption index	0.090^{b}		0.102^{b}		-0.030		-0.028	
*	(0.042)		(0.045)		(0.019)		(0.019)	
	(/		()		(/		< <i>/</i>	
External dep. \times fin. dev.		-0.320^{b}		-0.538^{a}		0.023		-0.034
-		(0.124)		(0.191)		(0.066)		(0.109)
								× /
External dep. \times control of corruption		0.450^{a}		0.433^{a}		-0.037		-0.020
		(0.092)		(0.094)		(0.065)		(0.066)
		· /		· /		` '		· · · ·
Tech. relative to US	0.048	0.092	0.020	0.093	0.032	-0.038	0.025	-0.040
	(0.082)	(0.111)	(0.080)	(0.111)	(0.053)	(0.085)	(0.053)	(0.085)
	. ,	. ,	. ,	. ,		. ,	. ,	
Observations	1528	1528	1498	1498	1162	1162	1137	1137
R^2	0.119	0.328	0.122	0.327	0.105	0.308	0.105	0.306
Macroeconomic controls	Yes	No	Yes	No	Yes	No	Yes	No
Sector FE	Yes	Yes	Ves	Yes	Yes	Yes	Ves	Ves
Ver FE	Vos	No	Voc	No	Vos	No	Vos	No
Torgot country × Voor FF	No	Voc	No	Voc	No	Voc	No	Vog
rarget country \times rear FE	INO	res	INO	res	INO	res	110	res

Table A.14: Robustness: the role of financial development

Notes: c significant at 10%; b significant at 5%; a significant at 1%. OLS estimations. Standard errors clustered by target country × target industry. Estimations at the target country × target industry × year. The dependent variable is: in columns (1) and (2), the share of full acquisitions among foreign acquisitions; in columns (3) and (4), the average fraction acquired among foreign acquisitions; in columns (3) and (4), the average fraction acquired among foreign acquisitions; in columns (5) and (6), the average fraction acquired among partial foreign acquisitions. Financial development is the level of private credit of GDP of the target country (averaged over the period in odd numbered columns, and time-varying in even numbered columns). Anti-corruption index is the average country-level score of control of corruption from the World Bank. Macroeconomic controls include the lagged real GDP and GDP per capita, both in logs. Technology relative to the US is from Levchenko and Zhang (2011).

4.6 Robustness: The role of institutions

In this section, we use alternative indicators of institutions / corruption to assess the robustness of our results on full acquisitions. We first use an alternative anti-corruption measure from Transparency International. The results (cols. 3 and 4) are quality similar to our baseline estimates (cols 1 and 2), both for the non-interacted variables and for the interaction with external finance dependence. We next use an indicator of the quality of government from the International Country Risk Guide (2013). The coefficient on the non-interacted variable becomes negative and significant (col. 5), a result due to an outlier country, South Africa, which has relatively low corruption level yet low government quality. In column 6 however we do find that full foreign acquisitions are more likely in countries with good government quality, in more financially dependent sectors. Finally, in columns (6) and (7) we use an indicator of Business Freedom from the World Bank's Doing Business database. Again the results are in line with our baseline.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dep. var.				Share full foreign acquisitions				
Indicator	Anti-corruption		Anti-corruption		Quality of government		Business Freedom	
	(W)	'B)	Γ)	TI)	(ICRG)		(WB Doing Business)	
Average fin. dev.	-0.143^{a}		-0.153^{a}		-0.040		-0.134^{a}	
interaçõi init detti	(0.043)		(0.045)		(0.046)		(0.042)	
	(0.010)		(0.010)		(0.010)		(0.012)	
Control of corruption index target	0.094^{b}		0.005^{b}		-0.724^{a}		0.006^{c}	
	(0.044)		(0.002)		(0.248)		(0.003)	
	· /		. ,		· /		· /	
External dep. \times average fin. dev.		-0.431^{a}		-0.466^{a}		-0.363^{b}		-0.296^{c}
		(0.141)		(0.143)		(0.182)		(0.151)
External day x control of corruption		0 4714		0.0214		2.247^{b}		0.017^{a}
External dep. \times control of corruption		(0.411)		(0.021)		(0.025)		(0.005)
		(0.090)		(0.005)		(0.955)		(0.005)
Tech. rel. to US	0.038	0.106	0.053	0.094	0.096	0.084	0.032	0.103
	(0.083)	(0.112)	(0.083)	(0.111)	(0.087)	(0.117)	(0.086)	(0.111)
	· /	· /	. ,	()	· /	× /	· /	· · · ·
Observations	1529	1529	1529	1529	1529	1529	1529	1529
R^2	0.119	0.329	0.121	0.329	0.121	0.322	0.117	0.325
Macroeconomic controls	Yes	No	Yes	No	Yes	No	Yes	No
Sector FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Target country \times Year FE	No	Yes	No	Yes	No	Yes	No	Yes

Table A.15: Robustness: corruption indicators

Notes: c significant at 10%; b significant at 5%; a significant at 1%. OLS estimations. Standard errors clustered by target country × target industry. The dependent variable is the share of full foreign acquisition. Estimations at the target country × target industry × year. The sample considered is the sample of foreign acquisitions. Anti-corruption (WB) is the index of anti-corruption from the World Bank; Anti-corruption (TI) is the index of anti-corruption from the Transparency International; Quality of government is indicator of quality of government from ICRG; Business Freedom is an index of Business Freedom computed from the World Bank Doing Business study, as provided in the QoG dataset. Macroeconomic controls include the lagged real GDP and GDP per capita, both in logs. Technology relative to the US is from Levchenko and Zhang (2011).

4.7 Robustness: external finance dependance and financial development

Here we show that the robustness of the cross-effect of external finance dependence and financial development is obtained using alternative functional forms in our estimations. In Table A.16, we find that external financial dependence only matters when the origin country of the acquiring firm is more financially developed than that of the target. In Table A.17, we show that the effect of external finance dependence is significantly stronger in the least financially developed countries of our sample, using the sample median or first quartile as a sample split rule.

	(1)	(2)	(3)	(4)	(5)	(6)	
Dep. var.	Full acq.		Fraction	acquired	Frac. acq. (partial)		
fin. dev. target/fin. dev. orig.	≤ 1	≥ 1	≤ 1	≥ 1	≤ 1	≥ 1	
External dependence target	0.159^{b}	0.025	0.131^{a}	0.025	0.046^{c}	0.015	
	(0.064)	(0.142)	(0.039)	(0.105)	(0.025)	(0.099)	
Observations	2463	482	2463	482	1649	306	
R^2	0.201	0.294	0.220	0.326	0.189	0.343	
Target country \times Year FE	Yes	Yes	Yes	Yes	Yes	Yes	

Table A.16: Robustness: external finance dependence and financial development (1/2)

Notes: c significant at 10%; b significant at 5%; a significant at 1%. OLS estimations. Standard errors clustered by target country × target industry. Estimations at the source country × target country × target industry × year. The dependent variable is: in column (1) and (2), the share of full acquisition among foreign acquisitions; in columns (3) and (4), the average fraction acquired among foreign acquisitions; in columns (5) and (6), the average fraction acquired among partial foreign acquisitions. Financial development is the level of private credit of GDP of the target country. In even numbered (respectively odd numbered) columns, we consider only observations for which the level of financial development of the target is lower or equal (resp. larger or equal) to the level of financial development of the origin country. Technology relative to the US included as a control variable, but coefficient not reported.

Table A.17: Robustness: external finance dependence and financial development (2/2)

2	(1)	(2)	(3)	(4)	(5)	(6)
Dep. var.	Full acq.		Fraction	acquired	Frac. acq. (partial)	
Low fin. dev. target	Below	First	Below	First	Below	First
0	median	quartile	median	quartile	median	quartile
		1		1		1
External dep. \times average fin. dev.	0.199^{b}	0.226^{c}	0.124^{c}	0.169^{b}	0.012	-0.002
	(0.100)	(0.122)	(0.065)	(0.075)	(0.052)	(0.052)
	```	· · ·	· /	· · /	· · · ·	· /
Observations	2945	2945	2945	2945	1955	1955
$R^2$	0.196	0.196	0.221	0.221	0.196	0.196
Target country $\times$ Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Sector	Yes	Yes	Yes	Yes	Yes	Yes

**Notes:**  c  significant at 10%;  b  significant at 5%;  a  significant at 1%. OLS estimations. Standard errors clustered by target country × target industry. Estimations at the source country × target country × target industry × year. The dependent variable is: in columns (1) and (2), the share of full acquisition among foreign acquisitions; in columns (3) and (4), the average fraction acquired among foreign acquisitions; in columns (5) and (6), the average fraction acquired among partial foreign acquisitions. Financial development is the level of private credit of GDP of the target country. In odd numbered (respectively even numbered) columns, we interact external financial dependence with a dummy which equals 1 if the target country's level of financial development is below the sample median (resp. below the first quartile). Technology relative to the US included as a control variable, but coefficient not reported.