NBER

Laura Liu, Hyungsik Roger Moon, Frank Schorfheide

Bibliographic Information

NBER Working Paper No. 27248
Issued in May 2020
NBER Program(s):EFG, HE

Available Formats

Abstract

We use dynamic panel data models to generate density forecasts for daily Covid-19 infections for a panel of countries/regions. At the core of our model is a specification that assumes that the growth rate of active infections can be represented by autoregressive fluctuations around a downward sloping deterministic trend function with a break. Our fully Bayesian approach allows us to flexibly estimate the cross-sectional distribution of heterogeneous coefficients and then implicitly use this distribution as prior to construct Bayes forecasts for the individual time series. According to our model, there is a lot of uncertainty about the evolution of infection rates, due to parameter uncertainty and the realization of future shocks. We find that over a one-week horizon the empirical coverage frequency of our interval forecasts is close to the nominal credible level. Weekly forecasts from our model are published at https://laurayuliu.com/covid19-panel-forecast/.

National Bureau of Economic Research
1050 Massachusetts Ave.
Cambridge, MA 02138
617-868-3900
info@nber.org

Twitter RSS

View Full Site: One timeAlways